Articles | Volume 24, issue 9
Hydrol. Earth Syst. Sci., 24, 4567–4574, 2020
https://doi.org/10.5194/hess-24-4567-2020
Hydrol. Earth Syst. Sci., 24, 4567–4574, 2020
https://doi.org/10.5194/hess-24-4567-2020

Technical note 21 Sep 2020

Technical note | 21 Sep 2020

Technical Note: Improved sampling of behavioral subsurface flow model parameters using active subspaces

Daniel Erdal and Olaf A. Cirpka

Related authors

Presentation and discussion of the high-resolution atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021,https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021,https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Global sensitivity analysis and adaptive stochastic sampling of a subsurface-flow model using active subspaces
Daniel Erdal and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 23, 3787–3805, https://doi.org/10.5194/hess-23-3787-2019,https://doi.org/10.5194/hess-23-3787-2019, 2019
Short summary
High-Resolution Virtual Catchment Simulations of the Subsurface-Land Surface-Atmosphere System
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557,https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter
D. Erdal and O. A. Cirpka
Hydrol. Earth Syst. Sci., 20, 555–569, https://doi.org/10.5194/hess-20-555-2016,https://doi.org/10.5194/hess-20-555-2016, 2016
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Stochastic approaches
Technical note: Discharge response of a confined aquifer with variable thickness to temporal, nonstationary, random recharge processes
Ching-Min Chang, Chuen-Fa Ni, We-Ci Li, Chi-Ping Lin, and I-Hsien Lee
Hydrol. Earth Syst. Sci., 25, 2387–2397, https://doi.org/10.5194/hess-25-2387-2021,https://doi.org/10.5194/hess-25-2387-2021, 2021
Short summary
Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations
Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 1689–1709, https://doi.org/10.5194/hess-25-1689-2021,https://doi.org/10.5194/hess-25-1689-2021, 2021
Short summary
A field evidence model: how to predict transport in heterogeneous aquifers at low investigation level
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021,https://doi.org/10.5194/hess-25-1-2021, 2021
3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer using DeeSse
Valentin Dall'Alba, Philippe Renard, Julien Straubhaar, Benoit Issautier, Cédric Duvail, and Yvan Caballero
Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020,https://doi.org/10.5194/hess-24-4997-2020, 2020
Short summary
Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors
Christian Lehr and Gunnar Lischeid
Hydrol. Earth Syst. Sci., 24, 501–513, https://doi.org/10.5194/hess-24-501-2020,https://doi.org/10.5194/hess-24-501-2020, 2020
Short summary

Cited articles

Aquanty Inc.: HydroGeoSphere User Manual, Tech. rep., Aquanty Inc., Waterloo, Ontario, Canada, 226 pp., 2015. a
Asher, M. J., Croke, B. F., Jakeman, A. J., and Peeters, L. J.: A review of surrogate models and their application to groundwater modeling, Water Resour. Res., 51, 5957–5973, https://doi.org/10.1002/2015WR016967, 2015. a
Constantine, P. G. and Diaz, P.: Global sensitivity metrics from active subspaces, Reliab. Eng. Syst. Safe., 162, 1–13, https://doi.org/10.1016/j.ress.2017.01.013, 2017. a, b
Constantine, P. G. and Doostan, A.: Time-dependent global sensitivity analysis with active subspaces for a lithium ion battery model, Stat. Anal. Data Min., 10, 243–262, https://doi.org/10.1002/sam.11347, 2017. a
Download
Short summary
Assessing model sensitivities with ensemble-based methods can be prohibitively expensive when large parts of the plausible parameter space result in model simulations with nonrealistic results. In a previous work, we used the method of active subspaces to create a proxy model with the purpose of filtering out such unrealistic runs at low cost. This work details a notable improvement in the efficiency of the original sampling scheme, without loss of accuracy.