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Abstract. In global sensitivity analysis and ensemble-based
model calibration, it is essential to create a large enough
sample of model simulations with different parameters that
all yield plausible model results. This can be difficult if
a priori plausible parameter combinations frequently yield
non-behavioral model results. In a previous study (Erdal
and Cirpka, 2019), we developed and tested a parameter-
sampling scheme based on active-subspace decomposition.
While in principle this scheme worked well, it still implied
testing a substantial fraction of parameter combinations that
ultimately had to be discarded because of implausible model
results. This technical note presents an improved sampling
scheme and illustrates its simplicity and efficiency by a small
test case. The new sampling scheme can be tuned to either
outperform the original implementation by improving the
sampling efficiency while maintaining the accuracy of the
result or by improving the accuracy of the result while main-
taining the sampling efficiency.

1 Introduction

Global sensitivity analysis (e.g., Saltelli et al., 2004, 2008)
is an established technique for quantifying the importance of
uncertain parameters of a model. It has also gained popularity
within hydrological sciences, with many different methods to
choose from (e.g., Mishra et al., 2009; Song et al., 2015; Pi-
anosi et al., 2016). An increasingly popular global-sensitivity
approach is the method of active subspaces (e.g., Constantine
et al., 2014; Constantine and Diaz, 2017). While been de-
signed for engineering applications (e.g., Constantine et al.,
2015a, b; Hu et al., 2016; Glaws et al., 2017; Constantine and

Doostan, 2017; Hu et al., 2017; Grey and Constantine, 2018;
Li et al., 2019), it has recently been used with good perfor-
mance in hydrology (e.g., Gilbert et al., 2016; Jefferson et al.,
2015, 2017; Teixeira Parente et al., 2019), including a recent
study of ours (Erdal and Cirpka, 2019).

A key issue when conducting a global sensitivity analy-
sis is the requirement of a large enough sample of model
simulations with parameters ranging over the full parameter
space. Simulations showing unrealistic behavior (e.g., wells
or rivers running dry in the model, while they in reality al-
ways have water) should be removed from the sample. Al-
ready in moderately complex models this may result in many
model trials that must be discarded on the level of a plau-
sibility check. This leads to the contradictory requirements
of sampling the entire space of parameters defined by preset
wide margins to capture the entire distribution while explor-
ing only the part of the parameter space yielding plausible
results. One way of easing the computational burden is to
make use of a simpler model (i.e., surrogate/proxy/emulator
model), discussed, e.g., in the comprehensive reviews of
Ratto et al. (2012), Razavi et al. (2012), Asher et al. (2015),
and Rajabi (2019). A common sampling approach is to use
a two-stage acceptance sampling scheme, in which a candi-
date parameter set is first tested with the surrogate model, and
only if the surrogate model predicts the parameter set to be
behavioral, it is applied in the full model. This idea has been
applied to groundwater modeling by Cui et al. (2011), Laloy
et al. (2013), and the authors of the current study (Erdal and
Cirpka, 2019). In our last study, we used a response surface
fitted to the first two active subspaces as the surrogate model
in a sampling scheme for a subsurface catchment-scale flow
model. The scope of the current technical note is to present
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an improvement of this scheme and compare it to the original
one.

2 Methods

In the following subsections we briefly describe the active-
subspace method and the base flow model. More details are
given by Erdal and Cirpka (2019).

2.1 Active subspaces

In this section we briefly repeat the basic derivation of active
subspaces for a generic function f (x̃), in which x̃ is the vec-
tor of scaled parameters x with a scaling to the range between
0 and 1. An active subspace is defined by the eigenvectors of
the following matrix C, computed from the partial derivatives
of f with respect to x̃i , evaluated over the entire parameter
space (Constantine et al., 2014), here shown with its eigen-
decomposition and Monte Carlo approximation (Constantine
et al., 2016; Constantine and Diaz, 2017):

W3W−1
= C=

∫
∇f (x̃)⊗∇f (x̃)ρ(x̃)dx̃

≈
1
M

M∑
i=1
∇f (x̃i)⊗∇f (x̃i), (1)

in which ⊗ denotes the matrix product, ρ is a probability
density function, the integration is performed over the entire
parameter space, W is the matrix of eigenvectors, 3 is the di-
agonal matrix of the corresponding eigenvalues, andM is the
number of samples used. The n-dimensional active subspace
is spanned by the eigenvectors with the n highest eigenval-
ues. In our application, we use n= 2 as we could detect very
little improvement with higher numbers.

In a global sensitivity analysis using active subspaces, the
activity score ai of parameter i is defined by

ai =

n∑
j=1

λjw
2
i,j , (2)

in which λj is the j th eigenvalue and wi,j the element relat-
ing to parameter i in the j th eigenvector. In the following, we
consider the square root of the activity score to obtain a quan-
tity that has the same unit as the target variable f . It should
be noted that there are different global sensitivity methods
with different metrics that may give different results (e.g.,
Razavi and Gupta, 2015; Dell’Oca et al., 2017). In principle,
nothing speaks against computing another global-sensitivity
metric for the sample selected by our active-subspace-based
sampling scheme, as long as computing the metric is based
on a random sample. For practical reasons and for a direct
comparison with our previous work, we use the activity score
in the present study. For the interested reader, a longer discus-
sion about the current metric in relation to the specific appli-

Figure 1. Illustration of the model domain. (a) Shape of the domain
and topography; (b) example of a geological realization.

cation is given by Erdal and Cirpka (2019), and more gen-
eral discussions have been presented by Saltelli et al. (2008),
Song et al. (2015), and Pianosi et al. (2016), among others.

2.2 Model application

In our application we consider a model of the small Käs-
bach catchment in southwest Germany. The model has 32 un-
known parameters, including material properties, boundary-
condition values, and geometrical parameters of subsurface
zones. Originally, Erdal and Cirpka (2019) simulated sub-
surface flow in the domain using the model software Hy-
droGeoSphere (Aquanty Inc., 2015), which solves the 3-D
Richards equation, here using the Mualem–van Genuchten
(Van Genuchten, 1980) parameterization for unsaturated
flow. Figure 1 illustrates the model domain. Details, includ-
ing the governing equations, are given by in Erdal and Cirpka
(2019).

In a related study, we constructed a surrogate model us-
ing Gaussian process emulation (GPE) from roughly 4000
parameter sets. In the GPE model, the model response f (x̃i)
at the scaled parameter location xi is constructed by interpo-
lation from the existing set of parameter realizations using
kriging in parameter space with optimized statistical param-
eters. The GPE model is constructed with the Small Tool-
box for Kriging (Bect et al., 2017). In the present work, we
use the GPE model instead of the full HydroGeoSphere flow
model as our virtually true model response. The prime reason
for this is that we can perform pure Monte Carlo sampling
of behavioral parameter sets with the GPE model, requiring
about 600 000 model evaluations to create a set of 3000 be-
havioral parameter sets, which would be unfeasible with the
original HydroGeoSphere model. That is, we use a surrogate
model (the GPE model) to judge the performance of other
surrogate models (based on active-subspace decomposition)
in creating ensembles of plausible parameter sets. In order to
avoid confusion we would like to point out that, in this pa-
per, the term full-flow model means the GPE model, while
the term surrogate model is, outside of this paragraph, ex-
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clusively used for the surrogate model used to improve the
sampling schemes.

Like in our prior work (Erdal and Cirpka, 2019), the model
considers five observations that define acceptable behavioral
performance (for locations see Fig. 1).

– Limited flooding: maximum of 2×10−3 m3 s−1 of water
leaving the domain on the top but outside of the streams.

– Division of water: between 25 % and 60 % of incoming
recharge leaves the domain via the streams.

– Gage C: minimum flow of 5× 10−3 m3 s−1.

– Stream A: maximum flow of 3× 10−3 m3 s−1.

– Stream B: minimum flow of 5× 10−6 m3 s−1.

With the aim of keeping this technical note rather concise,
we will not discuss individual parameters or their meaning
in the model. To this end, we address all parameters by a
parameter index (1–32) instead of a name, and the result-
ing histograms refer to the scaled parameters, ranging from
0 to 1.

2.3 Sampling schemes using active-subspace
decomposition

The basic idea of using a surrogate-assisted sampling scheme
is to use the (very fast) surrogate model to first evaluate a can-
didate parameter set. If the surrogate model predicts the pa-
rameter set to be behavioral, it is stage-1 accepted and will be
run with the full model. If accepted also after running the full
model, a parameter set is stage-2 accepted. Only the stage-
2 accepted parameter sets are used in the global sensitivity
analysis, whereas the stage-1 accepted ones are used to im-
prove the surrogate model. Hence, one of the beauties of the
surrogate-assisted sampling is its ability to quickly discharge
large quantities of non-behavioral parameter set without run-
ning the full-flow model for each one (i.e., stage-1 rejected
samples). Also, as the surrogate model is only used as a pre-
selection filter, all results and the training of the surrogate
model are based exclusively on full-flow model simulations.

For each observation considered, we need to perform an
active-subspace decomposition. In our previous work (Erdal
and Cirpka, 2019), a decision on whether to accept or reject
a parameter set is made in the following way:

1. A third-order polynomial surface is fitted in the active
subspace spanned by the two major active variables.

2. These polynomial surfaces are used to predict the ob-
servations of a candidate parameter set.

3a. If all predicted observations are acceptable, the candi-
date is stage-1 accepted.

3b. If any predicted observation is between the acceptance
point and a user-defined outer point, we assign a prob-
ability of being stage-1 accepted by linear interpolation
between 0 (at the outer point) and 1 (at the acceptance
point), draw a random number from a uniform distri-
bution, and accept the parameter set as stage-1 if the
assigned probability is larger than the random number.

3c. If any predicted observation is outside of the outer point,
we reject the sample, draw a new candidate, and return
to (2).

4. After adding 100 stage-1 accepted parameter sets, we
recalculate the active subspace using all stage-1 ac-
cepted parameter sets collected to this point. Hence, the
surrogate model is based on all currently available full-
flow model simulations.

Two critical points can be seen with this scheme. First,
the polynomial surface is fitted through all stage-1 accepted
points across the entire parameter space. However, locally,
where we wish to make a prediction, it could still be strongly
biased. Second, the user needs to prescribe the outer points,
which should not only cover our uncertainty about the accep-
tance point but also implicitly addresses the error by using
the active-subspace decomposition. As we project 32 dimen-
sions to two, the potential for an imperfect decomposition is
rather high (that is, two close points in active subspace may
have different behavioral status). As we have no rigorous and
yet simple method to address this uncertainty, the choice of
the outer point becomes fairly subjective.

To overcome these issues, we here suggest a modified sam-
pling scheme, with fewer tuning parameters and less sensitiv-
ity to local biases. As with the original scheme, we require
one active-subspace decomposition per observation and use
the first two active variables to create the 2-D active sub-
space. As in the original sampling scheme, we start with a
set of 50 candidate parameter sets, sampled using a Latin hy-
percube setup, which are per definition directly stage-1 ac-
cepted. Hence we run the full-flow model 50 times to initial-
ize the sampling scheme. The actual number is not critical
and should be chosen with consideration to the number of
unknown parameters. The new sampling scheme then pro-
ceeds as follows:

1. The candidate parameter set is projected into the active
subspace.

2. The closest neighbors in the active subspace are sought.
In this work we use the five closest neighbors plus all
neighbors that fall within an ellipse around the candi-
date point that has a radius of 1 % of the total range
of each active subspace, in each of the two dimensions.
The number of neighbors selected and the radius of the
ellipse are tuning parameters, here chosen based on a
few prior tests. However, we believe they are applica-
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Figure 2. Illustration of the two active-subspace sampling schemes, shown for a 1-D test. Panel (b) shows a zoom into (a). Blue dots:
previously analyzed points; magenta line: fitted polynomial surrogate model; red dot: candidate parameter in active subspace (x value) with
the assigned polynomial prediction (y value) of the original sampling scheme; green dots: neighbors considered in the new scheme, which
are chosen exclusively by the active-variable value; red line: behavioral limit line. Here, points above the red line are considered to have
acceptable behavior.

ble also for other applications, at the very least as good
starting points.

3. For each observation, a candidate parameter set is preac-
cepted if a certain ratio (P ) of its neighbors are behav-
ioral (i.e., stage-2 accepted).

4. The candidate parameter set is stage-1 accepted if it was
preaccepted for all observations, otherwise it is rejected.

5. If rejected, draw a new candidate parameter set and re-
turn to (1).

Like before, we recalculate the active subspace after
adding 100 stage-1 accepted parameter sets. The two ap-
proaches are illustrated in Fig. 2, although just for a 1-D
illustrative example. As can be seen in the figure, the orig-
inal sampling scheme suggests that the candidate is behav-
ioral (red dot is above the red line). With the new sam-
pling scheme, on the other hand, it becomes a matter of the
P value chosen. At P = 0.15 and P = 0.55, the candidate
would have been stage-1 accepted (60 % of the green dots
are behavioral), while at P = 0.75 the candidate would have
been rejected. In this work, we consider the ratios P = 0.15,
P = 0.55, and P = 0.75 and compare the performance of the
sampling scheme with that used in the previous study (Erdal
and Cirpka, 2019).

3 Results and discussion

Figure 3 shows the acceptance ratios (number of stage-2 ac-
cepted samples divided by the number of stage-1 accepted
samples) for the original sampling scheme and the new sam-
pling scheme with three different P values, together with a
pure Monte Carlo sampler without preselection, applied to
the Käsbach GPE model with 32 parameters. As can be seen,

Figure 3. Acceptance ratios of the different sampling schemes, plot-
ted as a function of the number of stage-2 accepted samples.

the new scheme with P = 0.75 is the fastest, while the orig-
inal scheme and the new scheme with P = 0.15 show rather
comparable behavior with lower acceptance rates. For com-
parison, the pure Monte Carlo sampling has an acceptance
ratio of ≈ 0.005. It should be noted here that the acceptance
ratio as a statistic only shows the ratio between the runs that
are behavioral after running the full-flow model (stage-2 ac-
cepted) versus the number of full-flow model runs (stage-
1 accepted). This, however, does not reflect the number of
stage-1 rejected parameter sets, which is not reported in this
work but is by far the largest for the higher P values. Hence,
the acceptance ratio is a measure of computational efficiency
rather than a measure of search efficiency (which here is sim-
ple Monte Carlo and, hence, comparably inefficient).

While high acceptance rates are favorable in light of com-
putational efficiency, we also want to avoid introducing a bias
by the preselection scheme. We evaluate such bias by con-
sidering the marginal parameter distributions of the stage-2
accepted samples, which should agree with the distribution
obtained by the (inefficient) pure Monte Carlo sampler. Fig-
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Figure 4. Histograms of the three parameters with the most complicated posterior marginal distributions. Each row shows a parameter and
each column a sampling scheme. Blue bars: histograms from pure Monte Carlo sampling (i.e., true distribution); brown bars: sampling
schemes with preselection; numbers: Cramér–von Mises metric ω2 for the distance between the two distributions, here shown multiplied by
1000 for increased readability.

ure 4 shows the resulting histograms for the three parameters
with the most complex marginal distributions. We quantified
the agreement of the marginal distributions of the sampling
schemes with preselection and the pure Monte Carlo sam-
pling by the Cramér–von Mises metric ω2:

ω2
=

1∫
0

(
P̂ss(x̃i)− P̂MC(x̃i)

)2
dx̃i , (3)

in which P̂ss(x̃i) is the marginal cumulative probability of
the scaled parameter x̃i for a tested sampling scheme, and
P̂MC(x̃i) is the same quantity for pure Monte Carlo sampling.
The corresponding values of ω2 are reported in the subplots
of Fig. 4.

From the histograms in Fig. 4 and the values of the
Cramér–von Mises metric ω2, it becomes obvious that the
fast new sampling with P = 0.75 results in marginal distri-
butions that significantly differ from those of the unbiased
pure Monte Carlo scheme. The new scheme with P = 0.55
results in marginal distributions that are comparable to those
of the original scheme but that have been achieved by a sam-
pling scheme with twice the acceptance rate and thus half
the computational effort. By contrast, the new scheme with
P = 0.15, which caused a computational effort similar to the
original scheme, resulted in a marginal posterior distribution
that is very similar to that obtained by pure Monte Carlo sam-
pling. Hence, we can conclude that the proposed sampling
scheme is superior to the old one: either it has much better
sampling accuracy for the same efficiency (P = 0.15), or it

Figure 5. Square root of activity scores of the 10 most influential
parameters for the target variable stream flow at gage C resulting
from applying the active-subspace-based global sensitivity analysis
to the posterior distributions using the different sampling schemes.

has a much better efficiency with a very comparable accuracy
(P = 0.55). While it may seem counterintuitive that the high-
est P value gets the highest acceptance ratio and the poorest
match of the marginal distributions, it is worth noting that
a higher P value means that the requirement for stage-1 ac-
ceptance is higher. Hence, at high P values we only sample
the interior of the behavioral parameter space and avoid the
boundaries where the behavioral status of a candidate param-
eter set is more uncertain. This results in the bias clearly seen
in Fig. 4.

Figure 5 shows the square root of the activity score for
a selected target variable, computed by the active-subspace-
based global sensitivity analysis and using the different sam-
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pling schemes, which confirms the impression of the his-
tograms shown in Fig. 4. The pure-MC scheme and the new
scheme with P = 0.15 show almost identical activity scores,
while the score patterns increasingly differ with increasing
P values. Similarly, the original sampling scheme differed
in the activity scores compared to the pure-MC scheme.
Nonetheless, all sampling schemes correctly identified the
two most important parameters and the correct set of the 10
most important parameters. That the order of the parameters
within the set of the most important parameters is not cap-
tured by the faster sampling schemes may be an acceptable
tradeoff between speed and accuracy, depending on the in-
dividual application. Based on the experience gained within
this project, a recommended starting P value for our pre-
sented sampling scheme is P = 0.55.

In the current study, we have used Gaussian process emu-
lation (GPE) as a proxy of the full HydroGeoSphere model,
putting the question forward whether a GPE model could
not also be used as surrogate model for preselection in an
advanced sampling scheme. This is indeed possible, and
we are currently developing such schemes, achieving accep-
tance ratios between 70 % and 90 %. Hence, GPE-based sam-
pling schemes can be notably more efficient than the new
scheme presented in this work. Nonetheless, we see a clear
value in using the less efficient active-subspace-based sam-
pling schemes. The key word is simplicity. The full active
subspace-sampling scheme is implemented in-house, and the
most complicated step is likely the eigenvalue decomposi-
tion, which is a standard tool in any programming envi-
ronment. Hence, we have full control over the entire selec-
tion procedure. Further, the active-subspace-based sampling
scheme presented here has a single tuning coefficient P with
an easily comprehensible meaning, and the resulting active
subspace can easily be visualized for an intuitive understand-
ing of the method. This is quite different with GPE-based
methods, which require choosing a covariance function in
parameter space with coefficients that need to be estimated
from the current set of training data. In our application, we
have 32 original parameters, requiring one variance and 32
integral scales as covariance coefficients to be estimated ev-
ery time the GPE model is retrained. Estimating 33 covari-
ance parameters from O(1000) parameter sets is time con-
suming, and the integral scales in nonsensitive parameter di-
rections are not well constrained by the data at all. Finally,
to train a GPE model we need to rely on third-party codes
which remain black boxes to a large extent and usually in-
volve a rather decent amount of work until they do what they
are supposed to do. Hence, we clearly see a benefit of using
the simpler active-subspace-based sampling schemes even if
they are computationally less efficient.

4 Conclusions

In this work we have presented an improved sampling
scheme to obtain ensembles of parameter sets that lead to
plausible model results. Like in the preceding study of Erdal
and Cirpka (2019), the sampling scheme makes use of an
active-subspace-based preselection scheme that reduces the
number of full model runs that need to be discarded. In con-
trast to the preceding method, we do not perform a polyno-
mial fit over the entire parameter space anymore nor have to
set fuzzy boundaries of the target variables to define the be-
havioral status. Instead, the preselection of a parameter set
is simply based on the behavior of surrounding trial solu-
tions. The new scheme outperforms the preceding one either
by achieving a higher accuracy in the resulting posterior pa-
rameter distributions for the same sampling efficiency or by
having a much higher sampling efficiency for a comparable
accuracy. We hence conclude that the new scheme presented
here should be used instead of the original one.
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