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Abstract. The solution stability of river models using the one-dimensional (1D) Saint-Venant equations can be easily under-

mined when source terms in the discrete equations do not satisfy the Lipschitz smoothness condition for partial differential

equations. Although instability issues have been previously noted, they are typically treated as model implementation issues

rather than as underlying problems associated with the form of the governing equations. This study proposes a new “refer-

ence slope” form of the Saint-Venant equations to ensure smooth slope source terms and eliminate one source of potential5

numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference

slope while preserving the correct cross-sectional flow area and the total Piezometric pressure gradient that drives the flow. The

reference slope method ensures the slope source term in the governing equations is Lipschitz-continuous while maintaining

all the underlying complexity of the real-world geometry. The validity of the mathematical concept is demonstrated with the

open-source SPRNT model in a series of artificial test cases and simulation of a small urban creek. Validation comparisons10

are made with analytical solutions and the HEC-RAS model. The new method reduces numerical oscillations and instabilities

without requiring ad hoc smoothing algorithms.

Copyright statement. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under

the Creative Commons Attribution 3.0 License.

1 Introduction15

The Saint-Venant equations (SVE) for one-dimensional (1D) river modeling are typically presented with pressure forcing terms

of either (i) gradients of the water surface elevation or (ii) thalweg bottom slope combined with gradients of the water depth.

In this study we demonstrate a new form using a reference slope (SR) and its associated depth (ha), which are shown to be

algebraically identical to the two standard forms of the SVE. The new forms provide greater flexibility in addressing numerical

convergence issues associated with modeling discontinuous bottom slopes. A key point of this paper is that precise representa-20

tion the thalweg bottom slope (S0) and hydrostatic pressure gradients (∂h0/∂x) is not necessary to correctly represent variable

topography. Indeed, the splitting point for representing the forcing Piezometric pressure gradient as a body-force (defined by

a slope) and a residual head gradient term is free choice in a simple algebraic substitution. Different choices for the split-

ting provide different body force directions and lead to different forms of the SVE – all of which are valid representations of
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variable topography and do not constitute “smoothing” of topography. We will show that it is possible to use a smooth slope25

(body force) term in the SVE without actually smoothing the topography. Herein, this smooth slope term will be designated as

“reference slope,” SR, to distinguish it from the traditional thalweg bottom slope, S0.

The two common differential forms of the SVE, with the different terms highlighted in blue, are
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where Q is the flow rate, A is the cross-sectional area, η is the water surface elevation, h0 is the thalweg depth, S0 is the

thalweg bottom slope, and Sf is the friction slope that represents the local energy gradient. Equation (1) can be envisioned as

using the Piezometric head gradient to force the flow, as shown on the left-hand-side (LHS) of Fig. 1. In contrast, eq. (2) can be

envisioned as splitting the Piezometric gradient into a body force in the bottom slope direction and a hydrostatic head gradient,35

as shown on the right-hand-side (RHS) of Fig. 1. Note that both equations are valid for variable topography, despite only the

second equation explicitly representing the bottom slope and thalweg-depth hydrostatic pressure gradients.
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Figure 1. The η form of SVE on the left has a driving Piezometric head gradient, which is equivalent (on the right) to the sum of the

hydrostatic head gradient and a body force aligned with S0. The effect of varying geometry is handled in A in both forms.

The two SVE forms of eqs.(1) and (2) are algebraically identical using the identity

∂η

∂x
≡ ∂h0

∂x
−S0 (3)
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Heuristically, we can propose a more general identity of40

∂η

∂x
≡ ∂ha

∂x
−SR (4)

where SR is an arbitrary reference slope and ha is an “associated depth” that will defined in §3.2, below. For an introductory

exposition, ∂ha/∂x is merely the residual implied for a given ∂η/∂x and arbitrary SR. Applying eq. (4) to eq. (1) provides:
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where the terms highlighted in blue are algebraically equivalent to those in eqs. (1) and (2). Clearly, if we let SR = S0 then45

ha = h0 and we recover eq. (2). Furthermore, if we let SR = 0 then ha = η and we recover eq. (1). The equations are identical

with these substitutions, so it follows that using a reference slope of zero (SR = 0) must exactly represent the same topographic

variability as using a reference slope that mimics the topographic slope (SR = S0), as long as the ha is correctly defined

consistent with eq. (4). That is, from simple algebra the use of the real S0 in the SVE is not required to capture effects of

topographic variability as long as the “depth” gradient term is correctly redefined as something other than the thalweg depth50

gradient and the cross-sectional flow areas are correctly computed.

From the arguments above, the effects of varying bottom topography are captured by SR = 0 and ha = η, which implies

we are also free to introduce any other (preferably smooth) SR into eq. (5) without altering the underlying representation of

variable topography. An example is illustrated in Fig. 2. As the splitting defined in eq. (4) makes eq. (5) algebraically identical

to eqs. (1) and (2), the introduction of a smooth SR does not reflect “smoothing” of the topography. It is merely reflects a55

decision on whether effects of non-smoothness will reside solely in solution variables A and ha, or will also be forced as a

non-smooth source term in S0.

We would like to use an a priori smooth SR in a computational model rather than the actual thalweg S0 because of what

happens to S0(x) and ∂h0(x)/∂x for topography varying sharply over short distances, as illustrated in Fig. 3. From a physics

perspective, using S0 to split the Piezometric head is an intuitive way to describe the local interplay of pressure with the60

bottom slope. Furthermore, S0 has the advantage of readily reducing to a kinematic wave equation where Sf = S0, which has

some advantage in multi-purpose codes. However from a numerical modeling perspective, using S0 has a significant limitation

based on its smoothness. If the water surface is smooth then non-smooth S0(x) requires the numerical solver to produce a

compensating non-smooth h0(x), i.e., requiring a “well-balanced” scheme (see §2). If we can discard our (wrong) intuition

that the S0 form must somehow “better” represent sharply variable topography – i.e., recognizing the algebraic equivalence65

of eq. (5) with eqs. (1) and (2) – it follows that splitting of the Piezometric head to include a body force that is everywhere

exactly aligned with a sharply varying S0 is (from a numerical perspective) merely creating unnecessary complexity in the

governing equation source term that requires compensating complexity in the solution algorithm. In contrast, by requiring SR

to be smooth we can ensure the ha solution is also smooth for a smoothly-varying free surface.

The use of SR rather than S0 in the governing equations can perhaps be better understood if we think of the slope in eq. (4)70

as representing simply a portion of the overall Piezometric pressure gradient that can be extracted from ∂η/∂x and treated as

a body force that varies gradually along the channel. Hence, in Fig. 3 we are not interested in separating out the details of the
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Figure 2. Comparison of Piezometric forcing terms for varying topography. On the left is eq. (1) with the arbitrary SR line provided for

reference. The right shows the equivalent split form of forcing with eq. (5) using the identity of eq. (4). The physical bottom topography

(shown only on the LHS for clarity) only plays a role through the cross-sectional area (A) which feeds back into the solution of variability in

ha in both forms of the equation.

sharply-varying slope changes of the local topography, but instead prefer a body force term that aligns with the mean slope

over some larger spatial scale, e.g. as in Fig. 2.

In this paper we examine the effect of variable cross-section geometry on numerical solutions of the SVE and propose a75

new “Reference Slope” approach that can be inferred from the above arguments. The use of a Reference Slope as a body force

direction to split the Piezometric head gradient term ensures: (i) the slope used in the discrete source term is smooth, (ii) the

variable geometry is correctly retained, (iii) the fundamental governing equations are preserved, and (iv) an SVE numerical

algorithm developed using S0 is essentially unchanged. We further demonstrate that bottom-slope discontinuities are a cause of

problems in finite-difference forms of 1D Saint-Venant equations with subcritical flow. Of course, this idea will not be a surprise80

to many modelers who routinely remove troublesome cross-sections or smooth their topography; however the concept does

not appear to have been conclusively demonstrated in the literature. More importantly, we show that the problem is inherent

in the traditional formulation of the governing equations using the thalweg bottom slope, S0, which is usually computed as

the slope between the lowest points in two adjacent river cross sections. Problems associated with slope discontinuities can be

fixed within the governing equations by careful selection of smoothly-changing reference elevations along the channel, zR(x),85

which result in smooth reference slopes, SR(x), and redefinition of the thalweg depth (h0) as a depth associated (ha) with the
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Figure 3. Comparison of Piezometric forcing terms with sharply-varying topography for eqs. (1) and (2). The left shows Piezometric head

gradient for eq. (1). The right shows the equivalent split form of forcing from eq. (2) using the identity of eq. (3). The variability of the

bottom on the LHS will be reflected in the cross-sectional area, A(x), that feeds back into solution of η(x). In contrast, the RHS attempts to

directly represent topographic variability as both a driving term in S0(x) and a solution response term h0(x)

reference elevation. Note that ha is not necessarily any characteristic depth of the flow and is only indirectly related to the

hydrostatic pressure.

The approach proposed herein can be implemented within any Saint-Venant model as it is entirely independent of the

solution algorithm; however, implementation does require re-writing code for the relationships between cross-section area,90

wetted perimeter and the “depth” variable of the solution. Note that the new approach includes a re-definition of the depth

variable (traditionally the maximum depth, h0) as the depth “associated” (ha) with the reference elevation zR.

2 Background

One-dimensional (1D) hydrodynamic models using the Saint-Venant equations (SVE) are widely employed for studying both

natural streams and man-made channels (e.g., Martinez-Aranda et al., 2019; Sanders, 2001). It is widely recognized that95

numerical solutions of the SVE are prone to spurious oscillations in the free-surface elevation unless particular care is taken

in the numerical formulation and/or the problem definition (e.g., Nujic, 1995; Tseng, 2004). Numerous techniques and special

numerical schemes have been previously designed to overcome unwanted numerical oscillations caused by discontinuous

geometries and boundary conditions (e.g., Zhou et al., 2001; Liang and Marche, 2009). These approaches typically rely on
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the concept of a “well-balanced” discrete form Greenberg and LeRoux (1996) as discussed in a comprehensive review by100

Kesserwani (2013) and further elaborated by Hodges (2019).

Although well-balanced schemes are relatively robust in handling discontinuous boundary conditions, they have not been ex-

tensively applied in water resources models to simulate the regional-to-continental scale river networks or stormwater systems

for megacities. The rapidly varying and discontinuous S0 in natural systems can significantly increase the difficulty and com-

putational burden of obtaining a well-balanced method (Schippa and Pavan, 2008). Hence, when a large-scale open-channel105

model develops oscillations and/or instabilities, practitioners may resort to the traditional approach of removing cross-sections

or smoothing bathymetry to mitigate oscillatory or unstable solution behavior (Tayfur et al., 1993). Such ad hoc efforts can be

effective as they address a major cause of such oscillations and instabilities (discontinuous topography), but they inherently

reduce the fidelity of the simulation.

Oscillations and instabilities can be induced in any numerical solution of a boundary-initial-value problem by the inclusion110

of non-smooth source terms; i.e., if we consider an advection equation of the form

∂Q

∂t
+

∂

∂x

(
Q2

A

)
= σ (6)

where σ is a non-homogeneous source term, a fundamental theorem for differential equations provides that a unique solution

cannot be guaranteed to exist unless the source term is Lipschitz continuous (e.g., Iserles, 1996). That numerical instabilities are

often caused by non-smooth source terms is not a new observation. A wide variety of numerical schemes have been developed115

to address this issue, including (e.g.) extensive work on wetting/drying (Liang and Marche, 2009; Song et al., 2011), positivity-

preserving methods for coupled models (Singh et al., 2015) and implicit schemes that address stiffness of the nonlinear friction

term (Xia and Liang, 2018). The literature in this area is vast – particularly if both 1D and 2D models are considered. For

the present purposes we focus on only one part of the source term, S0, whose non-smoothness has previously been treated as

a problem to be handled rather than as a problem that can be directly eliminated in the governing equations. Existing well-120

balanced schemes (see reviews noted above) seek to compensate for non-smoothness of all parts of the source term in the

structure of the numerical discretization. Arguably, if the slope term is guaranteed smooth then a well-balanced scheme should

be simpler to create. In general, when the thalweg bottom slope (S0) appears as a source term in the SVE it should be a priori

Lipschitz smooth or oscillations and instabilities should be expected. For natural systems S0(x) is typically defined using the

maximum channel depth at each surveyed cross-section, which is rarely a smooth function (unless the distance between cross-125

sections is large compared to bottom elevation variability). Where cross-sections are surveyed at short distances S0 will tend

to have significant variability. It follows that the use of S0 has the undesirable property that smaller ∆x (i.e., resolving a river

with more detailed survey data) will increase the non-smoothness in this source term of the momentum equation, resulting in

a model that is unlikely to converge under a grid refinement test. It is not surprising that S0 smoothness, where it occurs in a

model of a natural river channel, is typically the result of relatively long separations (∆x) between cross-section surveys that130

ensures that the discrete d2z0/dx2 is small. Thus, removing cross-sections can be an effective mitigation technique because it

increases ∆x and effectively smooths S0. In general, models discretized with higher-resolution river surveys (smaller ∆x) will
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have greater non-smoothness in S0 and develop more oscillation and instability issues. In essence, our models get worse as our

boundary condition data gets better.

The problems associated with S0 can be understood by considering the identity in eq. (3) for a channel with subcritical135

flow where the free-surface curvature is expected to be negligible, i.e., ∂2η/∂x2 ∼ ε where ε� dS0/dx,∂2η/∂2x. Taking the

along-channel gradient of eq. (3) implies that

∂2h0
∂x2

=
dS0

dx
− ε (7)

Thus, forcing with a non-smooth dS0(x)/dx will require non-negligible curvature of the response variable h0(x), whose gra-

dient is also a forcing function of the nonlinear equation. Feedback can easily build and cause successive overshoot/undershoot140

effects, producing oscillations and non-convergence in a nonlinear solver. In contrast, eq. (4) can be invoked with dSR/dx

guaranteed to be small, which implies that ∂2ha/∂x2 will also be small even when ∂A/∂x is non-smooth. As a practical mat-

ter, any S0 with a discontinuous discrete first derivative (i.e., discontinuities in the second derivative of the thalweg elevation,

d2z0/dx2) will be Lipschitz discontinuous and should not be directly discretized in an SVE solution with eq. (2). Although

approximate numerical solutions of equations with non-smooth S0(x) can sometimes be attained for models with sufficient145

damping, such solutions are questionable as they do not have rigorous mathematical foundations.

Arguably, non-smoothness in S0 can be handled in one of four ways: (i) smoothing the geometry – hence solving for flows

that do not match the real system; (ii) applying ad hoc smoothing within the flow solution – i.e., adjusting the physics to remove

numerical instabilities; (iii) adjusting the numerical discretization scheme to compensate for non-smoothness – e.g., the well-

balanced concept; or (iv) adjusting the governing equations to ensure that any slope in the source term is smooth without150

modifying the solution physics, the channel geometry, or the numerical discretization scheme. It should be obvious that eq. (1)

is the extreme example of the last approach – replacing S0 and ∂h0/∂x with ∂η/∂x ensures that S0 does not occur in the

governing equations and cannot destabilize the solution. To our knowledge the last approach (as used herein and illustrated

in Fig. 2) has not been previously proposed or analyzed in the literature. Nevertheless, as shown below it provides a simple

method that can be readily adapted into existing hydrodynamic models.155

For brevity, we will limit our focus herein to subcritical flows – backwater tends to smooth the effects of slope discontinuities

and thus we expect smooth solutions for flow rate and free-surface elevation despite non-smooth geometry. Nevertheless,

common SVE solvers can exhibit oscillatory, non-convergent behavior even in simple subcritical flows when geometry is not

smooth. In the following it will be obvious that the mathematical theory applies directly to supercritical and transcritical flows

as well, but evaluating model performance under the breadth of possible transcritical conditions (including non-smooth jumps)160

necessarily requires more analyses than is practical in a single paper.
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3 Methods

3.1 SPRNT

The Simulation Program for River Networks (SPRNT) code for unsteady SVE river networks is used and modified herein. The

baseline for this code models momentum using eq. (2), which is coupled to solution of continuity165

∂A

∂t
+
∂Q

∂x
= q` (8)

where q` is a lateral inflow per unit length. Note that significantly non-smooth q`(x,t) can provide another source of numerical

oscillations and instability (Kuiry et al., 2010). As the main focus of this study is the slope source term in the momentum

equation, the lateral inflows and their effects are neglected by setting q` = 0 everywhere.

In the SPRNT momentum equation, the friction slope is represented using the Chezy-Manning form as170

Sf =
n2P

4/3
w

A10/3
Q2 (9)

where Pw is the wetted perimeter of a cross-section and n is the Gauckler-Manning-Strickler roughness. Although, there are

other methods for treating frictional losses (e.g., Decoene et al., 2009; Burguete et al., 2007), the Chezy-Manning form remains

popular due to its simplicity.

The baseline model uses the thalweg elevation (z0), the thalweg depth (h0), and the thalweg bottom slope (S0) as175

h0 ≡ η− z0 (10)

S0 ≡−
∂z0
∂x

(11)

SPRNT is an open-source, 1-D hydrodynamic solver using the fully-implicit Preissmann numerical scheme (Preissmann,

1961) with Newton-Raphson iteration and computational acceleration techniques developed from Very Large Scale Integration

(VLSI) semiconductor design. Details on the baseline SPRNT model and its application to large river networks are provided180

in Liu and Hodges (2014) and Yu et al. (2017).

3.2 Reference Slope (RS) method

We introduce a a new “Reference Slope Method” (RS) through a transformation and redefinition of geometry in the Saint-

Venant equations as discussed in §1. In place of the conventional h0 and z0, we define a “reference elevation” (zR) and its

“associated depth” (ha) as shown in Fig. 4. These provide a relationship with the free surface elevation (η) defined as185

ha ≡ η− zR. (12)

Note that zR is arbitrary, so ha may be either greater than or less than the thalweg depth h0 at a given location. As shown in

Fig. 4, it is convenient to define the “reference height” (hR) in relation to zR and the true bottom elevation, z0, by

hR ≡ z0− zR (13)
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Thus, the conventional h0 and z0 are recovered with190

h0 = ha−hR (14)

z0 = zR +hR (15)

We define the reference slope (SR) as the downstream slope of zR:

SR ≡−
∂zR
∂x

(16)

Using eqs. (12) and (16) in eq. (2) provides eq. (5), which is more conveniently written as195

∂Q

∂t
+

∂

∂x

(
Q2

A

)
=−gA∂ha

∂x
+ gA(SR−Sf ) (17)

The above is identical to eq. (2) with the simple substitution of ha and SR for h0 and S0. In this formulation, the definition of

zR(x) is arbitrary, so we can a priori require a definition such that SR(x) are smooth. A trivial choice that is guaranteed smooth

is zR(x) = constant, which returns SR(x) = 0 and the Saint-Venant equations in the form of eq. (1). However, this form with

∂η/∂x for the entire pressure term is known to cause numerical stiffness issues for large ranges in η; e.g., the elevation change200

of a river from its mountain source to a coastal plain (Liu and Hodges, 2014). Using the conventional S0 in eq. (2) reduces this

problem as the range of h0 is inherently confined to the local water depths rather than the underlying topography. In the RS

method, the range of ha is tied to the range of water depths and the selection of zR; thus, for present purposes we are interested

in non-trivial definitions of zR that are (i) close to z0 to maintain a small range of ha values, and (ii) provide smooth SR(x).

Arbitrary zR that are far from z0 or non-smooth are of little interest as they hold no theoretical or practical advantage over the205

eq. (1) approach implied by SR(x) = 0.

If SR(x) is required to be smooth then the source term of the equation can be guaranteed smooth as long as Sf (x) is

smooth, which is typically true as long as the solution Q(x) is smooth. Note that in extreme cases of geometric discontinuity

the combined values of n, Pw and A in eq. (9) can cause a non-Lipschitz friction term; thus, the RS method cannot guarantee

that the entire source term is smooth. Numerical solution methods are usually robust to discontinuities in n and Pw as they210

are coefficients of the solution variables {A,Q}. More subtle problems might arise due to discontinuities developed in the

Q2A−10/3 ratio in eq. (9); countering incipient instabilities from this term requires other numerical strategies (e.g., Xia and

Liang, 2018).

A critical change required by the introduction of ha is that the conventional geometric auxiliary relationships of A= f(h0)

and Pw = f(h0) must be transformed in A= f(ha) and Pw = f(ha). That is, once we change the depth in our equation from215

h0 to ha we must re-index the geometry. In general, for known functions A(h0) and Pw(h0) this is a trivial transformation as

A=A(ha−hR) (18)

Pw = Pw(ha−hR) (19)

However, the implementation in an existing code is not necessarily as simple as the above equations suggest. For example, in

Fig. 4, the condition A= 0 occurs where ha = hR, i.e., a non-zero value as compared to h0 = 0 with conventional geometry.220
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Figure 4. Relationships of ha, hR, zR and z0 for an arbitrary cross-section. Note that zR > z0 is also allowed, which results in ha < h0 and

a negative value for hR. Furthermore, if zR > z0+h0 then ha is negative to retain algebraic consistency. Modified from Liu (2014), used by

permission.

Unfortunately, model developers typically have ad hoc wetting/drying treatments that are introduced as h0→ 0 or for h0 < 0.

Such treatments need to be modified to deploy as ha→ hR; which introduces the added complication that hR is negative

where zR > z0. Note that the new geometry does not require altering the wetting/drying algorithms itself or, for that matter,

any other solution algorithm – only the actual geometry definitions require alteration. These relatively straightforward changes

can be contrasted with the effort needed to provide a well-balanced numerical discretization scheme for the conventional S0225

representation of geometry (e.g., Kesserwani, 2013)

The modification of the SPRNT code to implement the above RS method will be known as SPRNT-RS. The SPRNT and

SPRNT-RS source codes are available in an open-source repository (Liu, 2014). Note that solution algorithm for SPRNT-RS

is identical to that of SPRNT; the only code changes are for the new geometry definitions for ha and SR that replace h0 and S0

in the original algorithm. This simple geometry replacement strategy is effective because eq. (17) is identical to eq. (2) except230

for the change in nomenclature to ha and SR.

3.3 Generating a smooth SR(x)

The zR(x) and hence SR(x) are arbitrary choices in the RS method, but should be generated for smoothness of SR(x) along

the reach. In synthetic reach test cases and analytical test cases (described below), the channels are a priori either specified with

a uniform SR or produced by different order of splines. For our urban creek test case the zR is generated with an approximating235

cubic B-spline (de Boor, 2001) based on thalweg, z0(x), elevations. There are a variety of possible ways to generate smooth

SR(x), but applying approximating cubic B-splines to the z0(x) is convenient because the slope is guaranteed to be locally

smooth as long as the knot spacing in the B-spline is everywhere larger than the spacing between cross sections. It should be

emphasized that an exact spline fitting of all the thalweg data (i.e., knots at all the cross-sections) will be smooth at scales
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finer than the cross-section spacing but non-smooth at the model’s discretization scale. That is, exact cubic spline fitting of240

z0(x) does not reduce discontinuities at the discretization scale – only an approximate fitting associated with coarser scales

than the cross-sectional spacing will be effective. It follows that there is some (limited) choice in the selection of the subset

of z0(x) used as the spline knots, with different sets producing slightly different {zR(x),hR(x)} over the domain. Each set

is algebraically identical to the underling geometry so the generated solutions should be identical within machine truncation

error as long as the zR(x) are sufficiently smooth. Implications of the method chosen for generating zR(x) are discussed in245

§5.3. Further details and test cases are provided in Yu et al. (2019b).

3.4 HEC-RAS for model validation

The baseline SPRNT has been previously shown to have excellent agreement with the Hydrologic Engineering Center River

Analysis System (version 5.0.7) – known as HEC-RAS. Liu and Hodges (2014) showed SPRNT simulations agreed with HEC-

RAS with ≤ 3% difference in water depth solution when using both prismatic cross-sections and nonuniform channels. Thus,250

HEC-RAS provides a reasonable model for testing and validation of SPRINT-RS. We would have preferred to use a single

model with and without the RS method for such model-model comparisons; however, HEC-RAS is a closed-source proprietary

model so we could not directly implement and test the RS method in that code. Conversely, as expected by the discussions in

§2, the baseline SPRNT model is oscillatory and non-convergent on the highly-discontinuous geometry of our test cases due to

its use of the S0 approach, so it cannot be directly used for before/after comparisons of RS. Thus, simulations using SPRNT-RS255

are compared to HEC-RAS simulations for validation and insight.

HEC-RAS provides a convenient validation model for three reasons. Firstly, it is a widely-accepted engineering model for

river-reach simulations, (e.g., Wang et al., 2012; Giustarini et al., 2011; Aggett and Wilson, 2009). Secondly, it has been used

as a validation model in numerous prior studies (e.g., Gichamo et al., 2012; Mejia and Reed, 2011; Horritt and Bates, 2002).

Finally, unsteady HEC-RAS employs ∂η/∂x as the piezometric gradient rather than using ∂h0/∂x and S0, which is one of the260

reasons it is relatively robust for non-smooth geometry such as used herein.

The performance of the RS method is demonstrated below through: (i) comparison to six analytical test cases from Mac-

Donald et al. (1995) with Lipschitz-continuous geometry, various prismatic shapes, and different formulations of SR; (ii) seven

synthetic test cases using Lipschitz-discontinuous geometry; and (iii) an urban creek with complex cross-section geometry de-

rived from physical surveys that include discontinuities an order of magnitude greater than those in the synthetic test cases.265

3.5 Test cases – analytical solutions

Analytical solutions of six test cases with different channel shapes and bed slope formations from MacDonald et al. (1995) are

used to show that SPRNT-RS reproduces the correct water surface elevation regardless of the selection of SR. These test cases

are representative of the more comprehensive analysis provided in Yu et al. (2019a). The configuration details for each case are

provided in Table 1, where we adopt the nomenclature of MacDonald et al. (1995) for ease of comparison. The selected test270

cases have Lipschitz-smooth geometric features that are represented in RS tests using both uniform and splined reference beds,

as shown in Fig. 5. To illustrate the adaptability of the RS method, the UR3 and UT2 cases use splines that produce zR very
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close to (but not identical to) the actual bed, whereas the other cases use uniform SR or splines with greater differences. The

uniform SR in cases UR1, UT1, and VR1 are set to the average slope in each domain. With reference to Fig. 4, the differences

between the channel bottom (z0) and the reference bottom (zR) shown in Fig. 5 imply channel bottom offsets (hR) of varying275

complexity for the RS method, as shown in Fig. 6. The VR1 and VR2 cases also provide smooth changes in the channel

width, which are shown in Fig. 7.The node spacing for all these tests is a uniform ∆x= 10 m. The boundary conditions follow

MacDonald et al. (1995).

Case name Cross section shape type Cross section shape detail n Q SR

UR1 Uniform rectangular
WB = 10 m

0.03 20 m3/s

Constant zR

UR3 Uniform rectangular 1st order spline

UT1 Uniform trapezoidal WB = 9 m, SSW = 2 Constant zR

UT2 Uniform trapezoidal WB = 10 m, SSW = 2 2nd order spline

VR1 Varying rectangular
Varying WB

Constant zR

VR2 Varying rectangular 3rd order spline
Table 1. Configuration and geometric data for analytical test cases derived from MacDonald et al. (1995). WB and SSW represent bottom

width and sidewall slope, respectively.

12



0 200 400 600 800 1000
0
2
4
6

UR1 Channel Bed
Reference Bed

0 1000 2000 3000 4000 5000
0

5

10
UT2

0 1000 2000 3000 4000 5000
0

10

20

El
ev

at
io

n 
(m

) UR3

0 1000 2000 3000 4000 5000
0

10

20
VR1

0 200 400 600 800 1000
Thalweg distance (m)

0

2

4

6 UT1

0 200 400 600 800 1000
Thalweg distance (m)

0

2

4
VR2

Figure 5. Channel bed elevation (z0) and reference bed elevation (zR) for six test cases from MacDonald et al. (1995).

0 200 400 600 800 1000
0.5

0.0

0.5 UR1hR

0 1000 2000 3000 4000 5000
0.1

0.0

0.1
UT2

0 1000 2000 3000 4000 50000.1

0.0

0.1

h R
 (m

)

UR3

0 1000 2000 3000 4000 5000
1.0

0.5

0.0
VR1

0 200 400 600 800 1000
Thalweg distance (m)

0.5

0.0

0.5 UT1

0 200 400 600 800 1000
Thalweg distance (m)

0.2

0.0

VR2

Figure 6. Reference bed offset, hR, for zR and z0 of the test cases in Fig. 5.
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3.6 Test cases – synthetic channel reach

The analytical test cases, above, are designed to show that the RS method does not introduce approximations that affect the280

smooth solution. However, the true power of the RS method is in solution of non-smooth bathymetry where most models

using h0 and S0 have difficulty converging. To illustrate this aspect we use a simple river reach with randomly-perturbed

(discontinuous) bathymetry at various scales. As there are no analytical solutions for these tests we use the HEC-RAS model

for comparison. The simulations use time-invariant boundary conditions with geometry defined by trapezoidal cross-sections

of uniform side-slope, as detailed in Table 2. The channel bed offset (hR) and thalweg slope (S0) are illustrated in Fig. 8. The285

flow boundary conditions provide for a mild slope with a water surface profile that can be classified as an M1 gradually-varying

flow.

Case 1 is the baseline smooth channel with a uniform slope over the entire reach length. Cases 2 through 5 have synthetic

geometry developed by random perturbations of the bottom elevation of the baseline reach. Cases A and B have the identical

smooth geometry to Case 1, but use different reference slopes for RS tests. The synthetic channel test reach is 1.58 km in length290

discretized into 80 uniform computational nodes with 79 channel segments (20 m per segment). The trapezoidal cross-sections

each have a 10.0 m bottom width and 63.4 degree sidewall slopes. Bottom roughness is fixed by a Manning’s n of 0.04 for all

segments.

Case α hR S0 SR

Case 1 (baseline) – – 0.008 0.008

Case 2 0.01 [ −0.0018, 0.0012] [0.0079, 0.00802]

0.008Case 3 0.1 [ −0.0186, 0.0126] [0.0077, 0.0082]

Case 4 0.5 [ −0.0914, 0.0632] [0.0067, 0.0092]

Case 5 1 [ −0.1827, 0.1264] [0.0056, 0.0105]

Case A 0 [ −3.2, 3.12 ] 0.008 0.004

Case B 0 [ −1.56, 1.6] 0.008 0.010
Table 2. Configuration of synthetic channel reach test cases: α is used in eq. (20) for random perturbation of the baseline Case 1 geometry;

hR is the bed offset based on Fig. 4 with brackets indicating upper and lower limits of randomized geometry values over the non-uniform

test reach; S0 is the range of the thalweg slope for z0 from eq. (20). SR is the selected uniform reference slope.

To develop the random perturbations of the bottom in the synthetic test cases, we begin with the Case 1 (baseline) using a

uniform S
[1]
0 = 0.008 over the entire reach length. Here the superscript in square brackets indicates the case identifier. The set295

of bottom elevations for Case 1 are z[1]0 (x), which are smooth and linearly decreasing over the reach length. Cases 2 – 5 are

similar channels with perturbed bottom elevations set by

z
[c]
0 (x) = z

[1]
0 (x) +α[c]H(x) : c ∈ {2,3,4,5} (20)
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Figure 8. Channel bottom offset (hR) and physical thalweg slope (S0) for synthetic test Cases 2 – 5 that are random perturbations of the

baseline smooth S0 = 0.008 of Case 1.

where H(x) is a set of random-generated numbers within the range of −0.126≤H(x)≤ 0.183. The upper/lower limits of the

H(x) were selected to prevent the occurrence of a locally-adverse slope – such conditions can be handled by SPRNT-RS but300

can cause convergence problems for some models. The α[c] is a magnitude to generate a range of bottom displacements with

α[c] ∈ {0.01,0.1,0.5,1.0} for c ∈ {2,3,4,5} respectively. Cases 2 – 5 set the reference bottom elevations exactly equal to the

baseline Case 1 physical bottom elevations, i.e.

z
[c]
R (x) = z

[1]
0 (x) : c ∈ {2,3,4,5} (21)

Thus, the SPRNT-RS simulations for Cases 2 – 5 use uniform SR over the reach such that the bed offset (hR) represents the305

physical geometric perturbations. Noting from eq. (13) that hR is the difference between the physical bottom (z[c]0 ) and the

reference bottom (z[c]R ), substituting the above relationships provides

h
[c]
R (x) = α[c]H(x) (22)

For synthetic test Cases A and B in Table 2, the actual channel bottom slopes are set to uniform values equivalent to Case 1;

that is S[A]
0 = S

[B]
0 = S

[1]
0 = 0.008, with identical thalweg elevations of z[1]0 (x). However, the reference slopes for these cases310

are set to smaller and greater uniform values: S[A]
R = 0.004 and S[B]

R = 0.010. These two cases demonstrate the RS method

generates the same numerical solution as baseline Case 1 (solved at S0) when SR is set to an arbitrary value.
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Forcing for all seven test cases is a constant inflow boundary of 283 m3s−1 applied at the furthest upstream node. The

downstream boundary condition is 5.0 m of depth, which is subcritical flow based on a normal depth of 4.95 m for S0 = 0.008

and the inflow rate. Because a subcritical boundary condition allows upstream wave reflections, the downstream boundary315

was enforced at the end of a 180 m (9 node) buffer domain, which was adequate for reducing upstream wave propagation

in unsteady flow solutions. Simulation results are reported after the models have reached a steady state and all oscillations

associated with the initial conditions have dissipated. Solutions for the buffer segment are not included in the analyses below.

3.7 Test case – Waller Creek study site

The main stem of Waller Creek in Austin, Texas (USA) is used to examine the performance of the RS method for more complex320

conditions. The main stem of creek drains an urban watershed of 14.3 km2 with total length of 10.7 km for the area illustrated

in Figure 9. Bathymetric survey data are available courtesy of the City of Austin (Figure 10). The bathymetric data set includes

327 surveyed cross-sections with spacing intervals ranging from 2.5 m up to 178 m (mean of 33.5 m). The Manning’s n of

the channel (based on City of Austin computations) varies from 0.02 to 0.06 throughout the system. The SPRNT model, in

both its original and RS form, has numerical stability issues associated with close cross-sectional spacing. Arguably, these325

issues are related to sharp changes in A that lead to non-smooth source terms despite the RS method – however, this issue

requires further investigation. Similar numerical instability behavior can also be found in the HEC-RAS unsteady model and

also causes divergent solutions. For the present work, we discarded 36 cross-sections (11% of the data set) that were closer

than 10 m and merged these short reach lengths with the adjacent sections. An additional three cross-sections were discarded

and some channel roughness values were modified as they cause numerical instability in the HEC-RAS unsteady simulation330

(see Appendix for details). The resulting data set is 288 cross-sections with spacing ranging from 10.1 m to 184.9 m. The mean

cross-section spacing is 37.2 m with a total reach length of 10.7 km. To limit our focus to subcritical flow, our analyses consider

only the upper 8.3 km of the main reach (210 out of 288 cross-sections), which eliminates a series of step-pool transcritical

elements in the downstream channel where the HEC-RAS solution is strongly influenced by the ad hoc LPI algorithm (Fread

et al., 1996; Brunner, 2016b). The smoothing introduced by LPI makes it difficult to draw conclusions from a comparison335

between SPRNT-RS and HEC-RAS across transcritical locations.

A time-invariant upstream inflow boundary condition is set to 25 m3s−1 at the headwater cross-section. To minimize the

influence of subcritical reflections from the upstream inflow boundary, the first 10 computational nodes at the upstream are not

included in the results analysis. Lateral inflows are set to zero for all test cases. A 300 m buffer section is added downstream

of the test domain to reduce the influence of reflections from the downstream boundary condition. This buffer section uses the340

same cross section as the final downstream section of the data set with bed slope (S0) of 0.0033 and Manning’s n= 0.04. The

buffer section has a normal depth of 0.76 m at the 25 m3s−1 inflow rate. The downstream boundary condition at the end of

the buffer section is 0.7 m depth, which is subcritical and implies an M2 gradually-varying drawdown in the vicinity of the

outflow. These geometry and boundary conditions are identically applied to both SPRNT-RS and HEC-RAS models.

The thalweg elevation, z0(x), and the reference elevation, zR(x), of the RS method (as determined by the approximate345

spline fit described above) for Waller Creek are shown in Fig. 11(a). The z0 and zR are visually similar with the former being
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Figure 9. Main stem of Waller Creek and catchment in Austin (Texas, USA). Basemap copyright by Open Geospatial Consortium (OGC)

Web Mapping Service (WMS).

somewhat more noisy. The elevation data sets provide similar overall reach slopes (uppermost cross-section to lowermost

cross-section) of 0.0074 and 0.0077 respectively. Note that the approximate B-spline technique for generating zR(x) does

not force the overall reach slope to be identical. Because the zR(x) are mathematically arbitrary there is no need to force an

exact match. Although z0(x) and zR(x) are similar in Figure 11(a), the S0(x) from the raw data are discontinuous and vary350

over a wide range (up to 4× the reach slope), as illustrated in Figure 11(b). Note that S0(x) also includes negative slopes

(i.e., adverse gradient sections), which can cause convergence problems for some numerical solvers. In contrast, as shown in

Figure 11(c), the approximate cubic B-spline used to generate SR(x) from zR(x) provides a reference slope that is everywhere

smooth, positive and remains close to the overall reach slope of 0.008. The slope range and model nomenclature for the Waller

Creek test cases are provided in Table 3. The Lipschitz smoothness of S0 versus SR can be better understood by evaluating the355

gradient of the slope, i.e., the 2nd derivative of z0 and zR, as shown in Fig. 11(d). The S0 formulation clearly lacks smoothness

in the higher derivative.
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Figure 10. Surveyed cross-sections of Waller Creek (Texas). Only 140 out of 327 cross-sections are shown for clarity. Elevations are relative

to mean sea level. Data courtesy of City of Austin.

Case Slope formulation Slope range Model usage

WCRS RS method 0.0033< SR < 0.0147 SPRNT

WCHEC−S Conventional −0.0328< S0 < 0.0393 HEC-RAS(steady)

WCHEC−U Conventional −0.0328< S0 < 0.0393 HEC-RAS(unsteady)
Table 3. Data for model setup of Waller Creek test cases.

3.8 Analysis methods

To evaluate the performance of the RS method relative to conventional formulations, four depth-based indicators are employed,

as described below. For these definitions the control (superscript [C]) is the MacDonald et al. (1995) solution for the analytical360

test case and HEC-RAS results for the synthetic channel and Waller Creek test cases. Note that the synthetic tests use unsteady

HEC-RAS whereas the Waller Creek study uses comparisons to both steady and unsteady versions of the model. The test case

(superscript [T ]) is always the SPRNT-RS simulation. These measures can be considered error metrics for the comparison to

the analytical solutions and difference metrics for model-model comparisons.
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cross-sections; (c) SR smoothed bottom slope. (d) 2nd derivative of z0 and zR. Note the y-axis scaling in (c) has reduced limits compared to

(b) to better show the smoothness achieved by the spline fit.

(1) Normalized difference (ρ). A non-dimensional index to describe the local difference in depth can be defined as:365

ρ[T :C](x) =
h
[C]
0 (x)−h[T ]

0 (x)

h
[C]
0 (x)

(23)
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where h[C]
0 (x) and h[T ]

0 (x) are the local depth solution from the control and test case results after steady-state conditions are

achieved. The normalization scale is the local depth of the control case. Note the denominator is non-zero in the synthetic test

case setup because the flow setup is an M1 gradually-varying flow.

(2) Absolute mean normalized difference (ζ). The mean of the absolute value of ρ(x) over the domain provides an overall370

non-dimensional indicator of the depth error:

ζ [T :C] =
1

N

N∑
x=1

| ρ[T :C](x) | (24)

where N is the total number of cross-sections. We use the absolute value so that positive errors do not cancel negative errors

and ζ is a representative scale of the discrepancy between models.

(3) Mean absolute error (MAE). The overall dimensional error is characterized as:375

MAE =
1

N

N∑
x=1

| h[C]
0 (x)−h[T ]

0 (x) | (25)

and the non-dimensionalized form of overall error is:

MAE (non-dimensional) =
1

N

N∑
x=1

| h
[C]
0 (x)−h[T ]

0 (x)

h
[C]
0 (x)

| (26)

(4) Root-mean-square-error (RMSE). A standard dimensional measure of the squared error is:

RMSE =

√√√√ 1

N

n∑
x=1

(h
[C]
0 (x)−h[T ]

0 (x))2 (27)380

The non-dimensional form of RMSE is computed by the following equation:

RMSE (non-dimensional) =

√√√√ 1

N

n∑
x=1

(
h
[C]
0 (x)−h[T ]

0 (x)

h
[C]
0 (x)

)2 (28)

Both the MAE and RMSE are also reported in non-dimensional form where the normalization scale is presented.

4 Results

4.1 Analytical test cases385

The water surface elevations for the analytical solutions and SPRNT-RS simulations are shown in Fig. 12. Visually, the analyti-

cal and simulated results across all six cases are identical. Error metrics following §3.8 are provided in Table 1. The normalized

differences (ρ) are less than 1% and are consistent with absolute errors of O(10−3) m, which are negligible compared with

the water depths ≥ 1 m. The spatial distributions of the normalized error are shown in Fig. 13. By comparing this figure with

Fig. 5 it can be seen that ρ(x) fluctuates with the change of bed slope. Similar behavior can also be found for model results390

reported in MacDonald et al. (1995).
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Figure 12. Comparison between simulated water surface elevation from SPRNT-RS and analytical solution for analytical test cases of

MacDonald et al. (1995).

Case min(ρ) max(ρ) ζ MAE (m) RMSE (m)

UR1 −0.47% 0.33% 0.09% 0.00104 (0.032%) 0.00131 (0.048%)

UR3 −0.73% 0.55% 0.28% 0.00385 (0.044%) 0.00457 (0.058%)

UT1 −0.19% 0.33% 0.07% 0.00085 (0.027%) 0.00108 (0.042%)

UT2 −0.73% 0.62% 0.28% 0.00388 (0.064%) 0.00458 (0.084%)

VR1 −0.13% 0.08% 0.03% 0.00055 (0.006%) 0.00070 (0.009%)

VR2 −0.15% 0.13% 0.06% 0.00090 (0.026%) 0.00108 (0.031%)

Table 4. Difference measures using eqs. (23) – (28) for analytical test cases of MacDonald et al. (1995). Non-dimensionalized MAE and

RMSE are shown in parentheses.
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Figure 13. Spatial distribution of normalized difference (ρ) for analytical test cases of MacDonald et al. (1995).
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4.2 Synthetic test cases

Results for the baseline synthetic test, Case 1, are shown in Figure 14. The SPRNT-RS method produces visually the same

solution to HEC-RAS with zR = z0. Similarly, the comparison of model results for depth (h0) for test Cases 2 – 5 are visually

indistinguishable as shown in the left column of Figure 15. The quantitative difference measures for the synthetic tests are395

provided in Table 5 and the spatial distributions of ρ(x) are illustrated in the right column of Fig. 15. Values for ρ(x) in Cases 2

and 3 are slightly below zero (≈ 0.02%) over the entire domain, indicating the SPRNT-RS solution has a slightly higher

water surface than the HEC-RAS solution for small perturbations in the bed slope. With the increased bottom perturbations in

Cases 4 and 5 the ρ(x) range is larger (and includes a positive range) but the bounding values are still trivial. The ζ and RMSE

measures show that the non-dimensional and dimensional overall differences are small. The MAE and RMSE climb slightly400

with the increasing hR for Cases 2 through 5 but remains below 3 mm. These depth RMSE values are negligible compared with

the normal depth (4.95 m) of the baseline and well within reasonable truncation error differences for solvers using different

numerical techniques. The model-model comparisons for test Cases A and B also have trivial errors (Table 5), and further

results are not shown as they are visually identical to those for baseline Case 1 illustrated in Fig. 14. Note that the RMSE for

both cases is identical to Case 1, which indicates solution for the SPRNT-RS method with SR 6= S0 is very close to the baseline405

solution with SR = S0.

HEC-RAS

SPRNT-RS

Figure 14. Simulated profile of water surface elevation (upper line) and channel bottom (lower line) for synthetic test Case 1 using SPRNT-

RS (red), and unsteady HEC-RAS (black).
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Figure 15. Water depth, h0, (left column) and normalized difference, ρ, (right column) for synthetic test cases with perturbed bathymetry.

Case min(ρ) max(ρ) ζ MAE (m) RMSE (m)

Case 1 (baseline) −0.107% 0.005% 0.0281% 0.00139 (0.028%) 0.00176 (0.035%)

Case 2 −0.031% −0.012% 0.0251% 0.00124 (0.025%) 0.00126 (0.025%)

Case 3 −0.037% −0.005% 0.0252% 0.00125 (0.025%) 0.00129 (0.026%)

Case 4 −0.073% 0.032% 0.0284% 0.00141 (0.028%) 0.00168 (0.034%)

Case 5 −0.107% 0.095% 0.0426% 0.00212 (0.043%) 0.00249 (0.049%)

Case A −0.107% 0.005% 0.0281% 0.00139 (0.028%) 0.00175 (0.035%)

Case B −0.107% 0.005% 0.0281% 0.00139 (0.028%) 0.00175 (0.035%)

Table 5. Difference measures between SPRNT-RS and HEC-RAS using eqs. (23) – (28) for synthetic test cases. Non-dimensionalized MAE

and RMSE are shown in parentheses.
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4.3 Waller Creek test case

Waller Creek has been simulated with SPRNT-RS (denoted as WCRS in the following figures), the HEC-RAS unsteady solver

(WCHEC-U) and the HEC-RAS steady solver (WCHEC-S). Figure 16 shows water surface elevations for SPRNT-RS and unsteady

HEC-RAS. For clarity the upper 40% of the domain (which has similar good behavior) is not shown. Figure 17 shows the410

spatial distribution of the normalized difference ρ for these simulations. The differences are roughly within ±4% across the

entire domain. The maximum and minimum difference both occur at two adjacent nodes close to 7800 m with 4.14% and

−3.07%, respectively. Figure 18 provides a similar comparison of water surface elevations between SPRNT-RS and the steady

HEC-RAS case. The results are visually quite similar to the comparison with unsteady HEC-RAS. A direct comparison of

surface elevations for unsteady and steady HEC-RAS does not provide any further insight and is omitted for brevity. However,415

to quantitatively evaluate the differences between SPRNT-RS and HEC-RAS, it is useful to compute difference measures

between the unsteady and steady HEC-RAS models themselves as well as the differences between SPRNT-RS and both models,

as provided in Table 6. Overall, the SPRNT-RS result have marginally better consistency with unsteady HEC-RAS than with

steady HEC-RAS. Of greater importance is that the behavior of SPRNT-RS relative to unsteady HEC-RAS has the same order

of differences as the comparison of unsteady HEC-RAS to steady HEC-RAS. These results imply that the differences between420

SPRNT-RS and unsteady HEC-RAS are reasonable for the different numerical methods given the geometric variability of

Waller Creek.
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Figure 16. Comparison of SPRNT-RS to unsteady HEC-RAS for water surface elevations in Waller Creek simulations with expanded detail

to show similarities. For clarity, 5 m is subtracted from the channel z elevations.
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Figure 17. Normalized difference ρ(x) between SPRNT-RS and unsteady HEC-RAS

28



Figure 18. Comparison of SPRNT-RS to steady HEC-RAS for water surface elevations in Waller Creek simulations with expanded detail to

show similarities. For clarity, 5 m is subtracted from the channel z elevations.
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Case comparison min(ρ) max(ρ) ζ MAE (m) RMSE (m)

WCRS : WCHEC-U -3.07% 4.14% 0.85% 0.056 (0.883%) 0.077 (1.284%)

WCRS : WCHEC-S -8.43% 4.58% 1.25% 0.081 (1.287%) 0.122 (1.990%)

WCHEC-U : WCHEC-S -2.70% 7.03% 1.30% 0.086 (1.301%) 0.128 (1.931%)

Table 6. Difference metrics for Waller Creek simulation results. Non-dimensionalized MAE and RMSE are shown in parentheses.

5 Discussion

5.1 Validation of the RS method

The RS method is a simple algebraic transformation of the governing equations and the answer to the principal question425

“does it work?” is implied by our inability use the baseline SPRNT model (with S0) as a control model (see §3.4). Invariably,

discontinuous topography for SPRNT without RS caused either an oscillatory solution or numerical instability. In contrast,

both HEC-RAS (using η) and SPRNT-RS (using SR) provide stable, non-oscillatory solutions.

The analytical results in §4.1, supplemented by additional results in Yu et al. (2019a), validate the SPRNT-RS method

for simulation of smoothly-varying channel morphologies that are Lipschitz continuous at the discretization scale. We have430

experimented with both uniform and splined SR for these tests. For both types of simulations we observe errors relative to

physical experiments that are comparable or smaller than those shown in the numerical validation studies of MacDonald et al.

(1995). These results imply that the transformation from the conventional h0,S0 form of the SVE to the ha,SR form of eq. (17)

is a valid algebraic step that can be implemented in a numerical solver and is an alternative for representing smooth geometries.

The synthetic test cases in §4.2 serve two purposes. Firstly, Cases A and B compared to baseline Case 1 show that the435

numerical solution does not depend on a particular choice of SR. Arbitrary selection of an SR 6= S0 results in identical solutions

to SR = S0. Secondly, the synthetic test cases show that the SPRNT-RS method can be applied with non-smooth geometry at

the discretization scale (i.e., random perturbations of the physical bottom slope), which caused non-convergent behavior in the

baseline SPRNT model. As a control, we have compared SPRNT-RS with the accepted HEC-RAS model that remains stable

for these test cases as it solves with the piezometric pressure gradient rather than splitting into S0 and the gradient of h0.440

The results indicate that SPRNT-RS provides numerical solutions that are nearly identical to HEC-RAS for the non-smooth

geometry test cases. Thus, using a Lipschitz-smooth SR provides a stable numerical solution for non-smooth geometry without

altering the physical representation of non-smooth geometry.

The Waller Creek test case in §4.3 provides a more challenging comparison of SPRNT-RS to HEC-RAS. For this test case,

the geometry discontinuities include adverse slopes and local S0 that are ±400% of the reach-average slope, which contrasts445

with perturbations of ±30% used in the synthetic test cases of §4.2. Again, SPRNT-RS is shown to be close to the unsteady

HEC-RAS solution. The model differences are within reasonable ranges, as illustrated by the fact that they are similar to

the differences between HEC-RAS steady and unsteady versions. Nevertheless, it remains possible that the minor differences
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between HEC-RAS and SPRNT-RS are caused by a latent defect in coding the RS method or SPRNT itself, but it is difficult

to envision how such a defect could occur without also appearing in the analytical and synthetic test cases. A simpler and450

more compelling explanation is with the linear approximations used in unsteady HEC-RAS that are not present in SPRNT-RS.

Specifically, Brunner (2016a) notes that for computational efficiency and to reduce “troublesome convergence problems at

discontinuities in the river geometry,” the unsteady HEC-RAS code uses a linearization technique developed by Liggett (1975)

and Chen (1973) – note the latter document is cited by Brunner (2016a) but was not available to us. It seems likely that strong

geometry discontinuities in the Waller Creek test case would be affected by this linearization, which arguably would lead to455

artificial smoothing of the water surface profile by HEC-RAS. Unfortunately, we do not have direct access to the HEC-RAS

code and thus rely on the discussion of HEC-RAS stability in the literature (Hicks and Peacock, 2005; Sharkey, 2014) and the

methodology in HEC-RAS manuals (Brunner, 2016a, b).

5.2 Why not just use ∂η/∂x?

One might wonder whether SR or S0 is at all necessary when we could clearly just retain ∂η/∂x in the SVE rather than using460

any split form. To understand the value of SR, it is worth considering why S0 is presently used. We have not been able to

determine exactly when S0 was first used with the SVE, but from a hydrology viewpoint S0 provides consistency between

kinematic wave solutions (which use S0 = Sf ) and the SVE. Thus including S0 is a logical step when considering reduced-

physics approaches (Di Baldassarre, 2012). Arguably, a well-chosen SR that matches the large-scale S0 will serve the same

purpose. The S0 approach is also favored in models that are built on a “conservative” SVE form where the hydrostatic pressure465

portion of the piezometric head gradient is abstracted into the advective gradient term (e.g. Sanders, 2001; Kesserwani, 2013).

For these model, the advantage of the S0 form is that when S0 = 0 and Sf = 0 the momentum equation can be written as a

classic 1D homogenous advection equation, which is mathematically appealing. Our work in progress indicates that the SR

approach could be similarly adapted for a conservative form of the SVE, but this issue remains speculative.

Although the utility and simplicity of the η approach is obvious, it has a key disadvantage when applied in large-scale sim-470

ulations. Over large distances the free surface is monotonically increasing upstream, which has consequences for employing

implicit or semi-implicit numerical solutions in a continental river dynamics framework (Hodges, 2013). Briefly, when mod-

eling a river system from an estuary (η ∼ 0 m) to mountain headwaters (η ∼ 103 m) the solution variable η nominally covers

three orders of magnitude. Furthermore, as local variations on the order of 10−2 m affect the hydrostatic pressure gradient, the

solution of η requires precision over at least five orders of magnitude – i.e., a stiff numerical solution that can be difficult to475

converge for either a linear or nonlinear solver. Thus, splitting ∂η/∂x into a down-slope body force (SR) and a local residual

(∂ha/∂x) is effectively removing a large-scale gradient from the solution variables, which will generally improve numerical

behavior.

Despite the above disadvantages, the η form retains some advantages in creating conservative finite-volume formulations of

the Saint-Venant equations (Hodges, 2019). Arguably, such methods should be confined to explicit time-marching schemes or480

localized solutions where η covers a smaller range, and the RS method should be preferred for larger systems.

31



5.3 RS advantages and limitations

The fundamental difference between the SPRNT-RS approach and most, if not all, conventional models (including unsteady

HEC-RAS) is that our method algebraically revises the Saint-Venant equations to exactly accommodate discontinuous geom-

etry while maintaining a smooth source term, whereas other models typically introduce ad hoc changes (e.g., linearization) to485

provide stable and faster numerical behavior when discontinuities are likely to cause numerical instabilities. These differences

in the governing equations can be expected to cause differences in the solution – especially where nonlinear terms are strong.

The present scope is limited in that only a single model was modified (SPRNT/SPRNT-RS) and only single model (HEC-

RAS) was used as an external control. The validity of the underlying algebraic transformation in the RS method has been

demonstrated by these tests; however, it remains to be seen how implementing the RS approach in other models – particularly490

well-balanced models – might alter residual errors, convergence rates, and computational performance. We are interested in

collaborating with other researchers who have access to and familiarity with source code of candidate well-balanced models.

An important limitation to the present work is that we focus solely on subcritical flow. The Preissmann scheme used in the

underlying SPRNT model is known to exhibit instabilities with transcritical flows (Samuels and Skeels, 1990; Sart et al., 2010;

Meselhe and Holly Jr, 1997), which can be suppressed with the ad hoc Local Partial Inertia (LPI) scheme of Fread et al. (1996).495

Our preliminary work (not shown) indicates that the RS approach can stabilize the Preissmann scheme without using LPI, but

further work is required to test and validate the RS method for transcritical and supercritical flows.

Overall, the RS method can ensure the Lipschitz smoothness of slope representation in the momentum source term (without

smoothing geometry), thus reducing one source of oscillatory or unstable behavior in numerical solutions. However, application

of the RS method is not without some limitations. Although the switch from S0 to SR is algebraically exact, the application500

of the RS method requires some method to select the distributed zR(x) and to determine SR(x). Poor selection of zR can

theoretically result in non-smooth SR. In the present work, the profile of zR in the Waller Creek case is generated by the

cubic B-spline technique, which is controlled by the number of “knots” and their spacing. In general, the distance between

knots must be longer than the spacing between cross-sections so that the generated SR is smooth at the model’s discretization

scale. It is not clear that a mathematical “optimum” for selection of knots will necessarily exist, but there are likely (unknown)505

practical limits on knot selection spacing for “adequate” smoothness of zR(x). Our results indicate that approximating cubic

B-splines are adequate for producing smooth zR for the tested geometries, and the solutions are robust to the selection of zR

as long as SR is smooth (Yu et al., 2019b). However, it is likely there are limitations to applying the RS method in large-scale

river network simulation that will make it difficult to use a simple globally-applied knot spacing. Such networks might consist

of 104 to 105 reaches spanning wide geographical regions with a variety of topology and inconsistent data availability. Some510

reaches may have well-defined cross-sections at close spacing, other reaches might be poorly documented (Hodges, 2013).

Thus, it seems likely that a method for automatically generating approximating splines (or some other form of smoothing)

would be useful, but such an advance arguably requires a method for quantitatively evaluating the “goodness” of a particular

set of zR(x), which remains an open question. We speculate that simple window filtering techniques may be adequate for river
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databases such as NHDplus, but further investigation and examination are needed to better understand the interplay between515

the smoothing scales and the numerical solution using the RS method for large networks.

This study has implemented RS only in the SPRNT code, as discussed in more detail in §3. The baseline governing equations

for SPRNT are of the form of eq. (2), the so-called “non-conservative” form – which simply means that the entirety of the

hydrostatic pressure gradient is effectively a source term, as contrasted with “conservative” equations such as Cunge-Liggett

form (Cunge et al., 1980), in which a portion of the hydrostatic pressure gradient is abstracted to the advection term. Although520

it remains to be shown in future work, the algebraic transformation implied in eq. (4) can arguably be applied in the Cunge-

Liggett form or any other conservative form of the SVE. Similarly, the fundamental algebraic transformation to SR and ∂ha/∂x

will be equally valid in any finite-volume method using S0 and h0.

The greatest barrier to adoption of the RS method in an existing model is likely the need to rewrite the geometry functions

to accept ha, hR, and zR in place of h0 and z0. The difficulties involved in this effort depend on whether or not the model525

geometry functions are sufficiently isolated from the main solution algorithm. Indeed we can imagine codes where the geometry

functions are essentially dispersed throughout and requires extensive effort to alter, debug, and verify.

5.4 The future for RS methods

The RS method as introduced above might be just a starting point. Although the present work focused on the non-conservative

form, the concepts presented herein will likely be effective in addressing the “well-balanced” problem for conservative forms530

as reviewed in Kesserwani (2013) and Hodges (2019). Furthermore, the algebra in the RS demonstration above leads to the

conjecture that the method could be extended to 2D reference slopes for bathymetry in 2D or 3D models. Undoubtedly there are

unknown numerical challenges in extending to higher dimensions – particularly in ensuring a 2D spline function is adequately

spaced to ensure smoothness – but there does not appear to be any fundamental conceptual difficulty in such efforts.

6 Conclusions535

The reference slope (RS) method introduces a new form of the Saint-Venant equations for 1D river flow. The advantage of the

RS method is that it ensures the body force (slope) source term is smooth and cannot destabilize the numerical solution. The

RS method introduces the concept of an arbitrary smooth reference elevation, zR(x), with computed reference slopes, SR(x),

and associated depths, ha(x). These geometries are algebraically related to the traditional channel thalweg elevation, depth,

and bottom slope (z0,h0,S0) used in many models. The RS method is implemented in an open-source Saint-Venant solver as540

SPRNT-RS. In this study, SPRNT-RS was compared to both analytical solutions and the conventional HEC-RAS model for

synthetic test reaches and an urban creek for subcritical flows. The model-model comparisons are within expected truncation

error for the both analytical and synthetic test cases, and within acceptable differences for simulating flow through the complex

geometry of an urban creek. The slightly larger simulation differences in the urban creek test case are likely due to ad hoc

linearization algorithms used in HEC-RAS that do not appear in SPRNT-RS.545
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As discussed in the §2, when faced with non-smooth geometries in a channel reach, prior researchers have resorted to limit-

ing or smoothing discontinuous source terms or employing numerical techniques that mitigate oscillatory/unstable numerical

behaviors. In contrast, the new RS method transforms a discontinuous bottom slope source term into a smooth expression

without losing either complexity in the geometry or introducing ad hoc smoothing of the geometry, the numerical method,

or the solution. An important advantage of the RS method is that it is entirely mechanical – requiring only selection of con-550

trol knot spacing for the approximating spline at some length scale larger than the cross-section spacing. That is, RS does

not require the model designer or user to introduce smoothing thresholds or ad hoc algorithm bounds. As such, we believe

the RS method could be particularly valuable as we move from from fine-resolution reach-scale modeling to large-scale con-

tinental river dynamics simulation (Hodges, 2013) or develop massively parallel stormwater network models for megacities

(Morales-Hernandez et al., 2020)555

The RS method is not specific to SPRNT, but can be adapted to any Saint-Venant solver that uses a bottom slope (S0) term in

the discretization. The mathematical change is conceptually trivial, but the actual effort depends on how cross-section geometry

is embedded in the code. The code for both SPRNT and SPRNT-RS are available under open-source license at GitHub (Liu,

2014).

7 Code availability560

Complete code for reference slope module and SPRNT are available at Github (https://github.com/frank-y-liu/SPRNT)

8 Data availability

All test case files and results are uploaded to a public repository under Texas Data Repository (https://doi.org/10.18738/T8/

BXJBF5)

Appendix A: Geometry adjustments for stable unsteady HEC-RAS simulations565

As discussed in §3, the stability of the SPRNT-RS simulations for Waller Creek was ensured by merging 36 computational

elements where the cross-section spacing was closer than 10 m. This minimum spacing cut-off was selected as being well

below the median spacing of 28.6 m and mean spacing of 37.7 and proved adequate for ensuring SPRNT-RS stability in the

tested simulations. Unfortunately, stability of unsteady HEC-RAS required further removal of three cross-sectional elements

(shown in Figure A1) and reducing Manning’s n at six additional cross-sections (listed in Table A1). Selecting these changes570

was a matter of art rather than science as we could not identify a clear criteria for cross-section removal or Manning’s n

adjustment for HEC-RAS – other than these locations appeared to be where instabilities appeared in unsteady HEC-RAS

model runs. Although SPRNT-RS could run without these changes, for consistency in the model comparisons the geometry of

the SPRNT-RS model was modified to exactly match the adjusted geometry required for the HEC-RAS model.
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Figure A1. Cross-sections removed from Waller Creek data set to provide numerical stability of unsteady HEC-RAS.

station number reach location (m) original n modified n

30104 1384 0.06 0.04

30014 1412 0.06 0.04

29871 1454 0.055 0.04

29752 1490 0.06 0.04

29647 1522 0.055 0.04

29482 1572 0.055 0.04

Table A1. Modified Manning’s n for cross-section stations in Waller Creek data set to provide numerical stability of unsteady HEC-RAS.
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Notation

A cross-sectional area (m2)

g gravitational acceleration (ms−2)

h0 water depth (m)

ha associated water depth (m)590

hR reference height (m)

n Gauckler-Manning-Strickler roughness (m−1/3s)

Pw wetted perimeter (m)

Q volumetric flow rate (m3s−1)

q` flow rate per unit length through channel sides (m2s−1)595

S0 channel bottom slope

Sf channel friction slope

SR channel reference slope

SSW channel sidewall slope

t time (s)600

W channel width (m)

WB channel bottom width ((m))

x along-channel spatial coordinate

z0 channel bottom elevation (m)
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zR reference elevation (m)605

α bottom displacement coefficient

ε second derivative of water surface elevation (m−1)

η water surface elevation (m)

ρ normalized difference between results

ζ absolute mean normalized difference (AMND)610
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