Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1081-2020
https://doi.org/10.5194/hess-24-1081-2020
Research article
 | 
05 Mar 2020
Research article |  | 05 Mar 2020

Using hydrological and climatic catchment clusters to explore drivers of catchment behavior

Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska

Related authors

The State of Global Catastrophic Risk Research: A Bibliometric Review
Florian Ulrich Jehn, John-Oliver Engler, Constantin W. Arnscheidt, Magdalena Wache, Ekaterina Ilin, Laura Cook, Lalitha S. Sundaram, Frederic Hanusch, and Luke Kemp
EGUsphere, https://doi.org/10.31223/X52X4V,https://doi.org/10.31223/X52X4V, 2024
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Incremental model breakdown to assess the multi-hypotheses problem
Florian U. Jehn, Lutz Breuer, Tobias Houska, Konrad Bestian, and Philipp Kraft
Hydrol. Earth Syst. Sci., 22, 4565–4581, https://doi.org/10.5194/hess-22-4565-2018,https://doi.org/10.5194/hess-22-4565-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Sediment transport in South Asian rivers high enough to impact satellite gravimetry
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024,https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024,https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Pairing remote sensing and clustering in landscape hydrology for large-scale change identification: an application to the subarctic watershed of the George River (Nunavik, Canada)
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024,https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: a systematic review of methods and gaps
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023,https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022,https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A ranking of hydrological signatures based on their predictability in space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018. 
Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. J., and Capell, R.: A comparison of similarity indices for catchment classification using a cross-regional dataset, Adv. Water Resour., 40, 11–22, https://doi.org/10.1016/j.advwatres.2012.01.008, 2012. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 
Andréassian, V., Lerat, J., Le Moine, N., and Perrin, C.: Neighbors: Natures own hydrological models, J. Hydrol., 414–415, 49–58, https://doi.org/10.1016/j.jhydrol.2011.10.007, 2012. 
Download
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.