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Abstract. The behavior of every catchment is unique. Still,
we seek for ways to classify them as this helps to improve
hydrological theories. In this study, we use hydrological sig-
natures that were recently identified as those with the high-
est spatial predictability to cluster 643 catchments from the
CAMELS dataset. We describe the resulting clusters con-
cerning their behavior, location and attributes. We then an-
alyze the connections between the resulting clusters and the
catchment attributes and relate this to the co-variability of
the catchment attributes in the eastern and western US. To
explore whether the observed differences result from cluster-
ing catchments by either climate or hydrological behavior,
we compare the hydrological clusters to climatic ones. We
find that for the overall dataset climate is the most impor-
tant factor for the hydrological behavior. However, depend-
ing on the location, either aridity, snow or seasonality has
the largest influence. The clusters derived from the hydro-
logical signatures partly follow ecoregions in the US and can
be grouped into four main behavior trends. In addition, the
clusters show consistent low flow behavior, even though the
hydrological signatures used describe high and mean flows
only. We can also show that most of the catchments in the
CAMELS dataset have a low range of hydrological behav-
iors, while some more extreme catchments deviate from that
trend. In the comparison of climatic and hydrological clus-
ters, we see that the widely used Köppen–Geiger climate
classification is not suitable to find hydrologically similar
catchments. However, in comparison with novel, hydrolog-
ically based continuous climate classifications, some clusters
follow the climate classification very directly, while others

do not. From those results, we conclude that the signal of the
climatic forcing can be found more explicitly in the behav-
ior of some catchments than in others. It remains unclear if
this is caused by a higher intra-catchment variability of the
climate or a higher influence of other catchment attributes,
overlaying the climate signal. Our findings suggest that very
different sets of catchment attributes and climate can cause
very similar hydrological behavior of catchments – a sort of
equifinality of the catchment response.

1 Introduction

Every hydrological catchment is composed of a unique com-
bination of topography and climate, which makes their dis-
charge heterogeneous. This, in turn, makes it hard to gener-
alize behavior beyond individual catchments (Beven, 2000).
Catchment classification is used to find patterns and laws in
the heterogeneity of landscapes and climatic inputs (Siva-
palan, 2003). Historically, this classification was often done
by simply using geographic, administrative or physiographic
considerations. However, those regions proved to be not suf-
ficiently homogenous (Burn, 1997). Therefore, it was pro-
posed to use seasonality measures with physiographic and
meteorological characteristics, but it was deemed difficult
to obtain this information for a large number of catchments
(Burn, 1997), even if only simple catchment attributes (e.g.,
aridity) are used (Wagener et al., 2007). Nonetheless, in
the last decade datasets with hydrologic and geological data
were made available, comprising information on hundreds of
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catchments around the world (Addor et al., 2017; Alvarez-
Garreton et al., 2018; Newman et al., 2014; Schaake et al.,
2006). This is a significant step forward as those large-
sample datasets can generate new insights, which are im-
possible to obtain when only a few catchments are consid-
ered (Gupta et al., 2014). Different attributes have been used
to classify groups of catchments in those kind of datasets:
flow duration curve (Coopersmith et al., 2012; Yaeger et al.,
2012), catchment structure (McGlynn and Seibert, 2003),
hydro-climatic regions (Potter et al., 2005), function re-
sponse (Sivapalan, 2005) and, more recently, a variety of
hydrological signatures (Kuentz et al., 2017; Sawicz et al.,
2011; Toth, 2013). Quite often, climate has been identified as
the most important driving factor for different hydrological
behavior (Berghuijs et al., 2014; Kuentz et al., 2017; Sawicz
et al., 2011). Still, it is also noted that this does not hold true
for all regions and scales (Ali et al., 2012; Singh et al., 2014;
Trancoso et al., 2017). In addition, a recent large study of
Addor et al. (2018) has shown that many of the hydrological
signatures often used for classification are easily affected by
data uncertainties and cannot be predicted using catchment
attributes. Another recent study by Kuentz et al. (2017) used
an extremely large datasets of 35 000 catchments in Europe
and classified them using hydrological signatures. For their
classification, they used hierarchical clustering and evaluated
the result of the clustering by comparing variance between
different numbers of clusters. They were able to find 10 dis-
tinct classes of catchments. However, Kuentz et al. (2017)
used some of the signatures identified to have a low spatial
predictability by Addor et al. (2018). In addition, one-third
of their catchments was aggregated in one large class with
no distinguishable attributes. Overall, we conclude that no
large-sample study exists that uses only hydrological signa-
tures with a good spatial predictability. In addition, if the cli-
mate is the dominant driver of catchment behavior, clustering
catchments based on their hydrological behavior should re-
sult in clusters with a similar climate.

Therefore, we selected the best six hydrological signa-
tures with spatial predictability to classify catchments of
the CAMELS (Catchment Attributes and MEteorology for
Large-Sample Studies) dataset (Addor et al., 2017). Those
six hydrological signatures are evaluated together with the
16 catchment attributes that were shown to have a large
influence on hydrological signatures (Addor et al., 2018).
The connection between the hydrological signatures and the
catchment attributes is determined by using quadratic regres-
sion of the principal components (of the hydrological signa-
tures) and the catchment attributes. This will help to explore
whether a clustering with hydrological signatures that have a
high predictability in space provides hydrologically mean-
ingful clusters and how those are related to catchment at-
tributes. In addition, we compare the hydrologically derived
clusters with climatic clusters and determine the spatial dis-
tance between the most hydrologically similar catchments.
This will determine whether grouping catchments by climate

or by hydrologic behavior will yield the same results and
whether the signatures identified by Addor et al. (2018) as
having the highest spatial predictability can be used to delin-
eate hydrologically meaningful clusters, even though they do
not consider low flows.

2 Material and methods

2.1 Database

This work is based on a detailed analysis of catchment at-
tributes and information contained in hydrological signa-
tures. The CAMELS dataset contains 671 catchment in the
continental United States (Addor et al., 2017) with additional
meta information such as slope and vegetation parameters.
For our study, we used a selection of the available metadata.
We excluded all catchments that had missing data, which left
us with 643 catchments. Those catchments come from a wide
spectrum of characteristics like different climatic regions, el-
evations ranging from 10 to almost 3600 m a.s.l. and catch-
ment areas ranging from 4 to almost 26 000 km2. We used
the following attributes per class:

– climate: aridity, frequency of high-precipitation events,
fraction of precipitation falling as snow, precipitation
seasonality;

– vegetation: forest fraction, green vegetation fraction
maximum, leaf area index (LAI) maximum;

– topography: mean slope, mean elevation, catchment
area;

– soil: clay fraction, depth to bedrock, sand fraction;

– geology: dominant geological class, subsurface poros-
ity, subsurface permeability.

Those catchment attributes were chosen due to their ability
to improve the prediction of hydrological signatures (Addor
et al., 2018) and because they are relatively easy to obtain,
which will allow a transfer of this method to other groups of
catchments worldwide.

Hydrological signatures cover different behaviors of
catchments. However, many of the published signatures have
large uncertainties (Westerberg and McMillan, 2015) and
lack in predictive power (Addor et al., 2018). Therefore, we
used the six hydrological signatures with the best predictabil-
ity in space (Table 1) (Addor et al., 2018). Those signatures
were calculated for all catchments. Due to this selection, no
signatures that capture low flow behavior were used, as those
signatures have a very low spatial predictability.

2.2 Data analysis

The workflow of the data analysis considers a data reduc-
tion approach with a principal component analysis and a
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Table 1. Applied hydrological signatures on the discharge data of
the CAMELS (Addor et al., 2018).

Signature Unit

Mean annual daily discharge mm d−1

Mean winter daily discharge (Nov–Apr) mm d−1

Mean half-flow date; date on which the day of year
cumulative discharge first reaches half
of the annual discharge since October
95 % Flow quantile (high flow) mm d−1

Runoff ratio –
Mean summer daily discharge (May–Oct) mm d−1

subsequent clustering of the principal components, similar
to Kuentz et al. (2017) and McManamay et al. (2014). For
the principal component analysis and the clustering, we used
the Python package sklearn (0.19.1). The code is available at
GitHub (Jehn, 2020). Validity was checked by also clustering
a random selection of 50 % and 75 % of all catchments. This
showed that the clustering stayed the same, independently of
the number of catchments used (not shown). In all further
analysis, we used all catchments to get a sample as large as
possible to be able to make statements that are more general.

2.2.1 Calculation of the principal component analysis

The principal components were calculated from the six hy-
drological signatures described above (Table 1). We used a
principal component analysis on the hydrological signatures
to remove correlations between the single hydrological sig-
natures. We only used principal components that together ac-
count for at least 80 % of the total variance of the hydrolog-
ical signatures, which resulted in two principal components.
Those two principal components contain the uncorrelated in-
formation of all hydrological signatures used and thus can be
seen as describers of the hydrological behavior in regard to
the overall amount of discharge, its distribution throughout
the year, high flows and runoff ratio. Therefore, catchments
with similar principal components have similar hydrological
behavior along those signatures.

2.2.2 Evaluating the connection between the principal
components and the catchment attributes

1. First, we calculated quadratic regressions between the
two principal components and the catchment attributes
(with the principal component as the dependent vari-
able). This resulted in one coefficient of determination
(R2) for each pair of principal component and catch-
ment attribute (e.g., PC 1 and aridity).

2. We then weighted the R2 by the explained variance
of the principal components. This addresses the differ-
ences in the explained variance of the principal compo-

nents (e.g., PC 1 explained 75 % of the variance, PC 2
explained 19 % of the variance).

3. The weighted coefficients of determination of the two
principal components were subsequently added to ob-
tain one coefficient of determination for every catch-
ment attribute.

Quadratic regression was selected as interactions in natu-
ral hydrological systems are known to have unclear patterns
and can therefore often not be fitted with a simple straight
line (Addor et al., 2017; Costanza et al., 1993). This was
done first for the whole dataset and then for all clusters sepa-
rately. This procedure captures the pattern on the catchment
attributes in the PCA space of the hydrological signatures
(for examples of this pattern see Appendix Fig. A1).

2.2.3 Clustering the principal components

The principal components of the hydrological signatures
were clustered following agglomerative hierarchical cluster-
ing with ward linkage (Ward, 1963), similar to previous stud-
ies (Kuentz et al., 2017; Li et al., 2018; Yeung and Ruzzo,
2001). Therefore, the clusters are based on the hydrologi-
cal signatures of the catchments. From the previous stud-
ies, Kuentz et al. (2017) provides the largest set with over
35 000 catchments. They also clustered their catchments in
a PCA space of a range of hydrological signatures. To se-
lect the number of clusters, they used the elbow method (and
two other methods to validate their results) and found that
10 or 11 clusters (depending on the method) were most ap-
propriate for their data. Due to the similarity in the clustered
data and the larger database of Kuentz et al. (2017), we also
used 10 clusters (Berghuijs et al., 2014) also found that 10
clusters captured the distinct hydrological behaviors for the
continental US. Those 10 clusters represent groups of catch-
ments with distinctly different hydrological behavior.

3 Results and discussion

3.1 Catchment attribute correlations in the CAMELS
dataset

Usually the 100th meridian is seen as the dividing climatic
line in the US, splitting the country into a semiarid west
and a humid east. We assume that this difference in cli-
mate also has implications for the hydrology and the over-
all catchment attributes in those regions. To quantify this
we split the CAMELS dataset into a western and an east-
ern part, based on the 100th meridian (Figs. 1 and 4). This
shows that many of the catchment attribute correlations do
not differ much between the east and the west. In most cases
(> 80 %), Spearman rank correlation coefficients vary by less
than 0.4 (Fig. 1c). Still, there are some catchment attributes
with larger differences of up to 0.8 between both regions.

https://doi.org/10.5194/hess-24-1081-2020 Hydrol. Earth Syst. Sci., 24, 1081–1100, 2020



1084 F. U. Jehn et al.: Using hydrological and climatic catchment clusters

Most striking are the mean elevation and the fraction of the
precipitation falling as snow as well as the vegetation at-
tributes LAI maximum and green vegetation fraction max-
imum. Even though these attributes are directly related to
each other through temperature gradients, they differ sub-
stantially in both parts of the country. In the mountainous
western US, elevation is highly correlated with the fraction
of precipitation falling as snow (r = 0.8), while it is not
in the eastern US (r = 0.4). This and the different correla-
tions between vegetation and elevation are probably caused
by the fact that the temperature gradients differ in both re-
gions. The western US is much more mountainous and thus
temperatures typically change with elevation. In the more
level eastern US, the change in temperature is mainly linked
to the latitude. Striking are also the changes of correlation
with regard to the fraction of precipitation falling as snow.
Here we find altered directions of the correlation; i.e., posi-
tive correlations with LAI maximum and frequency of high-
precipitation events in the east turn to negative ones in the
west. The change in the LAI maximum might be linked to the
higher elevations in the west, as in higher elevations less veg-
etation is growing, but more snow falls. It also becomes ob-
vious that all three measures of vegetation seem to track sim-
ilar characteristics in the catchments, as they correlate highly
with each other (especially in the eastern US with r = 0.9).
In addition, all vegetation attributes depict a large negative
correlation with aridity. Hence, the vegetation attributes con-
sidered are likely good proxies for aridity. Overall, we see
that the relations between the catchment attributes are quite
similar for the eastern and western US, with the exception of
the mean elevation, snow and the LAI maximum.

3.2 Impacts of catchment attributes on discharge
characteristics in the whole dataset

Next we examined the weighted R2 of the catchment at-
tributes for the whole dataset. This analysis shows not only
differences in their score between the single attributes, but
also between the different classes of catchment attributes
(Fig. 2). Attributes related to climate (aridity) and vegetation
(forest fraction) get the highest scores. However, it should be
noted that all vegetation catchment attributes show a strong
correlation with the aridity (Fig. 1) and thus capture similar
trends, in both the east and the west. With the exception of
the mean slope, the first seven catchment attributes are all
related to climate and vegetation. The last seven attributes
on the other hand are all related to soil and geology, except
the catchment area. They also show much lower scores of
the weighted R2. This indicates that soil and geology are
less important for the chosen hydrological signatures. Sim-
ilar patterns were also found by Yaeger et al. (2012). They
stated climate as the most important driver for the hydrology.
As the correlations between the catchment attributes showed
that the climate and the vegetation attributes are highly cor-
related (Fig. 1), it can be assumed that climate is the most

Figure 1. Spearman rank correlation coefficients given for all catch-
ment attributes in the western (a) and eastern (b) US. Absolute
differences of the correlation coefficients between the eastern and
western US are given in (c). Eastern and western is defined by the
100th meridian. Due to rounding effects, correlations with the same
Spearman rank correlation coefficient might show slightly varying
color codes.
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Figure 2. Importance of catchment attributes evaluated by quadratic regression for all considered catchments. Attributes colored according
to their catchment attribute class.

important factor overall, with aridity and high-precipitation
events being most important within the climate attributes.

However, Yaeger et al. (2012) also unraveled that low
flows are mainly controlled by soil and geology. The minor
importance of soil and geology in our study might therefore
be biased by the choice of hydrological signatures, which
excluded low flow signatures due to their low predictability
in space. Nevertheless, our study probably captures a more
general trend as we used a larger dataset and hydrological
signatures that vary more gradually in space (Addor et al.,
2018). Addor et al. (2018) also explored the influence of
different catchment attributes in the CAMELS dataset on
discharge characteristics. They found that climate has the
largest influence on discharge characteristics, well in agree-
ment with Coopersmith et al. (2012). The latter also used a
large group of catchments in the continental United States
from the MOPEX dataset. They conclude that the seasonal-
ity of the climate is the most important driver of discharge
characteristics. While the seasonality is still important in
our analysis, the aridity is an even stronger factor. However,
Coopersmith et al. (2012) only analyzed the flow duration
curve, which has a mediocre predictability in space, and it is
therefore less clear what it really depicts (Addor et al., 2018).
Overall, this study here is in line with other literature in the
field. Using the weighted R2 reliably detects climatic forcing
as the most important of the discharge characteristics for a
large group of catchments.

Figure 3. Biplot of the principal components (PCs). Colors indicate
the cluster of the catchment. Grey arrows indicate the loadings of
the original catchment attributes in the PCA space.

3.3 Relation of the principal components and the
hydrological signatures

The rivers considered in this study show a wide range of hy-
drological signatures. This is visible in the clusters of princi-
pal components of the hydrological signatures (Fig. 3). Most
of the rivers are opposite to the loading vectors (the loading
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vectors are shown as arrows). This shows that most rivers
have relatively low values for all hydrological signatures and
only some more extreme rivers have higher values for spe-
cific hydrological signatures. Most typical for the overall be-
havior of the river are the hydrological signatures mean an-
nual discharge and Q95 (high flows), as they have a strong
correlation with the first principal component. For the second
principal component, the mean half-flow date has the high-
est correlation. Therefore, the first principal component can
be seen as a measure of overall discharge and amount of high
flows. Overall, it can also be seen that most of the rivers show
a relatively similar behavior (Clusters 1, 2, 8, 9, 10), while
smaller groups of rivers tend to deviate from that by having
a more extreme behavior (Clusters 3, 5, 7). The remaining
Clusters 4 and 6 are located between those extremes. This
pattern also explains the different sizes of the clusters. While
most catchments behave relatively similar, only some show
extreme behavior and thus the clusters with extreme catch-
ments are smaller.

3.4 Location and properties of the catchment clusters

The catchment attributes in the CAMELS and similar large-
scale datasets often show a pattern that resembles climatic
zones (Addor et al., 2018; Coopersmith et al., 2012; Yaeger
et al., 2012). For the catchment clusters presented here, we
can see that most of the clusters roughly follow ecoregions in
the US (Fig. 4). Clusters 1, 4, 6 and 7 in particular are almost
entirely located within one ecoregion. Cluster 2, 8 and 9 on
the other hand follow those ecological boundaries to a lesser
degree.

We can see a split of the clusters along the 100th merid-
ian. Clusters 3, 4, 5, 6 and 7 are located mainly in the west,
while Clusters 1 and 10 are mainly found in the east. How-
ever, the remaining Clusters 2, 8 and 9 have roughly similar
numbers of catchments in both regions. Overall, the catch-
ments in the eastern half of the United States form large spa-
tial patterns of similar behavior, while the catchments in the
west are patchier. This same pattern can also be seen in some
of the signatures used by Addor et al. (2018). In particular,
the runoff ratio and mean annual discharge form very similar
patterns to the clusters in this study.

In addition, similar catchments can be quite far away from
each other (Fig. 5). Sometimes, the catchment with the most
similar signature was found as far as 4000 km away (al-
most the entire longitudinal distance of the continental US).
This explains why spatial proximity seems to be important
in some studies that look into explanations of catchment be-
havior (Andréassian et al., 2012; Sawicz et al., 2011), but
not in others (Trancoso et al., 2017). This also indicates
that clustering by using spatial proximity might only work
in regions like the eastern US, where the behavior of rivers
changes only gradually, due to uniform climate that only
changes gradually as well. The finding that the most simi-
lar catchment (based on their hydrological signatures) can be

far away also explains the behavior of clusters that contain
catchments quite distant from each other (e.g., Cluster 4).
Even though the catchments might be far away from each
other, the interplay of different catchment attributes and driv-
ing factors, including sometimes very different climates, can
lead to similar (equifinal) discharge behavior, concerning the
overall amount of discharge, its distribution in the year, the
high flows and the runoff ratio. This was also found by sev-
eral other studies (e.g., Berghuijs et al., 2014; Knoben et al.,
2018; Kuentz et al., 2017).

In the following, we describe the catchment clusters in re-
gard to their characteristics in meteorology (Fig. 6), attributes
(Fig. 7), hydrology (Fig. 8) and location (Fig. 4). The main
points of this description are summarized in Table 2. A list of
all catchments with index, position, cluster classification and
climate indices is given in the Supplement.

Cluster 1 is defined by a dense vegetation cover (Fig. 7).
The low elevation of those catchments results in little an-
nual snowfall. They are mainly located in the southeastern
and central plains and therefore get relative high rainfall
(> 1000 mm per year) (Fig. 4), almost uniformly distributed
over the year (Fig. 6). Still, they produce only a small amount
of discharge. This cluster contains the highest number of
catchments (n= 230). So over one-third of the catchments in
CAMELS show a relatively similar behavior when it comes
to the amount of water fluxes and their distribution through-
out the year. This is particular visible when we look at the
annual supply of discharge (Fig. 6). Even though the cluster
contains a large number of catchments that also partly differ a
lot in their potential evapotranspiration, there is only a minor
difference in the amount of discharge and its seasonality.

Cluster 2’s most typical attribute is its high-precipitation
seasonality. However, concerning most other catchment at-
tributes, Cluster 2 is undefined as it contains catchments of
most regions of the continental US (with a concentration in
the eastern Great Plains) (Fig. 4). The hydrological signa-
tures on the other hand show a clearer pattern. Here, the mean
winter discharge, Q95 and the mean annual discharge have a
narrow range (Fig. 8). This shows that catchments with very
different attributes can produce similar discharge characteris-
tics. The different attributes seem to cancel each other out in
their influence on the discharge. This might be enhanced by
the high-precipitation seasonality with higher precipitation
in the summer, which creates a strong climatic forcing and
thus a narrow range for the hydrological signatures (Fig. 6).
This cluster differs from the first one, by having even lower
discharge, with almost no peaks and a higher influence of
snowmelt.

Cluster 3 is the smallest cluster, with only seven catch-
ments. Those are all located in the Northwestern Forested
Mountains. Their most distinct feature is their strong nega-
tive precipitation seasonality (indicating a strong precipita-
tion peak in the winter) (Figs. 6, 7). They also experience
high-precipitation events (mostly as snow). Hydrologically,
their most distinct features is the very high mean summer dis-
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Figure 4. Locations of the clustered CAMELS catchments and level I ecoregions (Omernik and Griffith, 2014) in the continental US. Dotted
line marks the 100th meridian. An interactive version of this map can be found at https://florianjehn.github.io/Catchment-Classification/map.
html (last access: 16 September 2024).

Figure 5. Swarm plot of the real-world distances of all catchments to the most hydrologically similar catchment (based on their distance in
the PCA space of the hydrological signatures).

charge and high runoff ratio (Fig. 8). This is probably caused
by the large amounts of snowmelt in late spring and early
summer. The catchments of Cluster 3 have the largest snow
storage in the dataset, with a mean maximum value of over
600 mm. Overall, the catchments in this cluster seem to be,
from a hydrological point of view, the most extreme in the
overall CAMELS dataset. This can be seen in their varying
discharge patterns. The uniting pattern is their large peak dis-
charge during summer and their extreme values in the PCA
space (indicating much higher values for the hydrological
signatures in comparison with the other catchments) (Fig. 3).

Cluster 4 is, like Cluster 3, located in the Northwestern
Forested Mountains, with the exception of four catchments
that are located in Florida (Fig. 4). This cluster is another
example of different catchment attributes being able to cre-
ate similar discharge characteristics concerning the signa-
tures used, while having very different catchment attributes
(Fig. 6). The catchments have overall low discharge and few
high flow events, except one large peak in the middle of the

summer, which is caused by melting snow in the northern
catchments and strong rainfalls in Florida. Their catchment
attributes vary widely, especially in all attributes that are re-
lated to elevation (e.g., fraction of precipitation falling as
snow) (Fig. 7), which is to be expected when some of the
catchments are located close to the sea in the southeast, while
others are mountainous.

Cluster 5 includes only few catchments (n= 9), which are
all located at regions in the northern part of the Marine West
Coast Forests (Fig. 4). This is the region in the continental
US that receives the highest precipitation (> 2000 mm year),
which is reflected in its discharge characteristics (Figs. 6, 8).
These catchments have the highest discharge in the whole
dataset, especially in the early summer, due to a combina-
tion of high precipitation and snowmelt. They also experi-
ence only few high-precipitation events as they receive large
amounts of rain and snow most of the year, with a distinct
very high peak in the winter months. They further depict an
additional discharge peak in late spring–early summer that

https://doi.org/10.5194/hess-24-1081-2020 Hydrol. Earth Syst. Sci., 24, 1081–1100, 2020
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Figure 6. Meteorological attributes of the clustered CAMELS catchments averaged by day of the year. Potential evapotranspiration (Pot.
ET) was calculated with Hargreaves–Samani (Samani, 2000). Snow storage and melting was calculated using a temperature-based approach
described in Massmann (2019). Black lines indicate the mean of all cluster members. Colored lines represent the individual catchments.

separates them from the other catchments found at the west
coast. The catchments are almost 100 % covered by forest.

Cluster 6 is located in the Marine West Coast Forest, but
in contrast to Cluster 5, it covers the whole region and not
only the northern part (Fig. 4). The catchments are very sim-
ilar in their attributes and discharge characteristics to Clus-
ter 5, with the exception of lower discharges and runoff ra-

tios (Fig. 7, 8). This is caused by slightly lower precipitation
in comparison with Cluster 5. Cluster 6 experiences the most
negative precipitation seasonality across all clusters, with al-
most all precipitation falling in the winter month. Due to
this seasonality and the lower precipitation in the summer,
the catchments of this cluster uniformly dry out almost com-
pletely in late summer (Fig. 6).

Hydrol. Earth Syst. Sci., 24, 1081–1100, 2020 https://doi.org/10.5194/hess-24-1081-2020
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Figure 7. Boxplots of the catchment attributes of the clusters. Figure 8. Boxplots of the hydrological signatures of the clusters.
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Cluster 7 is also located in the same region as Clus-
ters 5 and 6 (Marine West Coast Forests) (Fig. 4). In terms
of the catchment attributes and the discharge characteris-
tics, it is between Clusters 5 and 6. So, Clusters 5 to 7 all
cover the same region and differ in their mean summer dis-
charge, which is caused by variations in elevation and lo-
cation (Fig. 7). Cluster 7 has higher subsurface permeabil-
ities than Cluster 6, which might explain the differences in
hydrological behavior, even though the overall attributes of
both clusters are rather similar. For example, Cluster 7 has
an overall lower discharge than Cluster 5, but does not dry
out during the summer as Cluster 6 does (Fig. 6). This might
be due to the larger amount of snow it receives in comparison
with Cluster 6 and its lower evapotranspiration.

Cluster 8 is the most arid cluster (Fig. 7). All of the catch-
ments are located in western parts of the Great Plains and
in the North American deserts (Fig. 4). They are character-
ized by an overall low water availability and high evapora-
tion, which is shown in the very low mean annual discharge
and runoff ratio (Figs. 6, 8). This also results in low values
for the LAI. Yet, the frequency of high-precipitation events is
high. However, those high-precipitation events are only high
in comparison with the mean precipitation for those catch-
ments and not the overall range of precipitation in the entire
CAMELS dataset.

Cluster 9 covers all southern states of the United States
(Fig. 4). The catchments here are quite similar to Cluster 8,
but show a lower precipitation seasonality and a higher for-
est cover and green vegetation (Fig. 7). In addition, all catch-
ments of this cluster are in relative close proximity to the
sea. The uniting factor in this cluster seems to be the very
low snow fraction and the high evapotranspiration (Figs. 6,
7).

Cluster 10 catchments are all located in the Appalachian
Mountains (Fig. 4). The mean elevation is higher than that
of most other clusters and the catchments have a low aridity
and a very high forest cover (Fig. 7). Their discharge charac-
teristics are similar to that of the Marine West Coast Forests
(Clusters 5 to 7; Figs. 6, 8). However, they receive less water
than those catchments. Cluster 10 covers the same ecoregion
as Cluster 1, but has a distinct behavior due to its mountain-
ous character, which can be seen in the higher seasonality
of the discharge. This is probably caused by the larger snow
cover, with a discharge peak in spring due to snowmelt.

Overall, we can see similar trends for some of the clusters.
The general similarities of the clusters are also represented
by their distance and position in the PCA space (Fig. 3). We
identified four distinct groups:

– Group 1 (Clusters 1, 2, 8, 9): low seasonality in precip-
itation and discharge; located in the eastern US; due to
low slope inclinations, water takes a long time to reach
the outlet.

– Group 2 (Clusters 3, 4): dominant summer peak of dis-
charge caused by rapid snowmelt; mostly located in the

mountains of the western US; differ in precipitation in-
puts.

– Group 3 (Clusters 5, 6, 7): located in the North-
western Forested Mountains; characterized by high-
precipitation amount and seasonality, but more or less
extreme versions.

– Group 4 (Cluster 10): located in the Appalachian moun-
tains; share characteristics with Group 1, though influ-
enced by higher elevations and steeper slopes.

Those groups of clusters are similar to the ones found by
Berghuijs et al. (2014), even though they used a very different
method to derive them. The main difference in the groups is
probably caused by how we structure the clusters and groups
in the eastern US, due our clusters being more influenced
by the Appalachian Mountains. However, both approaches
deliver similar results overall.

The question remains: what is the right numbers of clus-
ters? Though we did find four distinct groups, having only
four clusters would probably be too little, as the clusters in
the groups show a wide range of behaviors (Figs. 3, 7, 8,
Table 2). There are catchment attributes which we did not
take into account but which could further split up the clusters
(e.g., the shape of the catchments). However, this study con-
sidered the catchment attributes that are usually considered
to be important. The fact that the clusters contain different
numbers of catchments can be explained by their distances
in the PCA space (Fig. 3). Many of the catchments are rather
similar. This produces some clusters which contain most of
the catchments. However, we also have some extreme catch-
ments (e.g., Clusters 3 and 5), which are very different to the
bulk of the catchments in the CAMELS dataset. Thus, even
though some of our presented clusters are quite small in num-
ber, they are needed to capture their extreme hydrological be-
havior. It can also be seen that for most of the clusters there
is no clear dividing line to neighboring clusters. Therefore,
it might be useful to use fuzzy clustering approaches in fu-
ture research, to avoid those strict boundaries in a continuous
space. Our results show that some of the clusters follow the
boundaries of the ecoregions in the US very directly (Clus-
ter 1), while others do not (Cluster 9). The worlds of ecology
and hydrology are sometimes shaped by the same forcing,
but not always.

3.5 Importance of the catchment attributes in the
clusters

The individual importance of the catchment attributes in the
clusters is variable and partly deviates from the order of
importance in the overall dataset (compare Figs. 2 and 9).
For Clusters 1 (Southeastern and Central Plains), 6 (Ma-
rine West Coast Forests) and 9 (coastal states) aridity has
the highest weighted coefficient of determination in the clus-
ters. For Clusters 3 (Northwestern Forested Mountains) and
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Table 2. Properties of the catchment clusters. Typical signatures and attributes refers to the signature and attribute of the cluster with the
lower coefficient of variation scaled by the mean coefficient of variation of the whole dataset. Dominating attribute refers to the catchment
attribute that has the highest weighted R2.

Cluster n Main region Typical signature Typical attribute and their man-
ifestation

Dominating attribute

1 230 Southeastern and Central Plains Low mean winter discharge Low aridity Aridity

2 101 Central Plains (with scattered
catchments all over western
US)

High mean half-flow date High-precipitation seasonality Green vegetation fraction max-
imum

3 7 Northwestern Forested Moun-
tains

High mean summer discharge Low-precipitation seasonality Fraction of precipitation falling
as snow

4 52 Northwestern Forested Moun-
tains and Florida

High mean half-flow date Mid-frequency of high-
precipitation events

Precipitation seasonality

5 9 Northern Marine West Coast
Forests

High mean summer discharge Very high forest fraction Forest fraction

6 18 Marine West Coast Forests Mid runoff ratio Low-precipitation seasonality Aridity

7 23 Western Cordillera (Part of Ma-
rine West Coast Forests)

High mean winter discharge Low-precipitation seasonality Fraction of precipitation falling
as snow

8 90 Great Plains and North Ameri-
can deserts

Mid mean half-flow date High frequency of high-
precipitation events

Precipitation seasonality

9 61 All southernmost states of the
US

Low mean half-flow date High frequency of high-
precipitation events

Aridity

10 52 Appalachian Mountains Low mean winter discharge High forest fraction Mean elevation

7 (Western Cordillera) the highest relevance is found for
the fraction of precipitation falling as snow. For the remain-
ing clusters it is precipitation seasonality (Cluster 4, North-
western Forested Mountains, and Cluster 8, Great Plains
and Deserts), the green vegetation fraction maximum (Clus-
ter 2, Central Plains) and the mean elevation (Cluster 10,
Appalachian Mountains). We can also see that some clus-
ters have one dominating catchment attribute (investigated
by the coefficient of determination, e.g., aridity in Clus-
ter 1; see Fig. 9), while for other clusters, all attributes
seem equally important (e.g., Cluster 8). Overall, the west-
ern clusters (west of the 100th meridian) display the highest
weighted R2 with the following:

– fraction of precipitation falling as snow (Clusters 3, 7),

– precipitation seasonality (Cluster 4),

– forest fraction (Cluster 5),

– aridity (Cluster 6).

Eastern clusters (east of the 100th meridian) display the high-
est weighted R2 with the following:

– aridity (Cluster 1),

– mean elevation (Cluster 10).

Clusters equally present in west and east display the highest
weighted R2 with the following:

– green vegetation fraction maximum (Cluster 2),

– aridity (Cluster 9),

– precipitation seasonality (Cluster 8).

Keeping the correlation coefficients displayed in Fig. 1 in
mind, we see that climate is the most important factor in al-
most all clusters, as the vegetation attributes are highly corre-
lated with the climate attributes. The only exception is Clus-
ter 10, in which mean elevation is the most important catch-
ment attribute. However, the catchment attributes in Clus-
ter 10 have overall low R2 values and the mean elevation
is directly followed by the aridity. This again shows that cli-
mate seems to be the dominating factor for catchment behav-
ior, as found in other large-sample studies (e.g., Berghuijs
et al., 2014; Kuentz et al., 2017). Nevertheless, if one takes
a closer look at the dataset, more detailed, regional correla-
tions with regard to individual climate variables can be de-
termined. For example, Cluster 1 is defined by the aridity,
while Cluster 4 seems to be much more influenced by the pre-
cipitation seasonality. Overall, it is feasible to link dominat-
ing catchment attributes to the hydrological behavior. While
it is straightforward in some regions of the US, it is more
challenging in others. We link this to the signal of the cli-
matic forcing being more superimposed by other catchment
attributes, which results in a less clear connection between
its hydrological behavior and the climate. This hints that cli-
mate and catchment attributes are more intertwined in those
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Figure 9. Importance of the catchment attributes evaluated by the quadratic regression for the catchment clusters. Attributes colored according
to their catchment attribute class.

areas and indicates regions where different types of hydro-
logical runoff generation processes exist. Furthermore, it in-
dicates regions where hydrological predictions in ungauged
basins (Hrachowitz et al., 2013) can become very challeng-
ing, as the interplay of the available meteorological data and
catchment attributes cannot sufficiently explain the hydro-
logical characteristics. Those findings also highlight one cur-
rent discrepancy between large-sample and single-catchment
studies. While large-sample studies, especially the very large
ones, identify climate as being most important for the hy-
drological behavior (e.g., Addor et al., 2018; Kuentz et al.,
2017), smaller-sample studies (e.g., Chiverton et al., 2015;
Pfister et al., 2017) and single-catchment studies (e.g., Flori-
ancic et al., 2018) often identify the geology or soils as being
very important. This might be linked to the overall problem
of scales in hydrology, as different scales of soil/geology and

climate have different effects and varying data accuracy (Ad-
dor et al., 2018; Blöschl, 2001). In addition to this, the over-
all scale might also come into play. Smaller sample studies
often compare catchments that are not far away from each
other and probably have similar climate forcings. Thus, the
differences in hydrological behavior can only be caused by
catchment attributes other than climate. Therefore, larger and
smaller sample studies might be looking at different things.
While very large-sample studies capture what drives catch-
ments on large scales (the climate), smaller studies look at
how this climatic signal is transferred to discharge by the
catchment attributes.
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3.6 Differences in clusters in comparison with other
hydrological clustering studies

The results of this study show some similarities with the
clustering results of Kuentz et al. (2017), who derived their
cluster from European catchments by an analogous method.
Like them, this study here also found one cluster (Clus-
ter 2) that does not have any distinct character. However, only
around one-sixth of the CAMELS catchments belongs to this
Cluster 2, while one-third of the catchments in the study
by Kuentz et al. (2017) were in a cluster without distinct
features. Therefore, our selection of hydrological signatures
seems to allow a better identification of hydrological similar-
ities. However, all catchments in CAMELS are mostly with-
out human impact (Addor et al., 2017), while many catch-
ments in the study of Kuentz et al. (2017) are under human
influence. This human influence might mask otherwise ap-
parent patterns. Kuentz et al. (2017) also found two clusters
that contain mostly mountainous catchments. These show a
similar behavior to Cluster 3 (Northwestern Forested Moun-
tains) and Cluster 10 (Appalachian Mountains) (Fig. 4). The
main difference between their findings and this study here
is Cluster 8, as it contains very arid catchments (with some
being located in deserts). Obviously, this cluster cannot be
found in Europe as Europe has no real deserts. Still, there
is some similarity with their cluster of Mediterranean catch-
ments as both are dominated by aridity. Summarizing, in
their study and this study catchments are mainly clustered in
groups of desert/arid catchments, mountainous catchments,
medium-height mountains with high forest fraction, wet low-
land catchments, and one cluster of catchments that does not
show a very distinct behavior and therefore does not fit in
the other clusters (Table 2). One possible explanation for this
unspecific behavior might be that many catchments have one
or two important attributes that dictate most of their behav-
ior, but which are different from other cluster members. For
example, desert catchments are relatively easy to identify, as
they are dominated by high energy and little precipitation.
A European upland catchment on the other hand has several
more influences such as snow in the winter, high energy in
the summer, varying land use and a strong impact of sea-
sonality. Here, many influences overlap each other and thus
make it difficult to identify a single cause; see also the dis-
cussion by Trancoso et al. (2017) that goes in a similar di-
rection. Those overlapping influences are probably also the
reason why catchment classification studies often find one or
two clusters that include a large number of catchments, while
most other clusters only contain a few catchments (Coop-
ersmith et al., 2012; Kuentz et al., 2017). Therefore, it is
quite difficult to confirm the “wish” of the hydrological com-
munity to have homogenous catchment groups with only a
few outliers (e.g., Burn, 1997), because catchments are com-
plex systems with a high level of self-organization arising
from co-evolution of climate and landscape properties, in-
cluding vegetation (Coopersmith et al., 2012). Accordingly,

it requires many separate clusters to separate those multi-
influence catchments into homogenous groups. This hints
that for future research a fuzzy clustering approaches might
provide less ambiguous results, as it respects the continu-
ous nature of hydrological behavior. Still, the cluster found
here might capture much of the variety present in the United
States, as they roughly follow ecological regions (McMahon
et al., 2001), which has been stated as a sign of a good classi-
fication (Berghuijs et al., 2014). In addition, this study shows
that using clusters derived from principal components of hy-
drological signatures creates meaningful groups of catch-
ments with similar attributes (Figs. 6, 7, 8). Those clusters
also show distinct spatial patterns (Fig. 4). Similar results
were also found in other studies that used the same method
(Kuentz et al., 2017; McManamay et al., 2014) but based
them on partly different hydrological signatures. Therefore,
the principal components of hydrological signatures can be
used as a measure of similarity between catchments. They
represent the “essence” of all hydrological signatures used.
Our results also show that it is difficult to link those catch-
ment clusters to simple averaged measures of catchment at-
tributes. While some clusters have very clear connections to
the attributes, others have no catchment attribute that could
easily explain the behavior of the catchments. This hints
that some catchments are easier to explain (in a hydrological
sense) than others. Those difficulties might be an artifact of
the averaged catchment attributes or be caused by a complex
catchment reaction, forced by intertwined climate and catch-
ment attributes, which in turn might indicate an equifinality
of catchment response.

3.7 Comparing catchment clusters based on
hydrological behavior and climate

Besides hydrological behavior, climate is often used to sort
catchments into similar groups (e.g., Berghuijs et al., 2014;
Knoben et al., 2018). Therefore, we are interested if both
approaches deliver comparable results. To evaluate this, we
contrasted our results to the commonly used Köppen–Geiger
climate classification (Beck et al., 2018) (Fig. 10) and re-
cently published approach of Knoben et al. (2018), who
sorted climate along three continuous axes of aridity, season-
ality and fraction of precipitation falling as snow (Fig. 11).
The resulting clusters based on climate and hydrology should
be the same, if climate is the dominating driver of hydrolog-
ical behavior in every catchment. Yet, this is not the case
for the Köppen–Geiger classification. In every hydrologi-
cal cluster are at least two different climates regarding the
Köppen–Geiger classification, ranging up to eight different
climatic regions for Clusters 2 and 8 (those even include
deserts and very cold regions). Thus, the Köppen–Geiger
classification seems unable to capture the essential drivers of
hydrological behavior, a critique also raised in other studies
(e.g., Haines et al., 1988; Knoben et al., 2018).
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Figure 10. Membership of Köppen–Geiger clusters (Beck et al., 2018) in the hydrological clusters.

The picture is less clear concerning the climatic index
space of Knoben et al. (2018) (Fig. 11a). Due to the con-
tinuous nature of the approach of Knoben et al. (2018), there
are no clear boundaries as in the Köppen–Geiger classifica-
tion. Still, there are some emerging patterns. For example,
according to the approach of Knoben et al. (2018) Cluster 1
is mainly defined by a relatively arid climate, with some sea-
sonal variability and little to no snow. This is in line with our
analysis of the most influential catchment attributes for this
cluster, as we identified aridity as the main driver. There seem
to be regions where the forcing signal of the climate is trans-
ferred more directly to a streamflow response than in others.
However, this does not mean that climate is unimportant in
those regions. Either the climate forcing signal is changed
more through other attributes of the catchment, or the mean
values describing the climate do not properly reflect the vari-
ability of the climate in the single catchments. This leads to a
less clear correlation between the climate and the hydrologi-
cal behavior. Interestingly, when we look at the single hydro-
logical signatures in the climate index space (Figs. 11b, A2)
we see a very clear connection between the single hydrolog-
ical signatures and the climate. This direct connection of the
signatures used was also found by Addor et al. (2018). Our
results and the comparison show that the complex hydrolog-
ical behavior, captured in a range of hydrological signatures,
does not simply follow the climate only, even though the in-
dividual signatures do. Still, all signatures combined seem to
capture a dynamic which is climatic in origin but is shaped
through the attributes of the catchments (like vegetation and
soils Berghuijs et al., 2014). Therefore, to find truly simi-
lar catchments, using climate characteristics only is proba-
bly not sufficient (see also Addor et al., 2018; Knoben et al.,
2018; Kuentz et al., 2017).

4 Summary and conclusion

This study explored differences in the catchment characteris-
tics between the eastern and western US, the properties and

location of catchment clusters based on hydrological signa-
tures, the importance of catchment attributes for those clus-
ters, and how this study relates to other clustering studies and
methods. We found that the correlations between catchment
characteristics are quite similar for the eastern and western
US with the exception of mean elevation, snow, geology and
the leaf area index. For the overall CAMELS dataset cli-
mate seems to be the most important factor for the hydro-
logical behavior. However, depending on the location either
aridity, snow or seasonality were most important. The clus-
ters derived from the hydrological signatures partly follow
the ecological regions in the US and can combined into four
groups of general behavior trends. Still, similar catchments
can be quite far away from each other. We also found that
most of the catchments have a rather similar discharge be-
havior, while only some more extreme catchments deviate
from that main trend. This might be a hint as to why it is so
difficult to cluster catchments, as those single extreme catch-
ments are quite unique and do not fit together well with other
catchments. We also found that there are differences of how
directly the signal of forcing climate can be found again in
the hydrological behavior. This explains why catchments of-
ten show a surprisingly similar behavior across many differ-
ent climate and landscape properties (Troch et al., 2013) and
why the most hydrologically similar catchment can be hun-
dreds of kilometers away. Those findings also relate to the
paradox that small-scale and single-catchment studies iden-
tify geology/soils as most important for the hydrological be-
havior, while large-sample studies usually find the climate to
be most important. This might simply be influenced by spa-
tial proximity. Small-scale studies look at catchments which
all have a similar climatic forcing, and thus only the other
catchment attributes can be the cause of differences in hy-
drological behavior. Large-sample studies on the other hand
consider catchments with a wider area and thus attribute the
differences in behavior to climate.

The aggregated data used in this study might level out the
variability of the catchment attributes in the single catch-
ment, but they also indicate that there is a kind of equifinality
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Figure 11. (a) Comparison of the hydrological clustering of this study with the climate index space of Knoben et al. (2018). Single dots
show the catchments and are colored by their hydrological clusters. (b) Mean annual discharge for all catchments in the climate index space
of Knoben et al. (2018). Single dots show the catchments and are colored according to the value of the mean annual discharge. The log of the
mean annual discharge is used to show the relative differences between the catchments. For a depiction of all hydrological signatures used,
see Fig. A2.
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in the behavior of catchments. Different sets of intertwined
climate forcing and catchment attributes could lead to a very
similar overall behavior, not unlike hydrological models that
produce the same discharge with different sets of parameters.

We acknowledge that the results are dependent on the
amount and size of the clusters, the catchment attributes con-
sidered and the hydrological signatures used. Still, we think
that the CAMELS dataset offers an excellent overview of dif-
ferent kinds of catchments in contrasting climatic and topo-
graphic regions. In addition, this study shows that using hy-
drological signatures with high spatial predictability results
in hydrological meaningful clusters, which show consistent
low flow behavior, even though those low flows were not ex-
plicitly considered. However, it seems that even a compre-
hensive dataset like CAMELS does not allow an easy way
to find a conclusive set of clusters for catchments. For future
research, we recommend including measures of spatial vari-
ability of the climate in the single catchments and to look
into the single clusters in more depth. This might help to
prove whether a less clear climatic signal is caused by intra-
catchment variability of the climate or a larger influence from
other catchment attributes.
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Appendix A

Figure A1. Patterns of catchment attributes in the PCA space of the hydrological signatures, with decreasing strength of the observed pattern
from left (aridity) to right (subsurface porosity).
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Figure A2. Hydrological signatures for all catchments in the climate index space of Knoben et al. (2018). Single dots show the catchments
and are colored according to the value of the mean annual discharge. The log of the signatures is used to show the relative differences between
the catchments.
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