Articles | Volume 23, issue 9
https://doi.org/10.5194/hess-23-3917-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-3917-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of water table depth on evapotranspiration in the Amazon arc of deforestation
Copernicus Institute of Sustainable Development, Department
Environmental Sciences, Utrecht University, Utrecht, the Netherlands
Maria J. Santos
University Research Priority Program in Global Change and Biodiversity and Department of Geography, University of Zürich, Zurich, Switzerland
Karin T. Rebel
Copernicus Institute of Sustainable Development, Department
Environmental Sciences, Utrecht University, Utrecht, the Netherlands
Stefan C. Dekker
Copernicus Institute of Sustainable Development, Department
Environmental Sciences, Utrecht University, Utrecht, the Netherlands
Faculty of Management, Science and Technology, Open University,
Heerlen, the Netherlands
Related authors
No articles found.
Arie Staal, Pim Meijer, Maganizo Kruger Nyasulu, Obbe A. Tuinenburg, and Stefan C. Dekker
EGUsphere, https://doi.org/10.5194/egusphere-2024-790, https://doi.org/10.5194/egusphere-2024-790, 2024
Short summary
Short summary
Many areas across the globe rely on upwind land areas for their precipitation supply through terrestrial precipitation recycling. Here we simulate global precipitation recycling in four climate- and land-use scenarios until 2100. We find that global terrestrial moisture recycling decreases by 2.1 % with every degree of global warming, but with strong regional differences.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194, https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage. The presented results provide information needed for predictive modelling of plants as ecological engineers to speed up soil forming processes in the construction of wetlands with soft cohesive sediment.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
Rémon Saaltink, Stefan C. Dekker, Jasper Griffioen, and Martin J. Wassen
Biogeosciences, 13, 4945–4957, https://doi.org/10.5194/bg-13-4945-2016, https://doi.org/10.5194/bg-13-4945-2016, 2016
Short summary
Short summary
We identified biogeochemical plant–soil feedback processes that occur when oxidation, drying and modification by plants alter sediment conditions. Wetland construction in Markermeer (a lake in the Netherlands) is used as a case study. Natural processes will be utilized during and after construction to accelerate ecosystem development. We conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineer.
Stefan C. Dekker, Margriet Groenendijk, Ben B. B. Booth, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, https://doi.org/10.5194/esd-7-525-2016, 2016
Short summary
Short summary
Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901–2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.
Zun Yin, Stefan C. Dekker, Bart J. J. M. van den Hurk, and Henk A. Dijkstra
Biogeosciences, 13, 3343–3357, https://doi.org/10.5194/bg-13-3343-2016, https://doi.org/10.5194/bg-13-3343-2016, 2016
Short summary
Short summary
Bimodality is found in aboveground biomass and mean annual shortwave radiation in West Africa, which is a strong evidence of alternative stable states. The condition with low biomass and low radiation is demonstrated under which ecosystem state can shift between savanna and forest states. Moreover, climatic indicators have different prediction confidences to different land cover types. A new method is proposed to predict potential land cover change with a combination of climatic indicators.
Patrick W. Bogaart, Ype van der Velde, Steve W. Lyon, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 20, 1413–1432, https://doi.org/10.5194/hess-20-1413-2016, https://doi.org/10.5194/hess-20-1413-2016, 2016
Short summary
Short summary
We analyse how stream discharge declines after rain storms. This "recession" behaviour contains information about the capacity of the catchment to hold or release water. Looking at many rivers in Sweden, we were able to link distinct recession regimes to land use and catchment characteristics. Trends in recession behaviour are found to correspond to intensifying agriculture and extensive reforestation. We conclude that both humans and nature reorganizes the soil in order to enhance efficiency.
J. Mao, K. G. J. Nierop, M. Rietkerk, and S. C. Dekker
SOIL, 1, 411–425, https://doi.org/10.5194/soil-1-411-2015, https://doi.org/10.5194/soil-1-411-2015, 2015
Short summary
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
M. Baudena, S. C. Dekker, P. M. van Bodegom, B. Cuesta, S. I. Higgins, V. Lehsten, C. H. Reick, M. Rietkerk, S. Scheiter, Z. Yin, M. A. Zavala, and V. Brovkin
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, https://doi.org/10.5194/bg-12-1833-2015, 2015
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Earth Syst. Dynam., 5, 257–270, https://doi.org/10.5194/esd-5-257-2014, https://doi.org/10.5194/esd-5-257-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, https://doi.org/10.5194/gmd-7-821-2014, 2014
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Remote Sensing and GIS
Revealing joint evolutions and causal interactions in complex eco-hydrological systems by a network-based framework
Circumarctic land cover diversity considering wetness gradients
Multi-decadal floodplain classification and trend analysis in the Upper Columbia River valley, British Columbia
Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth
Simulating carbon and water fluxes using a coupled process-based terrestrial biosphere model and joint assimilation of leaf area index and surface soil moisture
Untangling irrigation effects on maize water and heat stress alleviation using satellite data
Information-based uncertainty decomposition in dual-channel microwave remote sensing of soil moisture
Assessing the large-scale plant–water relations in the humid, subtropical Pearl River basin of China
Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes
Long-term water stress and drought assessment of Mediterranean oak savanna vegetation using thermal remote sensing
Temporal interpolation of land surface fluxes derived from remote sensing – results with an unmanned aerial system
Pattern and structure of microtopography implies autogenic origins in forested wetlands
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
Laser vision: lidar as a transformative tool to advance critical zone science
Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China
Evapotranspiration and water yield over China's landmass from 2000 to 2010
Satellite-based analysis of recent trends in the ecohydrology of a semi-arid region
Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach
Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones
Quantifying the performance of automated GIS-based geomorphological approaches for riparian zone delineation using digital elevation models
Climate change, growing season water deficit and vegetation activity along the north–south transect of eastern China from 1982 through 2006
Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data
The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model
The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia
Lu Wang, Yue-Ping Xu, Haiting Gu, Li Liu, Xiao Liang, and Siwei Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-226, https://doi.org/10.5194/hess-2024-226, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To understand how eco-hydrological variables evolve jointly and why, this study develops a framework using correlation and causality to construct complex relationships between variables at the system level. Causality provides more detailed information that the compound causes of evolutions regarding any variable can be traced. Joint evolution is controlled by the combination of external drivers and direct causality. Overall, the study facilitates the comprehension of eco-hydrological processes.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Italo Sampaio Rodrigues, Christopher Hopkinson, Laura Chasmer, Ryan J. MacDonald, Suzanne E. Bayley, and Brian Brisco
Hydrol. Earth Syst. Sci., 28, 2203–2221, https://doi.org/10.5194/hess-28-2203-2024, https://doi.org/10.5194/hess-28-2203-2024, 2024
Short summary
Short summary
The research evaluated the trends and changes in land cover and river discharge in the Upper Columbia River Wetlands using remote sensing and hydroclimatic data. The river discharge increased during the peak flow season, resulting in a positive trend in the open-water extent in the same period, whereas open-water area declined on an annual basis. Furthermore, since 2003 the peak flow has occurred 11 d earlier than during 1903–1928, which has led to larger discharges in a shorter time.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Sinan Li, Li Zhang, Jingfeng Xiao, Rui Ma, Xiangjun Tian, and Min Yan
Hydrol. Earth Syst. Sci., 26, 6311–6337, https://doi.org/10.5194/hess-26-6311-2022, https://doi.org/10.5194/hess-26-6311-2022, 2022
Short summary
Short summary
Accurate estimation for global GPP and ET is important in climate change studies. In this study, the GLASS LAI, SMOS, and SMAP datasets were assimilated jointly and separately in a coupled model. The results show that the performance of joint assimilation for GPP and ET is better than that of separate assimilation. The joint assimilation in water-limited regions performed better than in humid regions, and the global assimilation results had higher accuracy than other products.
Peng Zhu and Jennifer Burney
Hydrol. Earth Syst. Sci., 26, 827–840, https://doi.org/10.5194/hess-26-827-2022, https://doi.org/10.5194/hess-26-827-2022, 2022
Short summary
Short summary
Satellite data were used to disentangle water and heat stress alleviation due to irrigation. Our findings are as follows. (1) Irrigation-induced cooling was captured by satellite LST but air temperature failed. (2) Irrigation extended maize growing season duration, especially during grain filling. (3) Water and heat stress alleviation constitutes 65 % and 35 % of the irrigation benefit. (4) The crop model simulating canopy temperature better captures the irrigation benefit.
Bonan Li and Stephen P. Good
Hydrol. Earth Syst. Sci., 25, 5029–5045, https://doi.org/10.5194/hess-25-5029-2021, https://doi.org/10.5194/hess-25-5029-2021, 2021
Short summary
Short summary
We found that satellite retrieved soil moisture has large uncertainty, with uncertainty caused by the algorithm being closely related to the satellite soil moisture quality. The information provided by the two main inputs is mainly redundant. Such redundant components and synergy components provided by two main inputs to the satellite soil moisture are related to how the satellite algorithm performs. The satellite remote sensing algorithms may be improved by performing such analysis.
Hailong Wang, Kai Duan, Bingjun Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 4741–4758, https://doi.org/10.5194/hess-25-4741-2021, https://doi.org/10.5194/hess-25-4741-2021, 2021
Short summary
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
David N. Dralle, W. Jesse Hahm, K. Dana Chadwick, Erica McCormick, and Daniella M. Rempe
Hydrol. Earth Syst. Sci., 25, 2861–2867, https://doi.org/10.5194/hess-25-2861-2021, https://doi.org/10.5194/hess-25-2861-2021, 2021
Short summary
Short summary
Root zone water storage capacity determines how much water can be stored belowground to support plants during periods without precipitation. Here, we develop a satellite remote sensing method to estimate this key variable at large scales that matter for management. Importantly, our method builds on previous approaches by accounting for snowpack, which may bias estimates from existing approaches. Ultimately, our method will improve large-scale understanding of plant access to subsurface water.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020, https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary
Short summary
Remote sensing only provides snapshots of rapidly changing land surface variables; this limits its application for water resources and ecosystem management. To obtain continuous estimates of surface temperature, soil moisture, evapotranspiration, and ecosystem productivity, a simple and operational modelling scheme is presented. We demonstrate it with temporally sparse optical and thermal remote sensing data from an unmanned aerial system at a Danish bioenergy plantation eddy covariance site.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Hydrol. Earth Syst. Sci., 23, 5069–5088, https://doi.org/10.5194/hess-23-5069-2019, https://doi.org/10.5194/hess-23-5069-2019, 2019
Short summary
Short summary
We found evidence for spatial patterning of soil elevation in forested wetlands that was well explained by hydrology. The patterns that we found were strongest at wetter sites, and were weakest at drier sites. When a site was wet, soil elevations typically only belonged to two groups: tall "hummocks" and low "hollows. The tall, hummock groups were spaced equally apart from each other and were a similar size. We believe this is evidence for a biota–hydrology feedback that creates hummocks.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Olanrewaju O. Abiodun, Huade Guan, Vincent E. A. Post, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 2775–2794, https://doi.org/10.5194/hess-22-2775-2018, https://doi.org/10.5194/hess-22-2775-2018, 2018
Short summary
Short summary
In recent decades, evapotranspiration estimation has been improved by remote sensing methods as well as by hydrological models. However, comparing these methods shows differences of up to 31 % at a spatial resolution of 1 km2. Land cover differences and catchment averaged climate data in the hydrological model were identified as the principal causes of the differences in results. The implication is that water management will have to deal with large uncertainty in estimated water balances.
Shoubo Li, Yan Zhao, Yongping Wei, and Hang Zheng
Hydrol. Earth Syst. Sci., 21, 4233–4244, https://doi.org/10.5194/hess-21-4233-2017, https://doi.org/10.5194/hess-21-4233-2017, 2017
Short summary
Short summary
This study aims to investigate the evolution of natural and crop vegetation systems over the past 2000 years accommodated with the changes in water regimes at the basin scale. It is based on remote-sensing data and previous historical research. The methods developed and the findings obtained from this study could assist in understanding how current ecosystem problems were created in the past and what their implications for future river basin management are.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
Y. Wang, M. L. Roderick, Y. Shen, and F. Sun
Hydrol. Earth Syst. Sci., 18, 3499–3509, https://doi.org/10.5194/hess-18-3499-2014, https://doi.org/10.5194/hess-18-3499-2014, 2014
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
M. Gokmen, Z. Vekerdy, W. Verhoef, and O. Batelaan
Hydrol. Earth Syst. Sci., 17, 3779–3794, https://doi.org/10.5194/hess-17-3779-2013, https://doi.org/10.5194/hess-17-3779-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
T. S. Ahring and D. R. Steward
Hydrol. Earth Syst. Sci., 16, 4133–4142, https://doi.org/10.5194/hess-16-4133-2012, https://doi.org/10.5194/hess-16-4133-2012, 2012
D. Fernández, J. Barquín, M. Álvarez-Cabria, and F. J. Peñas
Hydrol. Earth Syst. Sci., 16, 3851–3862, https://doi.org/10.5194/hess-16-3851-2012, https://doi.org/10.5194/hess-16-3851-2012, 2012
P. Sun, Z. Yu, S. Liu, X. Wei, J. Wang, N. Zegre, and N. Liu
Hydrol. Earth Syst. Sci., 16, 3835–3850, https://doi.org/10.5194/hess-16-3835-2012, https://doi.org/10.5194/hess-16-3835-2012, 2012
M. Otto, D. Scherer, and J. Richters
Hydrol. Earth Syst. Sci., 15, 1713–1727, https://doi.org/10.5194/hess-15-1713-2011, https://doi.org/10.5194/hess-15-1713-2011, 2011
C. Cammalleri, M. C. Anderson, G. Ciraolo, G. D'Urso, W. P. Kustas, G. La Loggia, and M. Minacapilli
Hydrol. Earth Syst. Sci., 14, 2643–2659, https://doi.org/10.5194/hess-14-2643-2010, https://doi.org/10.5194/hess-14-2643-2010, 2010
E. Teferi, S. Uhlenbrook, W. Bewket, J. Wenninger, and B. Simane
Hydrol. Earth Syst. Sci., 14, 2415–2428, https://doi.org/10.5194/hess-14-2415-2010, https://doi.org/10.5194/hess-14-2415-2010, 2010
Cited articles
Arvor, D., Dubreuil, V., Ronchail, J., Simões, M., and Funatsu, B. M.:
Spatial patterns of rainfall regimes related to levels of double cropping
agriculture systems in Mato Grosso (Brazil), Int. J. Climatol., 34, 2622–2633, https://doi.org/10.1002/joc.3863, 2014.
Asner, G. P., Scurlock, J. M. O., and Hicke, A. J.: Global synthesis of leaf
area index observations: implications for ecological and remote sensing
studies, Global Ecol. Biogeogr., 12, 191–205, https://doi.org/10.1046/j.1466-822X.2003.00026.x, 2003.
Badger, A. M. and Dirmeyer, P. A.: Climate response to Amazon forest replacement by heterogeneous crop cover, Hydrol. Earth Syst. Sci., 19,
4547–4557, https://doi.org/10.5194/hess-19-4547-2015, 2015.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silverio, D., Macedo, M. N., Davidson, E. A., Nobrega, C. C., Alencar, A., and Soares-Filho, B. S.: Abrupt increases in Amazonian tree mortality due to drought-fire interactions, P. Natl. Acad. Sci. USA, 111, 6347–6352, https://doi.org/10.1073/pnas.1305499111, 2014.
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global
biogeophysical interactions between forest and climate, Geophys. Res. Lett.,
36, 1–5, https://doi.org/10.1029/2009GL037543, 2009.
Butt, N., de Oliveira, P. A., and Costa, M. H.: Evidence that deforestation
affects the onset of the rainy season in Rondonia, Brazil, J. Geophys. Res.,
116, D11120, https://doi.org/10.1029/2010JD015174, 2011.
Canadell, J., Jackson, R., Ehleringer, J., Mooney, H. A., Sala, O. E., and
Schulze, E.-D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, https://doi.org/10.1007/BF00329030, 1996.
Chambers, J. Q., Asner, G. P., Morton, D. C., Anderson, L. O., Saatchi, S. S., Espírito-Santo, F. D. B., Palace, M., and Souza, C.: Regional ecosystem structure and function: ecological insights from remote sensing of
tropical forests, Trends Ecol. Evol., 22, 414–423, https://doi.org/10.1016/j.tree.2007.05.001, 2007.
Costa, M. H. and Foley, J. A.: Combined effects of deforestation and doubled
atmospheric CO2 concentrations on the climate of Amazonia, J. Climate, 13, 18–34, https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2, 2000.
Costa, M. H. and Pires, G. F.: Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of
deforestation, Int. J. Climatol., 30, 1970–1979, https://doi.org/10.1002/joc.2048, 2010.
Costa, M. H., Yanagi, S. N. M., Souza, P. J. O. P., Ribeiro, A., and Rocha, E. J. P.: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion, Geophys. Res. Lett., 34, 2–5, https://doi.org/10.1029/2007GL029271, 2007.
Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F. C., Bustamante, M. M., Coe, M. T., DeFries, R. S., Keller, M., Longo, M.,
Munger, J. W., Schroeder, W., Soares-Filho, B. S., Souza, C. M., and Wofsy,
S. C.: The Amazon basin in transition, Nature, 481, 321–328, https://doi.org/10.1038/nature10717, 2012.
Debortoli, N. S., Dubreuil, V., Hirota, M., Filho, S. R., Lindoso, D. P., and
Nabucet, J.: Detecting deforestation impacts in Southern Amazonia rainfall
using rain gauges, Int. J. Climatol., 37, 2889–2900, https://doi.org/10.1002/joc.4886, 2017.
Dekker, S. C., de Boer, H. J., Brovkin, V., Fraedrich, K., Wassen, M. J., and
Rietkerk, M.: Biogeophysical feedbacks trigger shifts in the modelled
vegetation–atmosphere system at multiple scales, Biogeosciences, 7, 1237–1245, https://doi.org/10.5194/bg-7-1237-2010, 2010.
Dubreuil, V., Debortoli, N., Funatsu, B., Nédélec, V., and Durieux, L.: Impact of land-cover change in the Southern Amazonia climate: a case
study for the region of Alta Floresta, Mato Grosso, Brazil, Environ. Monit.
Assess., 184, 877–891, https://doi.org/10.1007/s10661-011-2006-x, 2012.
Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling in the Amazon
basin, Q. J. Roy. Meteorol. Soc., 120, 861–880, https://doi.org/10.1002/qj.49712051806, 1994a.
Eltahir, E. A. B. and Bras, R. L.: Sensitivity of regional climate to
deforestation in the Amazon basin, Adv. Water Resour., 17, 101–115,
https://doi.org/10.1016/0309-1708(94)90027-2, 1994b.
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth
for temperate agricultural crops, F. Crop. Res., 189, 68–74, https://doi.org/10.1016/j.fcr.2016.02.013, 2016.
Fan, Y. and Miguez-Macho, G.: Potential groundwater contribution to Amazon
evapotranspiration, Hydrol. Earth Syst. Sci., 14, 2039–2056,
https://doi.org/10.5194/hess-14-2039-2010, 2010.
Fan, Y. and Miguez-Macho, G.: Equilibrium water table depth for South
America, Earthdata, available at: https://glowasis.deltares.nl/thredds/catalog/opendap/opendap/Equilibrium_Water_Table/catalog.html, last access: April 2018.
Fearnside, P. M.: Environmental services as a strategy for sustainable
development in rural Amazonia, Ecol. Econ., 20, 53–70,
https://doi.org/10.1016/S0921-8009(96)00066-3, 1997.
Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., DeFries, R., Gibbs, H.
K., Howard, E. A., Olson, S., Patz, J., Ramankutty, N., and Snyder, P.: Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin, Front. Ecol. Environ., 5, 25–32,
https://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2, 2007.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., and Myneni, R. B.:
Increased dry-season length over southern Amazonia in recent decades and its
implication for future climate projection, P. Natl. Acad. Sci. USA, 110, 18110–18115, https://doi.org/10.1073/pnas.1302584110, 2013.
Gash, J. H. C. and Nobre, C. A.: Climatic Effects of Amazonian Deforestation: Some Results from ABRACOS, B. Am. Meteorol. Soc., 78, 823–830, https://doi.org/10.1175/1520-0477(1997)078<0823:CEOADS>2.0.CO;2, 1997.
Gibbes, C., Adhikari, S., Rostant, L., Southworth, J., and Qiu, Y.: Application of Object Based Classification and High Resolution Satellite
Imagery for Savanna Ecosystem Analysis, Remote Sens., 2, 2748–2772,
https://doi.org/10.3390/rs2122748, 2010.
Gusso, A., Arvor, D., Ricardo Ducati, J., Veronez, M. R., and Da Silveira, L.
G.: Assessing the modis crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil, Sci. World J.,
2014, 863141, https://doi.org/10.1155/2014/863141, 2014.
Hölscher, D., de Sá, T. A., Bastos, T., Denich, M., and Fölster, H.: Evaporation from young secondary vegetation in eastern Amazonia, J. Hydrol., 193, 293–305, https://doi.org/10.1016/S0022-1694(96)03145-9, 1997.
Huete, A., Didan, K., Miura, H., Rodriguez, E. P., Gao, X., and Ferreira, L.
F.: Overview of the radiometric and biopyhsical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Kahlown, M. A., Ashraf, M., and Zia-Ul-Haq: Effect of shallow groundwater table on crop water requirements and crop yields, Agr. Water Manage., 76, 24–35, https://doi.org/10.1016/j.agwat.2005.01.005, 2005.
Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R., and Esquerdo, J. C. D. M.: Soy moratorium impacts on soybean and deforestation dynamics in
Mato Grosso, Brazil, PLoS One, 12, 1–21, https://doi.org/10.1371/journal.pone.0176168, 2017.
Kunert, N., Maria Aparecido, L. T., Wolff, S., Higuchi, N., Dos, J., Carioca de Araujo, A., and Trumbore, S.: A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget, Agr. Forest Meteorol., 239, 47–57, https://doi.org/10.1016/j.agrformet.2017.03.002, 2017.
Lathuillière, M. J., Johnson, M. S., and Donner, S. D.: Water use by
terrestrial ecosystems: temporal variability in rainforest and agricultural
contributions to evapotranspiration in Mato Grosso, Brazil, Environ. Res.
Lett., 7, 024024, https://doi.org/10.1088/1748-9326/7/2/024024, 2012.
Lawrence, D. and Vandecar, K.: Effects of tropical deforestation on climate
and agriculture, Nat. Clim. Change, 5, 27–36, https://doi.org/10.1038/nclimate2430,
2014.
Liebmann, B., Camargo, S. J., Seth, A., Marengo, J. A., Carvalho, L. M. V.,
Allured, D., Fu, R., and Vera, C. S.: Onset and end of the rainy season in
South America in observations and the ECHAM 4.5 atmospheric general circulation model, J. Climate, 20, 2037–2050, https://doi.org/10.1175/JCLI4122.1, 2007.
Loarie, S. R., Lobell, D. B., Asner, G. P., Mu, Q., and Field, C. B.: Direct
impacts on local climate of sugar-cane expansion in Brazil, Nat. Clim. Change, 1, 105–109, https://doi.org/10.1038/nclimate1067, 2011.
Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., and Huete, A.: Evapotranspiration seasonality across the Amazon Basin, Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, 2017.
Makarieva, A. M. and Gorshkov, V. G.: Biotic pump of atmospheric moisture as
driver of the hydrological cycle on land, Hydrol. Earth Syst. Sci., 11,
1013–1033, https://doi.org/10.5194/hess-11-1013-2007, 2007.
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre, C.
A.: Climate Change, Deforestation, and the Fate of the Amazon, Science, 319, 169–172, https://doi.org/10.1126/science.1146961, 2008.
Mejia, M. N., Madramootoo, C. A., and Broughton, R. S.: Influence of water
table management on corn and soybean yields, Agr. Water Manage., 46, 73–89, https://doi.org/10.1016/S0378-3774(99)00109-2, 2000.
Miguez-Macho, G. and Fan, Y.: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands, J. Geophys. Res.-Atmos., 117, 1–30, https://doi.org/10.1029/2012JD017539, 2012.
Moreira, M. Z., Sternberg, L. D. L., and Nepstad, D. C.: Vertical patterns of
soil water uptake by plants in a primary forest and an abandoned pasture in
the eastern Amazon: an isotopic approach, Plant Soil, 222, 95–107,
https://doi.org/10.1023/A:1004773217189, 2000.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Neill, C., Coe, M. T., Riskin, S. H., Krusche, A. V., Elsenbeer, H., Macedo,
M. N., McHorney, R., Lefebvre, P., Davidson, E. A., Scheffler, R., Figueira,
A. M. A. S., Porder, S., and Deegan, L. A.: Watershed responses to Amazon soya bean cropland expansion and intensification, Philos. T. Roy. Soc. Lond. B, 368, 2–7, https://doi.org/10.1098/rstb.2012.0425, 2013.
Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E., and
Vieira, S.: The role of deep roots in the hydrological and carbon cycles of
Amazonian forests and pastures, Nature, 372, 666–669, https://doi.org/10.1038/372666a0, 1994.
Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S.,
and Cardoso, M.: Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm, P. Natl. Acad. Sci. USA, 113, 10759–10768, https://doi.org/10.1073/pnas.1605516113, 2016a.
Nobre, C. A., Marengo, J. A., Seluchi, M. E., Cuartas, A., and Alves, L. M.:
Some Characteristics and Impacts of the Drought and Water Crisis in
Southeastern Brazil during 2014 and 2015 Some Characteristics and Impacts of
the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015, J.
Water Resour. Prot., 8, 252–262, https://doi.org/10.4236/jwarp.2016.82022, 2016b.
Oliveira, L. J. C., Costa, M. H., Soares-Filho, B. S., and Coe, M. T.:
Large-scale expansion of agriculture in Amazonia may be a no-win scenario,
Environ. Res. Lett., 8, 024021, https://doi.org/10.1088/1748-9326/8/2/024021, 2013.
Oliveira, R. S., Dawson, T. E., Burgess, S. S. O., and Nepstad, D. C.: Hydraulic redistribution in three Amazonian trees, Oecologia, 145, 354–363, https://doi.org/10.1007/s00442-005-0108-2, 2005.
Ponte De Souza, P. J. D. O., Ribeiro, A., Da Rocha, E. J. P., Botelho, M. D.
N., De Sousa, A. M. L., De Souza, E. B., and Bouças Farias, J. R.: Imapcts of soybean expansion on the Amazon energy balance: A case study, Exp. Agric., 47, 553–567, https://doi.org/10.1017/S0014479711000391, 2011.
Ridolfi, L., Odorico, P. D., and Laio, F.: Effect of vegetation–water table
feedbacks on the stability and resilience of plant ecosystems, Water Resour.
Res., 42, 1–5, https://doi.org/10.1029/2005WR004444, 2006.
Rossatto, D. R., de Carvalho Ramos Silva, L., Villalobos-Vega, R., Sternberg, L., Da, S. L., and Franco, A. C.: Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna, Environ. Exp. Bot., 77, 259–266, https://doi.org/10.1016/j.envexpbot.2011.11.025, 2012.
Ruhoff, A. L., Paz, A. R., Aragao, L. E. O. C., Mu, Q., Malhi, Y., Collischonn, W., Rocha, H. R., and Running, S. W.: Assessment of the MODIS
global evapotranspiration algorithm using eddy covariance measurements and
hydrological modelling in the Rio Grande basin, Hydrolog. Sci. J., 58,
1658–1676, https://doi.org/10.1080/02626667.2013.837578, 2013.
Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares-Filho, B. S., and Cardoso, M.: Regional climate change over eastern Amazonia caused by
pasture and soybean cropland expansion, Geophys. Res. Lett., 34, L17709,
https://doi.org/10.1029/2007GL030612, 2007.
Setiyono, T. D., Weiss, A., Specht, J. E., Cassman, K. G., and Dobermann, A.:
Leaf area index simulation in soybean grown under near-optimal conditions,
F. Crop. Res., 108, 82–92, https://doi.org/10.1016/j.fcr.2008.03.005, 2008.
Sheil, D.: How plants water our planet: advances and imperatives, Trends Plant Sci., 19, 209–211, https://doi.org/10.1016/j.tplants.2014.01.002, 2014.
Silvério, D. V., Brando, P. M., Macedo, M. N., Beck, P. S. A., Bustamante, M., and Coe, M. T.: Agricultural expansion dominates climate
changes in southeastern Amazonia: The overlooked non-GHG forcing, Environ.
Res. Lett., 10, 104015, https://doi.org/10.1088/1748-9326/10/10/104015, 2015.
Spracklen, D. V., Arnold, S. R., and Taylor, C. M.: Observations of increased
tropical rainfall preceded by air passage over forests, Nature, 489, 282–285, https://doi.org/10.1038/nature11390, 2012.
Staal, A., Tuinenburg, O. A., Bosmans, J. H. C., Holmgren, M., van Nes, E. H., Scheffer, M., Zemp, D. C., and Dekker, S. C.: Forest-rainfall cascades
buffer against drought across the Amazon, Nat. Clim. Change, 8, 539–543,
https://doi.org/10.1038/s41558-018-0177-y, 2018.
Swann, A. L. S., Longo, M., Knox, R. G., Lee, E., and Moorcroft, P. R.: Future deforestation in the Amazon and consequences for South American climate, Agr. Forest Meteorol., 214–215, 12–24, https://doi.org/10.1016/j.agrformet.2015.07.006, 2015.
van der Ent, R. J. and Savenije, H. H. G.: Length and time scales of atmospheric moisture recycling, Atmos. Chem. Phys., 11, 1853–1863,
https://doi.org/10.5194/acp-11-1853-2011, 2011.
Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., and Verdin, J. P.: A
comprehensive evaluation of two MODIS evapotranspiration products over the
conterminous United States: Using point and gridded FLUXNET and water balance ET, Remote Sens. Environ., 139, 35–49, https://doi.org/10.1016/j.rse.2013.07.013, 2013.
Vergopolan, N. and Fisher, J. B.: The impact of deforestation on the hydrological cycle in Amazonia as observed from remote sensing, Int. J. Remote Sens., 37, 5412–5430, https://doi.org/10.1080/01431161.2016.1232874, 2016.
Wan, Z.: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, Remote Sens. Environ., 140,
36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Wilcox, R. R.: Comparing two independent groups via a quantile generalization of the wilcoxon-mann-whitney test, J. Mod. Appl. Stat. Meth., 11, 296–302, https://doi.org/10.22237/jmasm/1351742460, 2012.
Wright, J. S., Fu, R., Worden, J. R., Chakraborty, S., Clinton, N. E., Risi,
C., Sun, Y., and Yin, L.: Rainforest-initiated wet season onset over the
southern Amazon, P. Natl. Acad. Sci. USA, 114, 8481–8486, https://doi.org/10.1073/pnas.1621516114, 2017.
Xu, D., Agee, E., Wang, J., and Ivanov, V. Y.: Estimation of Evapotranspiration of Amazon Rainforest Using the Maximum Entropy Production
Method, Geophys. Res. Lett., 1402–1412, https://doi.org/10.1029/2018gl080907, 2019.
Zalles, V., Hansen, M. C., Potapov, P. V., Stehman, S. V., Tyukavina, A.,
Pickens, A., Song, X., Adusei, B., Okpa, C., Aguilar, R., John, N., and Chavez, S.: Near doubling of Brazil's intensive row crop area since 2000
[Sustainability Science], P. Natl. Acad. Sci. USA, 116, 428–435, https://doi.org/10.1073/pnas.1810301115, 2019.
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of...