Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3233-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-3233-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the potential of climate teleconnections to project future groundwater drought
Cranfield Water Science Institute (CWSI), Cranfield University, Bedford, MK43 0AL, UK
Ian Holman
Cranfield Water Science Institute (CWSI), Cranfield University, Bedford, MK43 0AL, UK
John Bloomfield
British Geological Survey, Wallingford, OX10 8ED, UK
Mark Cuthbert
School of Earth and Ocean Sciences, Cardiff University, Park Place,
Cardiff, CF10 3AT, UK
Ron Corstanje
Centre for Environment and Agricultural Informatics, Cranfield University, Bedford, MK43 0AL, UK
Related authors
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Kathryn A. Leeming, John P. Bloomfield, Gemma Coxon, and Yanchen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-202, https://doi.org/10.5194/hess-2023-202, 2023
Preprint withdrawn
Short summary
Short summary
In this work we characterise annual patterns in baseflow, the component of streamflow that comes from subsurface storage. Our research identified early-, mid-, and late-seasonality of baseflow across catchments in Great Britain over two time blocks: 1976–1995 and 1996–2015, and found that many catchments have earlier seasonal patterns of baseflow in the second time period. These changes are linked to changes in climate signals: snow-melt in highland catchments and effective rainfall changes.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27, https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
Short summary
Components of the hydrological cycle exhibit a “memory” in their behaviour which quantifies how long a variable would stay at high/low values. Being able to model and understand what affects it is vital for an accurate representation of the hydrological elements. In the current work, it is found that rainfall affects the fractal behaviour of groundwater levels, which implies that changes to rainfall due to climate change will change the periods of flood and drought in groundwater-fed catchments.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019, https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Short summary
We evaluated four hydrological model structures and their parameters on over 1100 catchments across Great Britain, considering modelling uncertainties. Models performed well for most catchments but failed in parts of Scotland and south-eastern England. Failures were often linked to inconsistencies in the water balance. This research shows what conceptual lumped models can achieve, gives insights into where and why these models may fail, and provides a benchmark of national modelling capability.
John Beale, Boris Snapir, Toby Waine, Jonathan Evans, and Ronald Corstanje
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-294, https://doi.org/10.5194/hess-2019-294, 2019
Revised manuscript not accepted
Short summary
Short summary
Knowledge of soil moisture is important managing their agricultural crops controlling irrigation, predicting flows in rivers and streams, weather forecasting and climate modelling. Synthetic aperture radar (SAR) from satellites can provide wide area coverage on a regular basis. This paper investigates the magnitude of the uncertainties that are influenced by soil properties to evaluate the role of existing soil databases in soil moisture retrieval and interpretation.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Ron Corstanje, Theresa G. Mercer, Jane R. Rickson, Lynda K. Deeks, Paul Newell-Price, Ian Holman, Cedric Kechavarsi, and Toby W. Waine
Solid Earth, 8, 1003–1016, https://doi.org/10.5194/se-8-1003-2017, https://doi.org/10.5194/se-8-1003-2017, 2017
Short summary
Short summary
This research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their delivery of ecosystem goods and services. A prioritised list of physical
soil quality indicators(SQIs) were tested for robustness, spatial and temporal variability, and expected rate of change. Seven SQIs were selected: soil packing density, water retention characteristics, aggregate stability, rate of soil erosion, soil depth, soil structure and soil sealing.
J. P. Bloomfield, B. P. Marchant, S. H. Bricker, and R. B. Morgan
Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, https://doi.org/10.5194/hess-19-4327-2015, 2015
Short summary
Short summary
To improve the design of drought monitoring networks and water resource management during episodes of drought, there is a need for a better understanding of spatial variations in the response of aquifers to major meteorological droughts. This paper is the first to describe a suite of methods to quantify such variations. Using an analysis of groundwater level data for a case study from the UK, the influence of catchment characteristics on the varied response of groundwater to droughts is explored
A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield
Hydrol. Earth Syst. Sci., 19, 2395–2408, https://doi.org/10.5194/hess-19-2395-2015, https://doi.org/10.5194/hess-19-2395-2015, 2015
Short summary
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.
C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace
Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, https://doi.org/10.5194/hess-19-2353-2015, 2015
Short summary
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.
J. P. Bloomfield and B. P. Marchant
Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, https://doi.org/10.5194/hess-17-4769-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Mathematical applications
Technical note: Removing dynamic sea-level influences from groundwater-level measurements
Estimating karst groundwater recharge from soil moisture observations – a new method tested at the Swabian Alb, southwest Germany
Present and future thermal regimes of intertidal groundwater springs in a threatened coastal ecosystem
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments
Contaminant source localization via Bayesian global optimization
Analysis of three-dimensional unsaturated–saturated flow induced by localized recharge in unconfined aquifers
Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers
On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers
Technical Note: Three-dimensional transient groundwater flow due to localized recharge with an arbitrary transient rate in unconfined aquifers
Thermal damping and retardation in karst conduits
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data
Analysis of groundwater drought building on the standardised precipitation index approach
Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan
Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers
Scale dependency of fractional flow dimension in a fractured formation
Groundwater fluctuations in heterogeneous coastal leaky aquifer systems
Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality
Patrick Haehnel, Todd C. Rasmussen, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 2767–2784, https://doi.org/10.5194/hess-28-2767-2024, https://doi.org/10.5194/hess-28-2767-2024, 2024
Short summary
Short summary
While groundwater recharge is important for water resources management, nearshore sea levels can obscure this signal. Regression deconvolution has previously been used to remove other influences from groundwater levels (e.g., barometric pressure, Earth tides) by accounting for time-delayed responses from these influences. We demonstrate that it can also remove sea-level influences from measured groundwater levels.
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Jason J. KarisAllen, Aaron A. Mohammed, Joseph J. Tamborski, Rob C. Jamieson, Serban Danielescu, and Barret L. Kurylyk
Hydrol. Earth Syst. Sci., 26, 4721–4740, https://doi.org/10.5194/hess-26-4721-2022, https://doi.org/10.5194/hess-26-4721-2022, 2022
Short summary
Short summary
We used a combination of aerial, thermal, hydrologic, and radionuclide monitoring to investigate intertidal springs flowing into a coastal lagoon with a threatened ecosystem. Field data highlight the critical hydrologic and thermal role of these springs in the nearshore zone, and modelling results reveal that the groundwater springs will likely warm substantially in the coming decades due to climate change. Springs sourced from shallower zones in the aquifer will warm first.
Sarah A. Bourke, Mike Iwanyshyn, Jacqueline Kohn, and M. Jim Hendry
Hydrol. Earth Syst. Sci., 23, 1355–1373, https://doi.org/10.5194/hess-23-1355-2019, https://doi.org/10.5194/hess-23-1355-2019, 2019
Short summary
Short summary
Agricultural operations can result in nitrate contamination of groundwater, lakes and streams. At two confined feeding operations in Alberta, Canada, nitrate in groundwater from temporary manure piles and pens exceeded nitrate from earthen manure storages. Identified denitrification reduced agriculturally derived nitrate concentrations in groundwater by at least half. Infiltration to groundwater systems where nitrate can be naturally attenuated is likely preferable to off-farm export via runoff.
Guillaume Pirot, Tipaluck Krityakierne, David Ginsbourger, and Philippe Renard
Hydrol. Earth Syst. Sci., 23, 351–369, https://doi.org/10.5194/hess-23-351-2019, https://doi.org/10.5194/hess-23-351-2019, 2019
Short summary
Short summary
To localize the source of a contaminant in the subsurface, based on concentration observations at some wells, we propose to test different possible locations and minimize the misfit between observed and simulated concentrations. We use a global optimization technique that relies on an expected improvement criterion, which allows a good exploration of the parameter space, avoids the trapping of local minima and quickly localizes the source of the contaminant on the presented synthetic cases.
Chia-Hao Chang, Ching-Sheng Huang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 22, 3951–3963, https://doi.org/10.5194/hess-22-3951-2018, https://doi.org/10.5194/hess-22-3951-2018, 2018
Short summary
Short summary
Existing analytical solutions associated with groundwater recharge are only applicable to the studies of saturated flow in aquifers. This paper develops an analytical solution for 3-D unsaturated–saturated flow due to localized recharge into an unconfined aquifer. The effects of unsaturated flow on the recharge process are analyzed. The present solution agrees well with a finite-difference solution. The solution’s predictions also match well with observed data obtained by a field experiment.
Chao-Chih Lin, Ya-Chi Chang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 22, 2359–2375, https://doi.org/10.5194/hess-22-2359-2018, https://doi.org/10.5194/hess-22-2359-2018, 2018
Short summary
Short summary
An semanalytical model is developed for estimating the groundwater flow and stream depletion rates (SDR) from two streams in an L-shaped fluvial aquifer located at Gyeonggi-do, Korea. The predicted spatial and temporal hydraulic heads agree well with those of simulations and measurements. The model can be applied to evaluate the contribution of extracted water from storage and nearby streams.
Xiuyu Liang, Hongbin Zhan, You-Kuan Zhang, and Jin Liu
Hydrol. Earth Syst. Sci., 21, 1251–1262, https://doi.org/10.5194/hess-21-1251-2017, https://doi.org/10.5194/hess-21-1251-2017, 2017
Chia-Hao Chang, Ching-Sheng Huang, and Hund-Der Yeh
Hydrol. Earth Syst. Sci., 20, 1225–1239, https://doi.org/10.5194/hess-20-1225-2016, https://doi.org/10.5194/hess-20-1225-2016, 2016
Short summary
Short summary
Most previous solutions for groundwater flow due to localized recharge assumed either aquifer incompressibility or 2-D flow without vertical flow. This paper develops a 3-D flow model for hydraulic head change induced by the recharge with random transient rates in a compressible unconfined aquifer. The analytical solution of the model for the head is derived. The quantitative criteria for the validity of those two assumptions are presented by the developed solution.
A. J. Luhmann, M. D. Covington, J. M. Myre, M. Perne, S. W. Jones, E. C. Alexander Jr., and M. O. Saar
Hydrol. Earth Syst. Sci., 19, 137–157, https://doi.org/10.5194/hess-19-137-2015, https://doi.org/10.5194/hess-19-137-2015, 2015
Short summary
Short summary
Water temperature is a non-conservative tracer. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. This paper presents relationships that describe thermal damping and retardation in karst conduits determined using analytical solutions and numerical simulations, with some support provided by field data. These relationships may be used with field data to estimate unknown flow path geometry in karst aquifers.
N. Foged, P. A. Marker, A. V. Christansen, P. Bauer-Gottwein, F. Jørgensen, A.-S. Høyer, and E. Auken
Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, https://doi.org/10.5194/hess-18-4349-2014, 2014
A. H. Alzraiee, D. Baú, and A. Elhaddad
Hydrol. Earth Syst. Sci., 18, 3207–3223, https://doi.org/10.5194/hess-18-3207-2014, https://doi.org/10.5194/hess-18-3207-2014, 2014
J. P. Bloomfield and B. P. Marchant
Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, https://doi.org/10.5194/hess-17-4769-2013, 2013
C.-H. Chen, C.-H. Wang, S. Wen, T.-K. Yeh, C.-H. Lin, J.-Y. Liu, H.-Y. Yen, C. Lin, R.-J. Rau, and T.-W. Lin
Hydrol. Earth Syst. Sci., 17, 1693–1703, https://doi.org/10.5194/hess-17-1693-2013, https://doi.org/10.5194/hess-17-1693-2013, 2013
C.-T. Wang, H.-D. Yeh, and C.-S. Tsai
Hydrol. Earth Syst. Sci., 16, 441–449, https://doi.org/10.5194/hess-16-441-2012, https://doi.org/10.5194/hess-16-441-2012, 2012
Y.-C. Chang, H.-D. Yeh, K.-F. Liang, and M.-C. T. Kuo
Hydrol. Earth Syst. Sci., 15, 2165–2178, https://doi.org/10.5194/hess-15-2165-2011, https://doi.org/10.5194/hess-15-2165-2011, 2011
M.-H. Chuang, C.-S. Huang, G.-H. Li, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1819–1826, https://doi.org/10.5194/hess-14-1819-2010, https://doi.org/10.5194/hess-14-1819-2010, 2010
S. Leschik, A. Musolff, R. Krieg, M. Martienssen, M. Bayer-Raich, F. Reinstorf, G. Strauch, and M. Schirmer
Hydrol. Earth Syst. Sci., 13, 1765–1774, https://doi.org/10.5194/hess-13-1765-2009, https://doi.org/10.5194/hess-13-1765-2009, 2009
Cited articles
Alexander, L. V., Tett, S. F. B., and Jonsson, T.: Recent observed changes in
severe storms over the United Kingdom and Iceland, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022371, 2005.
Allen, M. R. and Smith, L. A.: Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise, J. Climate, 9, 3373–3404,
https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2, 1996.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
British Geological Survey: WellMaster hydrogeological database, Natural Environment Research Council, available at: https://www.bgs.ac.uk/products/hydrogeology/wellmaster.html, last access: 3 March 2019.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of
climate–groundwater interactions, Nat. Clim. Change, 9, 137–141,
https://doi.org/10.1038/s41558-018-0386-4, 2019.
Deloitte LLP: Water trading – scope, benefits and options, Final Report,
Deloitte LLP, 117 pp., available at: https://www.ofwat.gov.uk/wp-content/uploads/2015/12/rpt_com201512deloittewatertrading.pdf
(last access: 1 March 2019), 2015.
Dickinson, J. E., Ferré, T. P. A., Bakker, M., and Crompton, B.: A
Screening Tool for Delineating Subregions of Steady Recharge within Groundwater Models. Vadose Zone J., 13, 1–15, https://doi.org/10.2136/vzj2013.10.0184, 2014.
Faust, J. C., Fabian, K., Milzer, G., Giraudeau, J., and Knies, J.: Norwegian
fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years, Earth Planet. Sc. Lett., 435, 84–93, https://doi.org/10.1016/j.epsl.2015.12.003, 2016.
Ferguson, I. M. and Maxwell, R. M.: Role of groundwater in watershed response
and land surface feedbacks under climate change, Water Resour. Res., 46, 1–15, https://doi.org/10.1029/2009WR008616, 2010.
Folland, C. K., Hannaford, J., Bloomfield, J. P., Kendon, M., Svensson, C.,
Marchant, B. P., Prior, J., and Wallace, E.: Multi-annual droughts in the
English Lowlands: a review of their characteristics and climate drivers in the winter half-year, Hydrol. Earth Syst. Sci., 19, 2353–2375,
https://doi.org/10.5194/hess-19-2353-2015, 2015.
Forootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van Dijk, A. I. J. M., Brocca, L., Farzaneh, S., Akinluyi, F., Ramillien, G., Shum, C. K., Awange, J., and Mostafaie, A.: Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections, Sci. Total Environ., 650, 2587–2604, https://doi.org/10.1016/j.scitotenv.2018.09.231, 2018.
Fowler, H. J. and Kilsby, C. G.: Precipitation and the North Atlantic Oscillation: a study of climatic variability in northern England, Int. J. Climatol., 22, 843–866, https://doi.org/10.1002/joc.765, 2002.
Fritier, N., Massei, N., Laignel, B., Durand, A., Dieppois, B., and Deloffre, J.: Links between NAO fluctuations and inter-annual variability of winter-months precipitation in the Seine River watershed (north-western
France), Comptes Rendus – Geoscience, 344, 396–405,
https://doi.org/10.1016/j.crte.2012.07.004, 2012.
Hauser, T., Demirov, E., Zhu, J., and Yashayaev, I.: North Atlantic atmospheric and ocean inter-annual variability over the past fifty years –
Dominant patterns and decadal shifts, Prog. Oceanogr., 132, 197–219, https://doi.org/10.1016/j.pocean.2014.10.008, 2015.
Holman, I. P., Rivas-Casado, M., Howden, N. J. K., Bloomfield, J. P., and
Williams, A. T.: Linking North Atlantic ocean-atmosphere teleconnection patterns and hydrogeological responses in temperate groundwater systems,
Hydrol. Process., 23, 3123–3126, https://doi.org/10.1002/hyp.7466, 2009.
Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., and Gurdak, J. J.: Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence, Hydrogeol. J., 19, 1269–1278,
https://doi.org/10.1007/s10040-011-0755-9, 2011.
Hund, S. V., Allen, D. M., Morillas, L., and Johnson, M. S.: Groundwater
recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought, J. Hydrol., 563, 1119–1134, https://doi.org/10.1016/j.jhydrol.2018.05.069, 2018.
Hurrell, J.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, 269, 676, https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, J. Mar. Syst., 79, 231–244,
https://doi.org/10.1016/j.jmarsys.2008.11.026, 2010.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An Overview of
the North Atlantic Oscillation, in: The North Atlantic Oscillation: Climatic
Significance and Environmental Impact, in: Geophysical Monograph Series, American Geophysical Union, 1–35, 2003.
Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., McDonnell, J. J., and Welker, J.M.: The pronounced seasonality of global groundwater recharge, Water Resour. Res., 50, 8845–8867, https://doi.org/10.1002/2014WR015809, 2014.
Kingston, D. G., McGregor, G. R., Hannah, D. M., and Lawler, D. M.: River flow teleconnections across the northern North Atlantic region, Geophys.
Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL026574, 2006.
Knippertz, P., Ulbrich, U., Marques, F., and Corte-Real, J.: Decadal changes in the link between El Niño and springtime North Atlantic oscillation
and European–North African rainfall, Int. J. Climatol., 23, 1293–1311, https://doi.org/10.1002/joc.944, 2003.
Krichak, S. O. and Alpert, P.: Decadal Trends in the East Atlantic-West Russia Pattern and Mediterranean Precipitation, Int. J. Climatol., 25, 183–192, https://doi.org/10.1002/joc.1124, 2005.
Kuss, A. M. and Gurdak, J. J.: Groundwater level response in U.S. principal
aquifers to ENSO, NAO, PDO, and AMO, J. Hydrol., 519, 1939–1952,
https://doi.org/10.1016/j.jhydrol.2014.09.069, 2014.
Lee, H. F. and Zhang, D. D.: Relationship between NAO and drought disasters in northwestern China in the last millennium, J. Arid Environ., 75, 1114–1120, https://doi.org/10.1016/j.jaridenv.2011.06.008, 2011.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E.,
Lorenzo-Lacruz, J., Kenawy, A., and Beniston, M.: Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter
modes in the Mediterranean mountains: Observed relationships and projections
for the 21st century, Global Planet. Change, 77, 62–76, https://doi.org/10.1016/j.gloplacha.2011.03.003, 2011.
Lukovič, J., Blagojevč, D., Kilibarda, M., and Bajat, B.: Spatial pattern of North Atlantic Oscillation impact on rainfall in Serbia, Spatial Stat., 14, 39–52, https://doi.org/10.1016/j.spasta.2015.04.007, 2014.
Mackay, J. D., Jackson, C. R., Brookshaw, A., Scaife, A. A., Cook, J., and
Ward, R. S.: Seasonal forecasting of groundwater levels in principal aquifers
of the United Kingdom, J. Hydrol., 530, 815–828, https://doi.org/10.1016/j.jhydrol.2015.10.018, 2015.
Marsh, T. and Hannaford, J.: UK Hydrometric Register. Hydrological data UK series, Centre for Ecology and Hydrology, 214 pp., available at: http://nora.nerc.ac.uk/id/eprint/3093/1/HydrometricRegister_Final_WithCovers.pdf
(last access: 15 March 2019), 2008.
Marsh, T., Cole, G., and Wilby, R.: Major droughts in England, 1800–2006,
Weather, 62, 87–93, https://doi.org/10.1002/wea.67, 2007.
Meinke, H., deVoil, P., Hammer, G. L., Power, S., Allan, R., Stone, R. C.,
Folland, C., and Potgieter, A.: Rainfall variability of decadal and longer time scales: Signal or noise?, J. Climate, 18, 89–90, https://doi.org/10.1175/JCLI-3263.1, 2005.
Nakken, M.: Wavelet analysis of rainfall-runoff variability isolating climatic form anthropogenic patterns, Environ. Model. Softw., 14, 282–295, https://doi.org/10.1016/S1364-8152(98)00080-2, 1999.
Neves, M. C., Jerez, S., and Trigo, R. M.: The response of piezometric levels
in Portugal to NAO, EA, and SCAND climate patterns, J. Hydrol., 568, 1105–1117, https://doi.org/10.1016/j.jhydrol.2018.11.054, 2019.
Parry, S., Hannaford, J., Lloyd-Huges, B., and Prudhomme, C.: Multi-year droughts in Europe: analysis of development and cause, Hydrol. Res., 43, 689–706, https://doi.org/10.2166/nh.2012.024, 2012.
Pasquini, A. I., Lecomte, K. L., Piovano, E. L., and Depetris, P. J.: Recent
rainfall and runoff variability in central Argentina, Quatern. Int., 158, 127–139, https://doi.org/10.1016/j.quaint.2006.05.021, 2006.
Peings, Y. and Magnusdottir, G.: Forcing of the wintertime atmospheric
circulation by the multidecadal fluctuations of the North Atlantic Ocean,
Environ. Res. Lett., 9, 34018, https://doi.org/10.1088/1748-9326/9/3/034018, 2014.
Peters, E.: Propagation of drought through groundwater systems, PhD thesis, Wageningen University, Wageningen, 2003.
Peters, E., Bier, G., van Lanen, H. A. J., and Torfs, P. J. J. F.: Propagation and spatial distribution of drought in a groundwater catchment, J. Hydrol., 321, 257–275, https://doi.org/10.1016/j.jhydrol.2005.08.004, 2006.
Price, M., Downing, R. A., and Edmunds, W. M.: The chalk as an aquifer, in: The hydeogeology of the Chalk of North-West Europe, Clarendon Press, Oxford,
2005.
Rashid, M. M., Beecham, S., and Chowdhury, R. K.: Assessment of trends in point rainfall using Continuous Wavelet Transforms, Adv. Water Resour., 82, 1–15, https://doi.org/10.1016/j.advwatres.2015.04.006, 2015.
Rey, D., Pérez-Blanco, C. D., Escriva-Bou, A., Girard, C., and Veldkamp,
T. I. E.: Role of economic instruments in water allocation reform: lessons from Europe, Int. J. Water Resour. Dev., 35, 1–34, https://doi.org/10.1080/07900627.2017.1422702, 2018.
Robinson, E. L., Blyth, E., Clark, D. B., Comyn-Platt, E., Finch, J., and Rudd, A. C.: Climate hydrology and ecology research support system potential
evapotranspiration dataset for Great Britain (1961–2015) [CHESS-PE], Centre for Ecology and Hydrology, Wallingford,
https://doi.org/10.5285/8baf805d-39ce-4dac-b224-c926ada353b7, 2016.
Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J., and Rudd, A. C.: Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data, Hydrol. Earth Syst. Sci., 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017, 2017.
Rodda, J. and Marsh, T.: The 1975–76 Drought – a contemporary and
retrospective review, Centre for Ecology and Hydrology, available at: http://nora.nerc.ac.uk/id/eprint/15011/1/CEH_1975-76_Drought_Report_Rodda_and_Marsh.pdf
(last access: 10 March 2019), 2011.
Rosch, A. and Schmidbauer, H.: WaveletComp 1.1: a guided tour through the
R package, available at: https://pdfs.semanticscholar.org/3825/de34e8ae27624eece03abf6fbb8fd07c795a.pdf
(last access: 20 February 2019), 2018.
Rust, W., Holman, I., Corstanje, R., Bloomfield, J., and Cuthbert, M.: A
conceptual model for climatic teleconnection signal control on groundwater
variability in Europe, Earth-Sci. Rev., 177, 164–174,
https://doi.org/10.1016/j.earscirev.2017.09.017, 2018.
Shabbar, A., Huang, J., and Higuchi, K.: The relationship between the
wintertime North Atlantic oscillation and blocking episodes in the North
Atlantic, Int. J. Climatol., 21, 355–369, https://doi.org/10.1002/joc.612, 2001.
Su, L., Miao, C., Borthwick, A. G. L., and Duan, Q.: Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales, Gondwana Res., 49, 94–105, https://doi.org/10.1016/j.gr.2017.05.013, 2017.
Szolgayova, E., Parajka, J., Blöschl, G., and Bucher, C.: Long term variability of the Danube River flow and its relation to precipitation and air temperature, J. Hydrol., 519, 871–880, https://doi.org/10.1016/j.jhydrol.2014.07.047, 2014.
Tabari, H., Hosseinzadeh Talaee, P., Shifteh Some'e, B., and Willems, P.: Possible influences of North Atlantic Oscillation on winter reference evapotranspiration in Iran, Global Planet. Change, 117, 28–39, https://doi.org/10.1016/j.gloplacha.2014.03.006, 2014.
Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D., and Keller, V. D. J.:
Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890–2015) [CEH-GEAR], Centre for Ecology and Hydrology, Wallingford, https://doi.org/10.5285/33604ea0-c238-4488-813d-0ad9ab7c51ca, 2016.
Todd, B., Macdonald, N., Chiverrell, R. C., Caminade, C., and Hooke, J. M.:
Severity, duration and frequency of drought in SE England from 1697 to 2011,
Climatic Change, 121, 673–687, https://doi.org/10.1007/s10584-013-0970-6, 2013.
Tošić, I., Zorn, M., Ortar, J., Unkašević, M., Gavrilov, M. B., and Marković, S. B.: Annual and seasonal variability of precipitation and temperatures in Slovenia from 1961 to 2011, Atmos. Res., 168, 220–233, https://doi.org/10.1016/j.atmosres.2015.09.014, 2016.
Townley, L. R.: The response of aquifers to periodic forcing, Adv. Water Resour., 18, 125–146, https://doi.org/10.1016/0309-1708(95)00008-7, 1995.
Tremblay, L., Larocque, M., Anctil, F., and Rivard, C.: Teleconnections and
interannual variability in Canadian groundwater levels, J. Hydrol., 410, 178–188, https://doi.org/10.1016/j.jhydrol.2011.09.013, 2011.
Trigo, R. M., Pozo-Vazquez, D., Osborn, T. J., Castro-Diez, Y., Gamiz-Fortis,
S., and Esteban-Parra, M. J.: North Atlantic oscillation influence on
precipitation, river flow and water resources in the Iberian Peninsula, Int. J. Climatol., 24, 925–944, https://doi.org/10.1002/joc.1048, 2004.
Van Loon, A. F.: On the propagation of drought: How climate and catchment characteristics influence hydrological drought development and recovery, PhD thesis, Wageningen University, Wageningen, 2013.
Van Loon, A. F.: Hydrological drought explained, Wiley Interdisciplin. Rev.: Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A. J., Teuling, A. J., and Uijlenhoet, R.: How climate seasonality modifies drought duration and
deficit, J. Geophysical Res.-Atmos., 119, 4640–4656, https://doi.org/10.1002/2013JD020383, 2014.
Velasco, E. M., Gurdak, J. J., Dickinson, J. E., Ferré, T. P. A., and Corona, C. R.: Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast, J. Hydrol.: Reg. Stud., 159, 250–265, https://doi.org/10.1016/j.ejrh.2015.11.018, 2015.
Wallace, J. M. and Gutzler, D. S.: Teleconnections in the Geopotential Height
Field during the Northern Hemisphere Winter, Mon. Weather Rev., 109,
784–812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2,
1981.
Wang, H., Chen, Y., Pan, Y., and Li, W.: Spatial and temporal variability of
drought in the arid region of China and its relationships to teleconnection
indices, J. Hydrol., 523, 283–296, https://doi.org/10.1016/j.jhydrol.2015.01.055, 2015.
Water Trading: Water trading, available at:
https://www.ofwat.gov.uk/regulated-companies/markets/water-bidding-market/water-trading,
last access: 15 March 2019.
Weber, K. and Stewart, M.: A Critical Analysis of the Cumulative Rainfall
Departure Concept, Groundwater, 42, 935–938, https://doi.org/10.1111/j.1745-6584.2004.t01-11-.x, 2004.
Short summary
We show that major groundwater resources in the UK exhibit strong multi-year cycles, accounting for up to 40 % of total groundwater level variability. By comparing these cycles with recorded widespread groundwater droughts over the past 60 years, we provide evidence that climatic systems (such as the North Atlantic Oscillation) ultimately drive drought-risk periods in UK groundwater. The recursive nature of these drought-risk periods may lead to improved preparedness for future droughts.
We show that major groundwater resources in the UK exhibit strong multi-year cycles, accounting...