Articles | Volume 23, issue 6
https://doi.org/10.5194/hess-23-2763-2019
https://doi.org/10.5194/hess-23-2763-2019
Research article
 | 
28 Jun 2019
Research article |  | 28 Jun 2019

Sediment budget analysis of the Guayas River using a process-based model

Pedro D. Barrera Crespo, Erik Mosselman, Alessio Giardino, Anke Becker, Willem Ottevanger, Mohamed Nabi, and Mijail Arias-Hidalgo

Related authors

Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024,https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022,https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022,https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021,https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary
Uncertainties in coastal flood risk assessments in small island developing states
Matteo U. Parodi, Alessio Giardino, Ap van Dongeren, Stuart G. Pearson, Jeremy D. Bricker, and Ad J. H. M. Reniers
Nat. Hazards Earth Syst. Sci., 20, 2397–2414, https://doi.org/10.5194/nhess-20-2397-2020,https://doi.org/10.5194/nhess-20-2397-2020, 2020
Short summary

Related subject area

Subject: Coasts and Estuaries | Techniques and Approaches: Modelling approaches
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024,https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a large river delta
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024,https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023,https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary
Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022,https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary
Effect of tides on river water behavior over the eastern shelf seas of China
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022,https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary

Cited articles

Armijos, M. M. and Montolío, T. S.: Ecosistema Guayas (Ecuador), Medio ambiente y Sostenibilidad, Revista Tecnológica-ESPOL, 21, 2008. a
Barrera Crespo, P. D.: Delft3D Flexible Mesh modelling of the Guayas River and Estuary system in Ecuador, Master's thesis, DelftUniversity of Technology, National University of Singapore, available at: http://resolver.tudelft.nl/uuid:c8a4c2f1-208b-4332-a17f-8afb28ec71e6 (last access: 5 July 2016), 2016. a
Benites, S.: Morfología y sedimentos de la Plataforma Continental del Golfo de Guayaquil, Tesis ESPOL, Guayaquil, Ecuador, 112, 1975. a
CAMAE: Problemas que afectan la Navegabilidad en el Río Guayas, Informar, 4–7, 2013. a
CELEC: Revista 25 Años de la presa Daule – Peripa, Tech. rep., CELEC EP-HIDRONACIÓN, 2013. a
Download
Short summary
Guayaquil, the commercial capital of Ecuador, is located along the Guayas River. The city is among the most vulnerable cities to future flooding ascribed to climate change. Fluvial sedimentation is seen as one of the factors contributing to flooding. This paper describes the dominant processes in the river and the effects of past interventions in the overall sediment budget. This is essential to plan and design effective mitigation measures to face the latent risk that threatens Guayaquil.