Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 23, issue 6
Hydrol. Earth Syst. Sci., 23, 2647–2663, 2019
https://doi.org/10.5194/hess-23-2647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 2647–2663, 2019
https://doi.org/10.5194/hess-23-2647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Jun 2019

Research article | 19 Jun 2019

Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data

Yingchun Huang et al.

Related authors

Simultaneous calibration of hydrological models in geographical space
András Bárdossy, Yingchun Huang, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 20, 2913–2928, https://doi.org/10.5194/hess-20-2913-2016,https://doi.org/10.5194/hess-20-2913-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020,https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020,https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
Future streamflow regime changes in the United States: assessment using functional classification
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020,https://doi.org/10.5194/hess-24-3951-2020, 2020
Short summary
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020,https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary

Cited articles

Ahmed, S. and De Marsily, G.: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resour. Res., 23, 1717–1737, https://doi.org/10.1029/wr023i009p01717, 1987. a
Bárdossy, A. and Das, T.: Influence of rainfall observation network on model calibration and application., Hydrol. Earth Syst. Sci., 12, 77–89, https://doi.org/10.5194/hess-12-77-2008, 2008. a
Bárdossy, A. and Pegram, G.: Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes, J. Hydrol., 544, 397–406, https://doi.org/10.1016/j.jhydrol.2016.11.039, 2016a. a
Bárdossy, A. and Pegram, G.: Space-time conditional disaggregation of precipitation at high resolution via simulation, Water Resour. Res., 52, 920-937, https://doi.org/10.1002/2015wr018037, 2016b. a, b, c
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters., Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008. a
Publications Copernicus
Download
Short summary
This study investigates whether higher temporal and spatial resolution of rainfall can lead to improved model performance. Four rainfall datasets were used to drive lumped and distributed HBV models to simulate daily discharges. Results show that a higher temporal resolution of rainfall improves the model performance if the station density is high. A combination of observed high temporal resolution observations with disaggregated daily rainfall leads to further improvement of the tested models.
This study investigates whether higher temporal and spatial resolution of rainfall can lead to...
Citation