Articles | Volume 23, issue 6
https://doi.org/10.5194/hess-23-2647-2019
https://doi.org/10.5194/hess-23-2647-2019
Research article
 | 
19 Jun 2019
Research article |  | 19 Jun 2019

Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data

Yingchun Huang, András Bárdossy, and Ke Zhang

Related authors

State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025,https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Simultaneous calibration of hydrological models in geographical space
András Bárdossy, Yingchun Huang, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 20, 2913–2928, https://doi.org/10.5194/hess-20-2913-2016,https://doi.org/10.5194/hess-20-2913-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Projections of streamflow intermittence under climate change in European drying river networks
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025,https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary

Cited articles

Ahmed, S. and De Marsily, G.: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resour. Res., 23, 1717–1737, https://doi.org/10.1029/wr023i009p01717, 1987. a
Bárdossy, A. and Das, T.: Influence of rainfall observation network on model calibration and application., Hydrol. Earth Syst. Sci., 12, 77–89, https://doi.org/10.5194/hess-12-77-2008, 2008. a
Bárdossy, A. and Pegram, G.: Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes, J. Hydrol., 544, 397–406, https://doi.org/10.1016/j.jhydrol.2016.11.039, 2016a. a
Bárdossy, A. and Pegram, G.: Space-time conditional disaggregation of precipitation at high resolution via simulation, Water Resour. Res., 52, 920-937, https://doi.org/10.1002/2015wr018037, 2016b. a, b, c
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters., Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008. a
Download
Short summary
This study investigates whether higher temporal and spatial resolution of rainfall can lead to improved model performance. Four rainfall datasets were used to drive lumped and distributed HBV models to simulate daily discharges. Results show that a higher temporal resolution of rainfall improves the model performance if the station density is high. A combination of observed high temporal resolution observations with disaggregated daily rainfall leads to further improvement of the tested models.
Share