Bring, A., Asokan, S. M., Jaramillo, F., Jarsjö, J., Levi, L., Pietroń,
J., Prieto, C., Rogberg, P., and Destouni, G.: Implications of freshwater flux
data from the CMIP5 multimodel output across a set of Northern Hemisphere
drainage basins, Earth's Future, 3, 206–217,
https://doi.org/10.1002/2014EF000296, 2015.
a
Budyko, M. I.: Climate and Life, Academic Press, New York, 1974.
a,
b,
c
Chen, L. and Frauenfeld, O. W.: A comprehensive evaluation of precipitation
simulations over China based on CMIP5 multimodel ensemble projections, J.
Geophys. Res., 119, 5767–5786,
https://doi.org/10.1002/2013JD021190, 2014.
a,
b
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and 21st
century drying, Clim. Dynam., 43, 2607–2627,
https://doi.org/10.1007/s00382-014-2075-y, 2014.
a,
b
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D.: Changes in Continental
Freshwater Discharge from 1948 to 2004, J. Climate, 22, 2773–2792,
https://doi.org/10.1175/2008JCLI2592.1, 2009.
a,
b
Destouni, G., Jaramillo, F., and Prieto, C.: Hydroclimatic shifts driven by
human water use for food and energy production, Nat. Clim. Change, 3, 213–217,
https://doi.org/10.1038/nclimate1719, 2013.
a
Freydank, K. and Siebert, S.: Towards mapping the extent of irrigation in the
last century: Time series of irrigated area per country, Technical Report
Frankfurt Hydrology Paper 08, Insititue of Physical Geography, University of
Frankfurt, Frankfurt, 2008.
a,
b,
c,
d
Fu, B.: On the calculation of the evaporation from land surface, Sci. Atmos.
Sin., 1, 23–31, 1981. a
Gerten, D., Rost, S., von Bloh, W., and Lucht, W.: Causes of change in
20th century global river discharge, Geophys. Res. Lett., 35, L20405,
https://doi.org/10.1029/2008GL035258, 2008.
a
Gordon, L. J., Steffen, W., Jönsson, B. F., Folke, C., Falkenmark, M., and
Johannessen, Å.: Human modification of global water vapor flows from the
land surface, P. Natl. Acad. Sci. USA, 102, 7612–7617,
https://doi.org/10.1073/pnas.0500208102, 2005.
a
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over land,
Nat. Geosci., 7, 716–721, 2014.
a,
b
Greve, P., Roderick, M. L., and Seneviratne, S. I.: Simulated changes in aridity
from the last glacial maximum to 4
× CO2, Environ. Res.
Lett., 12, 114021,
https://doi.org/10.1088/1748-9326/aa89a3, 2017.
a
Gudmundsson, L., Greve, P., and Seneviratne, S. I.: The sensitivity of water
availability to changes in the
aridity index and other factors – A probabilistic
analysis in the Budyko space, Geophys. Res. Lett., 43, 6985–6994,
https://doi.org/10.1002/2016GL069763, 2016.
a,
b
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki,
N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.
D., Wada, Y., and Wisser, D.: Global water resources affected by human
interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256,
https://doi.org/10.1073/pnas.1222475110, 2014.
a,
b,
c,
d
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution grids
of monthly climatic observations – the CRU TS3.10 dataset, Int. J. Climatol.,
34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.
a,
b,
c
Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V.,
Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., and Kim, S.: Long-term
global water projections using six socioeconomic scenarios in an integrated
assessment modeling framework, Technol. Forecast. Soc., 81, 205–226, 2014a. a
Hejazi, M. I., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V.,
Wise, M., Patel, P., Eom, J., and Calvin, K.: Integrated assessment of global
water scarcity over the 21st century under multiple climate change mitigation
policies, Hydrol. Earth Syst. Sci., 18, 2859–2883,
https://doi.org/10.5194/hess-18-2859-2014, 2014b.
a
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A
trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam.,
4, 219–236,
https://doi.org/10.5194/esd-4-219-2013, 2013.
a,
b
Huang, M., Zhang, L., and Gallichand, J.: Runoff responses to afforestation in
a watershed of the Loess Plateau, China, Hydrol. Process., 17, 2599–2609,
https://doi.org/10.1002/hyp.1281, 2003.
a
Klein Goldewijk, K. and Verburg, P. H.: Uncertainties in global-scale
reconstructions of historical land use: an illustration using the HYDE data
set, Landscape Ecol., 28, 861–877,
https://doi.org/10.1007/s10980-013-9877-x, 2013.
a
Li, D., Pan, M., Cong, Z., Zhang, L., and Wood, E.: Vegetation control on water
and energy balance within the Budyko framework, Water Resour. Res., 49, 969–976,
https://doi.org/10.1002/wrcr.20107, 2013.
a,
b,
c
Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D.,
and Feng, M.: Quantifying the impacts of climate change and ecological
restoration on streamflow changes based on a Budyko hydrological model in
China's Loess Plateau, Water Resour. Res., 51, 6500–6519,
https://doi.org/10.1002/2014WR016589, 2015.
a
Liu, M., Tian, H., Chen, G., Ren, W., Zhang, C., and Liu, J.: Effects of land
use and land cover change on evapotranspiration and water yield in China during
the 20th century, J. Am. Water Resour. Assoc., 44, 1193–1207,
https://doi.org/10.1111/j.1752-1688.2008.00243.x, 2008.
a
Miao, C., Ni, J., Borthwick, A. G., and Yang, L.: A preliminary estimate of
human and natural contributions to the changes in water discharge and sediment
load in the Yellow River, Global Planet. Change, 76, 196–205,
https://doi.org/10.1016/j.gloplacha.2011.01.008, 2011.
a,
b,
c
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.: Fragmentation and
Flow Regulation of the World's Large River Systems, Science, 308, 405–408,
https://doi.org/10.1126/science.1107887, 2005.
a
Osborne, J. M. and Lambert, F. H.: The missing aerosol response in
twentieth-century mid-latitude precipitation observations, Nat. Clim. Change,
4, 374–378,
https://doi.org/10.1038/nclimate2173, 2014.
a,
b
Osborne, J. M., Lambert, F. H., Groenendijk, M., Harper, A. B., Koven, C. D.,
Poulter, B., Pugh, T. A. M., Sitch, S., Stocker, B. D., Wiltshire, A., and
Zaehle, S.: Reconciling Precipitation with Runoff: Observed Hydrological Change
in the Midlatitudes, J. Hydrometeorol., 16, 2403–2420,
https://doi.org/10.1175/JHM-D-15-0055.1, 2015.
a
Padrón, R. S., Gudmundsson, L., Greve, P., and Seneviratne, S. I.:
Large-Scale Controls of the Surface Water Balance Over Land: Insights From a
Systematic Review and Meta-Analysis, Water Resour. Res., 53, 9659–9678,
https://doi.org/10.1002/2017WR021215, 2017.
a
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H.,
Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., and
Fang, J.: The impacts of climate change on water resources and agriculture in
China, Nature, 467, 43–51,
https://doi.org/10.1038/nature09364, 2010.
a,
b,
c
Qiu, G. Y., Yin, J., Tian, F., and Geng, S.: Effects of the “Conversion of
Cropland to Forest and Grassland Program” on the water budget of the Jinghe
River catchment in China, J. Environ. Qual., 40, 1745–1755,
https://doi.org/10.2134/jeq2010.0263, 2011.
a
Roderick, M. L. and Farquhar, G. D.: A simple framework for relating variations
in runoff to variations in climatic conditions and catchment properties, Water
Resour. Res., 47, W00G07,
https://doi.org/10.1029/2010WR009826, 2011.
a
Roderick, M. L., Greve, P., and Farquhar, G. D.: On the assessment of aridity
with changes in atmospheric
CO2, Water Resour. Res., 51, 5450–5463,
https://doi.org/10.1002/2015WR017031, 2015.
a
Scheff, J., Seager, R., Liu, H., and Coats, S.: Are Glacials Dry? Consequences
for Paleoclimatology and for Greenhouse Warming, J. Climate, 30, 6593–6609,
https://doi.org/10.1175/JCLI-D-16-0854.1, 2017.
a
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B.,
Dankers, R., Eisner, S., Fekete, B. M., Colón-Gonález, F. J., Gosling,
S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T.,
Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F.,
Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under
climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250,
https://doi.org/10.1073/pnas.1222460110, 2014.
a,
b
Schneck, R., Reick, C. H., Pongratz, J., and Gayler, V.: The mutual importance
of anthropogenically and climate-induced changes in global vegetation cover for
future land carbon emissions in
the MPI-ESM CMIP5 simulations, Global Biogeochem.
Cy., 29, 1816–1829,
https://doi.org/10.1002/2014GB004959, 2015.
a
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global drought
over the past 60 years, Nature, 491, 435–438,
https://doi.org/10.1038/nature11575, 2012.
a,
b
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky,
S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9,
161–185,
https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
a
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G.,
Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis,
S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth,
A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R.,
Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z.,
and Myneni, R.: Recent trends and drivers of regional sources and sinks of
carbon dioxide, Biogeosciences, 12, 653–679,
https://doi.org/10.5194/bg-12-653-2015, 2015.
a,
b
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
a,
b
Tebaldi, C., Arblaster, J. M., and Knutti, R.: Mapping model agreement on future
climate projections, Geophys. Res. Lett., 38, L23701,
https://doi.org/10.1029/2011GL049863, 2011.
a
van der Velde, Y., Vercauteren, N., Jaramillo, F., Dekker, S. C., Destouni, G.,
and Lyon, S. W.: Exploring hydroclimatic change disparity via the Budyko
framework, Hydrol. Process., 28, 4110–4118,
https://doi.org/10.1002/hyp.9949, 2014.
a
Wang, H., Yang, Z., Saito, Y., Liu, J. P., and Sun, X.: Interannual and seasonal
variation of the Huanghe (Yellow River) water discharge over the past 50 years:
Connections to impacts from ENSO events and dams, Global Planet. Change, 50,
212–225,
https://doi.org/10.1016/j.gloplacha.2006.01.005, 2006.
a,
b,
c,
d
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
Implications of Dynamical and Statistical Approaches to Downscaling Climate
Model Outputs, Climatic Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
a
Xu, K., Milliman, J. D., and Xu, H.: Temporal trend of precipitation and runoff
in major Chinese Rivers since 1951, Global Planet. Change, 73, 219–232,
https://doi.org/10.1016/j.gloplacha.2010.07.002, 2010.
a,
b,
c
Xu, X., Yang, D., Yang, H., and Lei, H.: Attribution analysis based on the
Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe
basin, J. Hydrol., 510, 530–540,
https://doi.org/10.1016/j.jhydrol.2013.12.052, 2014.
a
Yang, D., Li, C., Hu, H., Lei, Z., Yang, S., Kusuda, T., Koike, T., and Musiake,
K.: Analysis of water resources variability in the Yellow River of China during
the last half century using historical data, Water Resour. Res., 40, W06502,
https://doi.org/10.1029/2003WR002763, 2004.
a,
b
Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., and Lei, Z.: Analyzing spatial
and temporal variability of annual water-energy balance in nonhumid regions
of China using the Budyko hypothesis, Water Resour. Res., 43, W04426,
https://doi.org/10.1029/2006WR005224, 2007.
a
Yang, H., Yang, D., Lei, Z., and Sun, F.: New analytical derivation of the mean
annual water-energy balance equation, Water Resour. Res., 44, W03410,
https://doi.org/10.1029/2007WR006135, 2008.
a
Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Water Resour. Res.,
37, 701–708,
https://doi.org/10.1029/2000WR900325, 2001.
a
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and
Briggs, P. R.: A rational function approach for estimating mean annual
evapotranspiration, Water Resour. Res., 40, W02502,
https://doi.org/10.1029/2003WR002710, 2004.
a
Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon,
S., Stott, P. A., and Nozawa, T.: Detection of human influence on twentieth-century
precipitation trends, Nature, 448, 461–465,
https://doi.org/10.1038/nature06025, 2007.
a
Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of
streamflow to changes in climate and land use/cover in the Loess Plateau, China,
Water Resour. Res., 44, W00A07,
https://doi.org/10.1029/2007WR006711, 2008.
a
Zhu, Z., Giordano, M., Cai, X., Molden, D., Shangchi, H., Huiyan, Z., Yu, L.,
Huian, L., Xuecheng, Z., Xinghai, Z., and Yunpeng, X.: Yellow river comprehensive
assessment: Basin features and issues – Collaborative research between
International Water Management Institute (IWMI) and Yellow River Conservancy
Commission (YRCC), IWMI working paper, International Water Management Institute, 2003. a