Articles | Volume 22, issue 9
https://doi.org/10.5194/hess-22-4921-2018
https://doi.org/10.5194/hess-22-4921-2018
Research article
 | 
21 Sep 2018
Research article |  | 21 Sep 2018

Inflation method for ensemble Kalman filter in soil hydrology

Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth

Related authors

Technical Note: Sequential ensemble data assimilation in convergent and divergent systems
Hannes Helmut Bauser, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 25, 3319–3329, https://doi.org/10.5194/hess-25-3319-2021,https://doi.org/10.5194/hess-25-3319-2021, 2021
Short summary
Covariance resampling for particle filter – state and parameter estimation for soil hydrology
Daniel Berg, Hannes H. Bauser, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 1163–1178, https://doi.org/10.5194/hess-23-1163-2019,https://doi.org/10.5194/hess-23-1163-2019, 2019
Short summary
EnKF with closed-eye period – towards a consistent aggregation of information in soil hydrology
Hannes H. Bauser, Stefan Jaumann, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 20, 4999–5014, https://doi.org/10.5194/hess-20-4999-2016,https://doi.org/10.5194/hess-20-4999-2016, 2016
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Uncertainty analysis
Evaluation of root zone soil moisture products over the Huai River basin
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024,https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Data worth analysis within a model-free data assimilation framework for soil moisture flow
Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 27, 2661–2680, https://doi.org/10.5194/hess-27-2661-2023,https://doi.org/10.5194/hess-27-2661-2023, 2023
Short summary
Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model
Natascha Brandhorst and Insa Neuweiler
Hydrol. Earth Syst. Sci., 27, 1301–1323, https://doi.org/10.5194/hess-27-1301-2023,https://doi.org/10.5194/hess-27-1301-2023, 2023
Short summary
Technical Note: Sequential ensemble data assimilation in convergent and divergent systems
Hannes Helmut Bauser, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 25, 3319–3329, https://doi.org/10.5194/hess-25-3319-2021,https://doi.org/10.5194/hess-25-3319-2021, 2021
Short summary
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019,https://doi.org/10.5194/hess-23-2897-2019, 2019

Cited articles

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. a
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, 59, 210–224, https://doi.org/10.1111/j.1600-0870.2006.00216.x, 2007. a, b, c, d, e
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, https://doi.org/10.1111/j.1600-0870.2008.00361.x, 2009. a, b, c, d, e, f
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a, b, c
Bateni, S. M. and Entekhabi, D.: Surface heat flux estimation with the ensemble Kalman smoother: Joint estimation of state and parameters, Water Resour. Res., 48, w08521, https://doi.org/10.1029/2011WR011542, 2012. a
Download
Short summary
Data assimilation methods like the ensemble Kalman filter (EnKF) can combine models and measurements to estimate states and parameters, but require a proper representation of uncertainties. In soil hydrology, model errors typically vary rapidly in space and time, which is difficult to represent. Inflation methods can account for unrepresented model errors. To improve estimations in soil hydrology, we designed a method that can adjust the inflation of states and parameters to fast varying errors.