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Abstract. The ensemble Kalman filter (EnKF) is a popular
data assimilation method in soil hydrology. In this context, it
is used to estimate states and parameters simultaneously. Due
to unrepresented model errors and a limited ensemble size,
state and parameter uncertainties can become too small dur-
ing assimilation. Inflation methods are capable of increasing
state uncertainties, but typically struggle with soil hydrologic
applications. We propose a multiplicative inflation method
specifically designed for the needs in soil hydrology. It em-
ploys a Kalman filter within the EnKF to estimate inflation
factors based on the difference between measurements and
mean forecast state within the EnKF. We demonstrate its ca-
pabilities on a small soil hydrologic test case. The method
is capable of adjusting inflation factors to spatiotemporally
varying model errors. It successfully transfers the inflation
to parameters in the augmented state, which leads to an im-
proved estimation.

1 Introduction

Data assimilation combines information from models and
measurements into an optimal estimate of a geophysical field
of interest (Reichle, 2008). It has applications in all branches
of the geosciences, with weather forecasting as the driving
force behind many recent advances (van Leeuwen et al.,
2015). The advantage of data assimilation methods (in con-
trast to, e.g., inverse modeling) is the possibility of consid-
ering model errors, which are characteristic of geophysical
systems.

The ensemble Kalman filter (EnKF) (Evensen, 1994;
Burgers et al., 1998) is a popular data assimilation method
due to its simple conceptional formulation and ease of imple-

mentation (Evensen, 2003). It is an extension of the Kalman
filter (Kalman, 1960) for nonlinear models.

In hydrology, the EnKF was used for soil moisture estima-
tion from satellite data (e.g., Reichle et al., 2002; Crow and
Van Loon, 2006) or from local measurements (e.g., De Lan-
noy et al., 2007, 2009; Camporese et al., 2009). However, the
largest uncertainties in hydrology are associated with soil hy-
draulic material properties. They can neither be measured di-
rectly nor can they be transferred from the lab to the field, and
are typically parameterized. Thus, including material prop-
erties in the estimation can be crucial in hydrology. Liu and
Gupta (2007) called for an integrated assimilation framework
including not only states, but also parameters and even model
structure.

The joint estimation of states and parameters in data as-
similation might be one possibility to reduce the influence
of model errors on parameter estimation (Liu et al., 2012).
Such a joint estimation in the EnKF with an augmented state
was already demonstrated by Anderson (2001) for an atmo-
spheric model. In hydrology Vrugt et al. (2005) combined
an EnKF and the shuffled complex evolution Metropolis al-
gorithm, while Moradkhani et al. (2005) used a dual EnKF
approach to estimate states and parameters for a rainfall–
runoff model. The joint assimilation of states and parameters
in an augmented state was successfully performed for exam-
ple in groundwater research (e.g., Chen and Zhang, 2006;
Hendricks Franssen and Kinzelbach, 2008; Kurtz et al., 2012,
2014; Erdal and Cirpka, 2016), but also in soil hydrology for
land surface models (e.g., Bateni and Entekhabi, 2012; Han
et al., 2014; Zhang et al., 2017) and on smaller scales based
on the Richards equation (e.g., Li and Ren, 2011; Wu and
Margulis, 2011, 2013; Song et al., 2014; Erdal et al., 2014;
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Erdal et al., 2015; Shi et al., 2015; Bauser et al., 2016; Brand-
horst et al., 2017; Botto et al., 2018).

Due to unrepresented model errors and due to a limited en-
semble size, the EnKF underestimates model errors, which
can lead to filter inbreeding. Systematic model errors are
common for example in land surface models (Vereecken
et al., 2015). Additionally, in soil hydrology spatially and
temporally varying model errors occur due to un- or ill-
represented processes like preferential flow or hysteresis.
Underestimated errors cause an insufficient ensemble spread
in the augmented state. This is especially severe for parame-
ters, which are typically not changed through a forward prop-
agation and consequently cannot increase their uncertainty
again. Due to the convergent dynamics in soil hydrology, the
uncertainty in the state depends strongly on the parameter
spread and becomes too small as well.

Covariance inflation can counteract filter inbreeding. Dif-
ferent methods have been proposed: (i) additive inflation,
which adds a model error after the forward propagation. This
method is especially useful if prior knowledge about the
model error exists. In atmospheric sciences additive inflation
has been successfully applied by, e.g., using reanalysis of
historical weather prediction errors (Whitaker et al., 2008).
(ii) Relaxation methods, which relax the analysis back to a
prior perturbation or spread, have been proposed with tun-
ing parameters (Zhang et al., 2004; Whitaker and Hamill,
2012) or based on deviations to measurements (Ying and
Zhang, 2015). (iii) Multiplicative covariance inflation, which
inflates the complete state with a scalar factor, where the in-
flation factor is either chosen manually (Anderson and An-
derson, 1999) or is estimated based on deviations from mea-
surements (e.g., Wang and Bishop, 2003; Anderson, 2007; Li
et al., 2009). This method has been further extended to inflate
each state component individually (Anderson, 2009).

All these inflation methods are developed in an atmo-
spheric sciences context. Their transfer to soil hydrology is
limited, due to the spatiotemporally varying model errors and
the typically employed augmented state. For groundwater re-
search, Kurtz et al. (2012) reported improved results by em-
ploying the inflation method by Anderson (2007), and Kurtz
et al. (2014) used the constant inflation by Anderson and An-
derson (1999). In soil hydrology, however, adjusted methods
have been used: for example, Han et al. (2014) and Zhang
et al. (2017) apply a special case of the inflation method by
Whitaker and Hamill (2012) and keep the parameter spread
constant to ensure a sufficient ensemble spread. Bauser et al.
(2016) used the method by Anderson (2009), but adjusted the
inflation of parameters.

Alternatively, no inflation method is reported (e.g., Li and
Ren, 2011; Shi et al., 2015), but instead a damping factor
(Hendricks Franssen and Kinzelbach, 2008), which can al-
leviate the issue, is employed. This is done by, e.g., Wu
and Margulis (2011), Song et al. (2014), Erdal et al. (2014),
Brandhorst et al. (2017), and Botto et al. (2018), where Erdal

et al. (2014) and Brandhorst et al. (2017) combined this
method with additive inflation.

In this paper, we propose a novel multiplicative inflation
method, specifically designed for the needs in the soil hy-
drology community. The inflation method can vary rapidly
in space and time to cope with the typically varying model
errors and it is capable of a transfer of the inflation in the
state to the parameters in the augmented state. The remain-
der of this paper is organized as follows: Sect. 2 describes
(i) the EnKF, (ii) our proposed inflation method and (iii) a
soil hydrologic test case. Section 3 shows the results of our
method applied to the test case, followed by discussion and
conclusion in Sects. 4 and 5.

2 Method

2.1 Ensemble Kalman filter

The EnKF (Evensen, 1994; Burgers et al., 1998) is the Monte
Carlo extension of the Kalman filter (Kalman, 1960) for non-
linear models and assumes unbiased Gaussian error distribu-
tions to combine model and measurement information. The
filter is a sequential method and alternates between a fore-
cast step and an analysis step. The forecast propagates a state
including its uncertainty forward in time. The analysis com-
bines uncertain model information with uncertain measure-
ments at this time into an optimal estimate of the state. These
two steps are now explained in more detail.

The forecast propagates an ensemble of states ϕn forward
from time k− 1 to time k with a model M ,

ϕ
f,n
k =M

(
ϕ

a,n
k−1

)
+βn, (1)

where the superscripts “f” and “a” denote forecast and analy-
sis respectively, while n denotes the ensemble members with
n= 1, . . . ,N . The uncertainty in the state is directly repre-
sented through the ensemble ϕa,n

k−1 and then propagated non-
linearly with the model. Unrepresented model errors can be
added through the unbiased Gaussian process noise β. This
is also called additive inflation. However, the details of the
model error are typically unknown and thus not represented
adequately. The propagated uncertainties are directly repre-
sented through the new forecast ensemble ϕf,n

k .
The state can be extended by, e.g., model parameters φ to

an augmented state u= [ϕ, φ]. This requires a forecast for
each augmented state component. Parameters are typically
assumed to be constant in time:

φ
f,n
k = φ

a,n
k−1. (2)

The forecast of the state ϕf,n
k now also depends on the corre-

sponding parameter set φa,n
k−1. This way, uncertainties in the

parameters are propagated as well and can be reduced jointly
in the analysis.
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Assuming unbiased Gaussian distributions, the ensemble
of augmented states is characterized through the forecast er-
ror covariance matrix Pf,

Pf
k =

[
u

f,n
k −u

f
k

][
u

f,n
k −u

f
k

]T
, (3)

where the overline denotes the expectation value and uf
k is

the ensemble mean.
The analysis combines model and measurement informa-

tion based on the Gaussian error assumption. The measure-
ment error covariance matrix R of the measurements d is
defined analogously as

Rk =
[
εnk
][
εnk
]T
, (4)

where ε is the measurement error. The measurements are
linked to the state through the linear measurement opera-
tor H, which maps from the state space to the measurement
space:

dk =Hkutrue,k + εk. (5)

The Kalman gain K weighs the forecast error covariance
matrix with the measurement error covariance matrix and
maps from the measurement space back to the state space,
based on the covariances in the forecast error covariance ma-
trix:

Kk = Pf
kH

T
k

[
HkPf

kH
T
k +Rk

]−1
. (6)

Based on the measurements, the Kalman gain updates the
forecast ensemble to the analysis ensemble:

u
a,n
k = u

f,n
k +Kk

[
dk + ε

n
k −Hku

f,n
k

]
. (7)

This update to the ensemble ua,n
k minimizes the analysis

error covariance Pa
k , which fulfills

Pa
k = [I−KkHk]Pf

k, (8)

for infinite ensemble sizes.
Through spurious correlations and non-Gaussian distri-

butions, Pa
k will become too small, which can lead to fil-

ter inbreeding and ultimately filter divergence (e.g., Hamill
et al., 2001). This is intensified if the model error required in
Eq. (1) is unknown.

A common way to alleviate this issue in hydrology is the
use of a damping factor γ ∈ [0, 1] (Hendricks Franssen and
Kinzelbach, 2008), which is multiplied to the correction vec-
tor in Eq. (7) and consequently lessens the uncertainty re-
duction. The damping factor can be extended to a vector γ
(and an entrywise multiplication) to treat augmented state
components differently (Wu and Margulis, 2011). Typically,
parameters are multiplied by a smaller factor than the state.
However, the damping factor can only alleviate and not com-
pletely prevent the inbreeding problem.

2.2 Multiplicative inflation for soil hydrology

Multiplicative inflation is another heuristic way to avoid fil-
ter inbreeding. Anderson and Anderson (1999) proposed to
increase the distance of each ensemble member to the ensem-
ble mean by multiplying this distance by

√
λ for the inflation

factor λ≥ 1:

u
f,n
inf =
√
λ
(
uf,n
−uf

)
+uf. (9)

This inflation factor is applied to the complete augmented
state and has to be adjusted to the specific problem. By con-
struction, it does not alter the mean value: uf

inf = u
f. A tem-

porally varying inflation factor can be estimated by com-
paring uncertainties with the distance of measurement and
forecast (e.g., Wang and Bishop, 2003; Anderson, 2007; Li
et al., 2009). A spatiotemporally adaptive inflation has been
achieved by estimating a vector λ for the complete aug-
mented state (Anderson, 2009). The author uses the corre-
lation between measurements and augmented state dimen-
sions and asks this question: How much inflation is required
in each dimension to explain the observed differences to the
measurements? Anderson (2009) showed that this works ex-
cellently for the actual state. However, we experienced pos-
sible over-inflation in parameters (which do not have any dy-
namics to compensate for this), which can lead to filter col-
lapses.

We propose a more conservative inflation method and ask
this question: How much of the required change in the infla-
tion are we allowed to transfer to the state dimensions based
on the correlation information? This can be achieved by ap-
plying a Kalman filter for the inflation within the EnKF.

In this Kalman filter, the inflation vector is treated as the
state variable. As for parameters, we choose a constant model
for the forecast in time:

λf
k = λ

a
k−1. (10)

For convenience we will drop the time subscript k in the fol-
lowing. Furthermore, we will use the same symbols as for
the EnKF, but denote them with the subscript λ. We approx-
imate the forecast error covariance matrix for lambda, Pf

λ,
based on the covariance matrix of the augmented state in the
EnKF, Pf, as the normalized absolute correlation matrix of
the augmented state ensemble. The matrix component ij is
determined as

(
Pf
λ

)
ij
= σ 2

λ

∣∣∣∣(Pf
)
ij

∣∣∣∣[(Pf
)
ii

(
Pf
)
jj

]− 1
2
, (11)

where σλ denotes the uncertainty of the inflation factors. It is
a tuning parameter that is kept constant over time and is as-
signed to all state dimensions. It influences how fast the infla-
tion factors are adjusted. This follows the idea by Anderson
(2007, 2009) to avoid a closure problem, where the inflation
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estimation would require its own inflation. Instead, the uncer-
tainty is kept constant. Furthermore, only the absolute value
of the correlation is considered, since the inflation is based
on differences between measurement and model, but ignores
their direction. Note, that this presumes that the correlations
of the model state can be transferred to the inflation. In the
presence of unknown model errors this assumption may or
may not be correct. However, the estimation at measurement
locations will remain meaningful in any case.

For the analysis, the distance dλ between mean forecast
and measurement is used as measurement for λ:

dλ =

∣∣∣d −Huf
inf

∣∣∣ . (12)

The measurement error covariance matrix Rλ of dλ can
be calculated based on the error covariance matrices of d
and Huf

inf,

(Rλ)ij =
∣∣∣∣(R)ij + (HPf

infH
T
)
ij

∣∣∣∣ , (13)

where the inflated forecast error covariance matrix Pf
inf can

be calculated from the inflation vector and the forecast error
covariance matrix by combining Eq. (9) (with vector λ and

entrywise multiplication) and Eq. (3): Pf
inf = Pf

◦[

√
λf
√
λfT
].

The entrywise product is denoted by ◦ and the entrywise
square root of λ by

√
λ.

The expected distance between measurement and mean
forecast based on the current inflation is(
hλ

(
λf
))

i
=
[
(Rλ)ii

] 1
2 , (14)

which combines the uncertainties of d and Huf
inf. To be able

to determine the Kalman gain, we first calculate the Jacobian
matrix Hλ of partial derivatives of hλ with respect to λ:

(Hλ)ij =
∂

∂
(
λf)

j

(
hλ

(
λf
))

i
,

=

[
2
[(
λf
)
j

] 1
2 (
hλ

(
λf
))

i

]−1

∑
m

(H)ij (H)im
(

Pf
)
jm

[(
λf
)
m

] 1
2
. (15)

With this approximated measurement operator Hλ, the
Kalman gain Kλ and the analysis state λa are obtained as

Kλ = Pf
λHT

λ

[
HλPf

λHT
λ +Rλ

]−1
, (16)

λa
= λf
+Kλ

[
dλ−hλ

(
λf
)]
. (17)

Note, that the matrices Pf
λ and Rλ can possibly become in-

definite, due to the absolute value in Eqs. (11) and (13). Con-
sequently, the inverse in Eq. (16) could become unfeasible.

However, we never encountered such a case. In a situation
with uncorrelated measurements, the issue can be resolved
by reducing σλ just for that single time step.

With this Kalman filter, the inflation vector is updated at
each time step based on the difference of the mean forecast to
the measurements. Following Anderson (2007), we addition-
ally prohibit a deflation by constraining the inflation values
to (λ)i ≥ 1.

2.3 Model

We test the proposed inflation method on a small hydrologic
test case. We constructed it specifically to require a strong
inflation. This makes it possible to explore features of the in-
flation in detail on a rather short timescale. Due to a small
ensemble size, the results vary depending on the seed of the
random numbers. This however, is related to different per-
formance of the EnKF itself. In simulations (results are not
shown), we found that the behavior of the inflation remains
consistent. We have also tested the inflation method with
real-world data by reanalyzing the application by Bauser
et al. (2016) with the main result shown in Appendix B.

The Richards equation describes the change of volumetric
soil water content θ (–) in a continuous porous medium,

∂θ

∂t
−∇ · [K(θ) [∇hm(θ)− 1]]= 0, (18)

where K (L T−1) is the isotropic conductivity and hm (L) is
the matric head. Both are related to the water content. This re-
lation is typically described through parameterized material
properties. We choose the Mualem–van Genuchten parame-
terization (Mualem, 1976; van Genuchten, 1980),

K(2)=K02
τ

[
1−

[
1−2n/[n−1]

]1−1/n
]2

, (19)

hm(2)=
1
α

[
2−n/[n−1]

− 1
]1/n

, (20)

with the saturation 2 (–),

2 :=
θ − θr

θs− θr
. (21)

The parameterization is described by a set of six parameters:
θs (–), θr (–), α (L−1), n (–), K0 (L T−1), and τ (–).

We additionally consider small-scale heterogeneity
through Miller scaling. It assumes geometrical similarity.
With this the microscopic geometry of the pore space at a
macroscopic position is parameterized by a single length
scale ξ and the macroscopic heterogeneity field can be
generated with a single scalar field of this length scale.
Miller and Miller (1956) showed that the hydraulic functions
scale with this parameter according to
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K(θ)=K∗(θ) · ξ2, (22)

hm(θ)= h
∗
m(θ) ·

1
ξ
, (23)

where the functions K(θ) and hm(θ) are defined at a refer-
ence point ∗ with Miller scaling parameter ξ = 1 and from
there are projected to all locations.

For the test, we choose a one-dimensional case with a
depth of 50 cm for a time of 6 days. We set a groundwa-
ter table as the lower boundary condition throughout the
whole time and start from equilibrium conditions. The up-
per boundary condition is no flux, except for a rain event
with 2.0× 10−7 (m s−1) during the fourth day. As observa-
tions we choose two water content measurements at depths of
9.5 and 19.5 cm as they would be available from time domain
reflectometry (TDR). We set the measurement uncertainty to
a standard deviation of 0.007 (e.g., Jaumann and Roth, 2017).

As material we choose sandy loam from Carsel and Par-
rish (1988): θs = 0.41, θr = 0.065, α =−7.5 m−1, n= 1.89,
K0 = 1.23× 10−5 m s−1, and τ = 0.5. For the Miller scal-
ing we choose ξ1 = 0.32 at the upper measurement position
and ξ2 = 3.2 at the lower measurement position. We reduce
the description of the heterogeneity to these two parameters.
The full function of the scaling factors is calculated by lin-
early interpolating between the measurement positions and
constantly extrapolating to the boundaries.

The forward simulations are performed using MuPhi (Ip-
pisch et al., 2006) with a spatial resolution of 1 cm. This cor-
responds to a state with 50 dimensions.

To test the inflation method, we perform a perfect model
experiment. With the EnKF we estimate the water content
state and four parameters (ξ1, ξ2, K0, and τ ) through the
augmented state u= [θ , log10(ξ1), log10(ξ2), log10(K0),τ ].
We choose to include the logarithm of ξ1, ξ2, and K0, be-
cause we expect a more linear relation to the water content
state than for the actual parameters. For the water content
state, we use the correct initial condition as the mean with an
uncertainty of 0.005. The uncertainty is spatially correlated
using the fifth-order piecewise rational function by Gaspari
and Cohn (1999) with the length scale c = 5 cm. As an ini-
tial guess for the parameters, we start with unknown het-
erogeneity log10(ξ1)= log10(ξ2)= 0.0± 0.25, correspond-
ing to 2 SD (standard deviations) away from the true val-
ues of log10(ξ1)=−0.5 and log10(ξ2)= 0.5. For the satu-
rated hydraulic conductivity, we choose a too small value of
log10(K0)=−5.5± 0.5, K0 in (m s−1), which is about 1 SD
away from the true value of log10(K0)=−4.9. For the tor-
tuosity τ = 0.5± 0.5 we start from the true value.

Through the unrepresented heterogeneity, we can mimic a
model error, leading to a bias towards smaller values for the
estimation of K0 during times without dynamics, which may
necessitate inflation. The parameter τ is expected to have a
smaller influence, since the uncertainty is chosen small and it

is already at the true value. This way it can act as an indicator
parameter for the inflation as it does not require inflation.

The EnKF is set up with a total of 25 ensemble members
and a damping vector of γ = [1.0, 0.3, 0.3, 0.3, 0.3], which
we also apply to the inflation. The damping factor of 0.3 is
applied to the parameters to alleviate issues of nonlinear re-
lations between observations and parameters. For the uncer-
tainty of the inflation factors we choose σλ = 1.0.

3 Results

We estimate the water content state together with the four
parameters ξ1, ξ2, K0 and τ with the EnKF as described in
Sect. 2.3. The development of the water content at the two
measurement locations at a depth of 9.5 and 19.5 cm is shown
together with the inflation factor at these locations in Fig. 1.
The inflation factor is applied to the forecast ensemble before
the analysis. The standard deviation of the inflated ensemble
should describe the distance of the estimated mean to the syn-
thetic truth. Note, that the inflation factor is not based on this
distance and relies on the noisy measurements. Therefore, it
is only an indicator.

During the first 3 days without any dynamics, the uncer-
tainty for the upper measurement is slightly underestimated,
while the uncertainty in the lower measurement is slightly
overestimated. This leads to an inflation factor of basically 1
for the lower measurement (factors smaller than 1 are not al-
lowed), while the inflation factor for the upper measurement
is larger. However, due to correlations between the measure-
ment locations a stronger inflation to fully explain the differ-
ence to the truth is prevented.

The deviation from the synthetic truth is induced through
the initial guess of no heterogeneity and can also be seen in
the systematic deviation of the inflated mean (which is equal
to the forecast mean) from the analysis mean. When the infil-
tration front reaches the measurements, the deviations from
the truth, underestimation of the uncertainty, and inflation
factors increase rapidly. All of them are more pronounced for
the upper measurement location. After the main peak, the dif-
ferences and also the inflation factors decrease rapidly again.

The inflation factor for the state is shown in Fig. 2. It
shows the strong increase in the inflation factor during the
infiltration and its fast decrease afterwards. The inflation is
strongest at the measurement location at a depth of 9.5 cm.
The inflation factor is transferred to the other state locations
through the correlations, which decrease with distance. Di-
rectly below the measurement locations the inflation factors
are increased less than above. This is due to the chosen inter-
polation of the Miller scaling factors. Through the interpo-
lation between the measurement locations and extrapolation
to the boundaries, the dynamics changes at the measurement
locations. During the infiltration the dynamics is mainly in-
fluenced by the water content above and the correlations with
these locations are stronger.
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(b) Measurement at 19.5 cm depth
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Figure 1. Water content estimation at the two measurement loca-
tions. The standard deviation of the inflated ensemble should be
able to explain the differences between the inflated mean and the
synthetic truth. The inflation factor is increased when the ensemble
uncertainty is too small.

The development of the Miller scaling factors ξ1 and ξ2
at the two measurement positions (9.5 and 19.5 cm depth) is
shown in Fig. 3a and b together with the estimated inflation
factor for these parameters. Both initial conditions assume no
heterogeneity and start at log10(ξ1)= log10(ξ2)= 0.0±0.25,
corresponding to 2 SD away from the true value. At the up-
per location the true value of log10(ξ1)=−0.5 corresponds
to a finer material. Consequently, the water content drops, as
seen in Fig. 1, leading to a strong correlation with the scal-
ing factor, and log10(ξ1) is adjusted rapidly to lower values.
Accordingly, the inflation factor is increased quickly in the
beginning and then reduced back to 1 when the estimation

of log10(ξ1) reaches and eventually underestimates the true
value. The underestimation of the scaling factor corresponds
to a too fine material, which leads to slower changes in the
water content state and therefore smaller correlations. The
scaling factor is corrected during the rain event on the fourth
day, which also leads to an inflation.

The initial guess for the scaling factor for the depth of
19.5 cm underestimates the scaling factor, which corresponds
to a too fine material. Again, the correlations are small. The
value increases slowly during the dry period in the beginning,
but is inflated and adjusted strongly during the rain event.

The saturated hydraulic conductivityK0 (Fig. 3c) was cho-
sen to start a little more than 1 SD below the true value. Due
to the unrepresented heterogeneity in the beginning, the value
decreases even further. The inflation remains very small due
to correlations with both measurement locations. However,
as soon as the infiltration event reaches the first measure-
ment location, the value is corrected towards the true value.
At the same time, the inflation factor is increased due to the
too small uncertainty. After the rain event the inflation factor
drops rapidly back to 1. The hydraulic conductivity remains
below the true value. Another rain event would be required
to improve the estimation further.

The tortuosity τ (Fig. 3d) also influences the hydraulic
conductivity function, but has in this case a much smaller
impact and consequently smaller correlations with the mea-
surements than K0. We use it as an indicator parameter and
start at the true value. During the infiltration event the value
is changed due to its correlation. The corresponding infla-
tion factor is increased as well, but remains small enough
and drops back to 1 quickly enough to not cause any over-
inflation of the parameter.

To emphasize the need for a fast-adapting inflation factor,
we reduce the uncertainty of the inflation factors to σλ = 0.5
to slow down their adjustment. The results are summarized
in Fig. 4. The inflation of the water content state (Fig. 4a)
shows that the inflation factor does not reach as high values
as before (see Fig. 2). To compensate for this, the inflation
acts over a longer period of time. The same effect is also
observed in the inflation of the parameters (Fig. 4b and c).
This leads to a smaller inflation during the rain event and
consequently a too small uncertainty. At later times, when
the cause of the error is not active any more, the correlations
with measurement locations are reduced, leading to a slower
reduction of the inflation in the parameters. In the indicator
parameter τ the beginning of an over-inflation can be seen
towards later times. This necessitates a more rapid inflation
when correlations are used to update inflation information.

The results for the parameters K0 and τ of a run with-
out inflation (and only damping) are shown in Fig. 5. Again,
K0 moves further away from the true value due to the un-
represented heterogeneity and comes closer to the true value
during the infiltration event. However, since the Miller scal-
ing factor is not inflated in the beginning, it is adjusted
slower. Consequently, theK0 is corrected longer in the wrong
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Figure 2. Inflation factor for the water content state. The inflation is strongest at the upper measurement location during the infiltration, when
the uncertainty is underestimated the most. The inflation factor is transferred to the other measurement locations through the correlations in
the Kalman gain. The used interpolation of Miller scaling factors impacts these correlations and leads to the smaller inflation directly below
the measurement locations.
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Figure 3. Development of Miller scaling factors ξ1 and ξ2, saturated hydraulic conductivity K0, and tortuosity τ together with their corre-
sponding inflation factors during estimation with the EnKF.

direction. The uncertainty eventually becomes too small and
in the end the mean is more than 5 SD away from the true
value, since the uncertainty cannot be increased any more.

4 Discussion

The proposed inflation method uses a Kalman filter to es-
timate inflation factors within the EnKF. It is based on the
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Figure 4. Development of the inflation factor for the water content state and saturated hydraulic conductivity K0 and tortuosity τ together
with their corresponding inflation factors for an estimation with a reduced inflation factor uncertainty of σλ = 0.5.
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Figure 5. Development of saturated hydraulic conductivity K0 and tortuosity τ for an estimation without inflation.

difference between measurements and mean forecast state.
It transfers correlations from the forecast of the augmented
state to the inflation. Consequently, the performance will be
limited if model errors are structurally not represented in the
forecast error covariance matrix. The estimation of the in-
flation factors with a Kalman filter is, like the EnKF itself,

based on a linearized analysis. The use of a damping factor
can alleviate issues with estimating nonlinear dependent pa-
rameters. To keep the inflation consistent with the analysis in
the EnKF, we apply the same damping factor for both.

We designed a small synthetic hydrologic test case for the
inflation. This test case mimics a model error through ini-
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tially unrepresented heterogeneity. We designed the test case
so that a strong temporally varying inflation is necessary, as
it can occur with real data. We choose a short time so that the
details of the behavior of the method can be explored. The
method showed that it is capable of inflating states and pa-
rameters. The inflation is adjusted quickly and differentiates
between parameters with strong and not so strong correla-
tions. No over-inflation of weakly correlated parameters oc-
curred. In this specific test case the estimation with inflation
is far superior to an estimation without inflation.

The fast adjustment speed of the inflation factor is impor-
tant because of the fast-changing model errors and correla-
tions with parameters. The adjustment speed is determined
by the uncertainty of the inflation factor. This uncertainty is
set to a constant value and has to be adjusted. For all our
cases a value of σλ = 1 was sufficient, but larger values were
possible too. The need for such a fast adjustment is shown
by estimating the same case with a reduced uncertainty of
σλ = 0.5, which leads to a slower adaptation of the inflation
factor. This leads to smaller inflation factors, which is com-
pensated for by maintaining them for a longer period of time.
In this test case this leads to inflation at times after the infil-
tration front has passed the measurements already and the
model error is small again. This can cause over-inflation of
weakly correlated parameters. Too large uncertainties of the
inflation (in our test case σλ = 4), where the uncertainty is
larger than the typical range for the values of lambda, can
also lead to over-inflation of weakly correlated parameters.
Reasons for this can be the linearizations in the analysis and
the calculation of the Jacobian (Eq. 15). This limits the ad-
justment speed of the inflation.

Fast-dropping correlations between measurements and pa-
rameters are a limit for the method. An example could be a
parameter only acting on an infiltration boundary condition.
After the infiltration is over, correlations with this parameter
would drop to zero and the inflation factor for this param-
eter will not be changed any more. If the inflation factor is
not equal to 1 at this time, the parameter spread will keep
increasing. In such a case, when there is no correlation, the
parameter should be excluded from the estimation and con-
sequently also from the inflation.

The method is in principle capable of compensating unrep-
resented model errors. However, it relies on correlations cal-
culated from the forecast ensemble of the augmented state.
If parameters have correlations with measurement locations
with underestimated forecast uncertainties, the inflation will
keep increasing the parameter spread until the forecast uncer-
tainties are increased sufficiently. Therefore the correlations
have to contain useful information. This means that inflating
the parameters based on their correlations with measurement
locations has to increase the forecast spread at these measure-
ment locations. If the parameters have an insufficient influ-
ence on the state uncertainty, an over-inflation of the param-
eters can occur. An example are measurements with underes-
timated measurement uncertainties and short times between

measurements compared to the timescale of the dynamics.
Then the parameters are not able to increase the state uncer-
tainty in the short forecast time between measurements and
the forecast dynamics is not able represent the measurement
noise. If such errors occur intermittently, e.g., the closed-eye
period as proposed by Bauser et al. (2016) could be used
to bridge these times. A rather heuristic solution could be a
decay of the inflation factor towards values of 1, as already
proposed by Anderson (2009).

5 Conclusions

In this work we propose a novel spatiotemporally adaptive
inflation method, specifically designed for soil hydrology,
which nevertheless is expected to work in similar systems as
well. The inflation method is based on a Kalman filter acting
within the EnKF. The method is capable of rapid adjustments
of inflation factors, treating each augmented state dimension
individually. This rapid adjustment is required due to tem-
porally varying model errors, as they can appear through vi-
olation of the local equilibrium assumption of the Richards
equation, hysteresis, or unrepresented heterogeneity.

We demonstrate the use of our inflation method in combi-
nation with a damping factor on a small hydrologic example.
We choose heterogeneity as a possible model error, but allow
the heterogeneity to be estimated along with the soil hydro-
logic parameters K0 and τ of the Mualem–van Genuchten
parameterization. Our proposed inflation method proved to
be stable in combination with parameter estimation. The per-
formance of the estimation improved and parameter uncer-
tainty remained consistent. The method requires that the cor-
relations from in the forecast ensemble contain useful in-
formation for the inflation. However, we demonstrate that it
even works for only weakly correlated parameters. We expect
the inflation method to generally improve data assimilation
with the EnKF and to thus lead to better state and parameter
estimations in soil hydrology.

Data availability. The synthetic data are available upon request
from the corresponding author.
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Appendix A: Jacobian in the inflation method

We briefly show the derivation of the Jacobian matrix Hλ

for the inflation (Eq. 15). Again, the entrywise product is de-
noted by ◦ and the entrywise square root of λ by
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Appendix B: Real-world application

We also applied the inflation method to reanalyze the case
presented earlier by Bauser et al. (2016), where measure-
ments from 11 TDR probes were assimilated with an EnKF.
There, the inflation method confirmed the behavior observed
in the small synthetic case presented in this paper. For the
details of the real-world case as well as the concept of the
closed-eye period please refer to Bauser et al. (2016) or
Bauser (2018, chap. 5), the latter of which also includes the
reanalysis of the case.

In this paper, we only show the inflation related to the
closed-eye period (Fig. B1), which presents the major chal-
lenge to the inflation in that particular application. During
this time, preferential flow occurs and the underlying local
equilibrium assumption of the Richards equation is violated.
With a standard approach, parameters become biased to com-
pensate these errors. To avoid this, Bauser et al. (2016) in-
troduced the closed-eye period, which pauses the parameter
estimation and only guides the water content states through
times, when assumptions are violated. Compared to the stan-
dard approach, this leads to a reduced bias in the parameters,
but effectively increases the model errors during the closed-
eye period. A strong inflation is required to compensate this
error. The inflation method used in Bauser et al. (2016) was
just able to accomplish this and the authors were concerned
that a too slow adjustment speed of the inflation limits the
applicability of the closed-eye period for cases with larger
model errors.

Figure B1 confirms the fast adjustment speed of the new
inflation method proposed in this paper for the real-world
application. The strong required inflation stays well within
the closed-eye period. This enables the EnKF to pick up the
parameter estimation after the period from a water content
state consistent with the TDR measurements and facilitates
the use of the closed-eye period.
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Figure B1. Inflation factor for the water content state in a real-world application for a standard and closed-eye EnKF together with atmo-
spheric forcing and the corresponding response of measured water contents. The closed-eye period starts when the infiltration front reaches
the topmost TDR. During this time the local equilibrium assumption of the Richards equation is violated and a strong inflation is required.
The new inflation method allows a fast adjustment of the inflation factors, which enables the EnKF to effectively guide the water content
states with the TDR measurements through the closed-eye period. Modified from Bauser (2018).
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