Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4229-2018
https://doi.org/10.5194/hess-22-4229-2018
Research article
 | 
10 Aug 2018
Research article |  | 10 Aug 2018

Modelling biocide and herbicide concentrations in catchments of the Rhine basin

Andreas Moser, Devon Wemyss, Ruth Scheidegger, Fabrizio Fenicia, Mark Honti, and Christian Stamm

Related authors

Learning Landscape Features from Streamflow with Autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-47,https://doi.org/10.5194/hess-2024-47, 2024
Preprint under review for HESS
Short summary
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023,https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Metamorphic Testing of Machine Learning and Conceptual Hydrologic Models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-168,https://doi.org/10.5194/hess-2023-168, 2023
Revised manuscript accepted for HESS
Short summary
Improving hydrologic models for predictions and process understanding using neural ODEs
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022,https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving conceptual hydrological models
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072, https://doi.org/10.5194/gmd-14-7047-2021,https://doi.org/10.5194/gmd-14-7047-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024,https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
A network approach for multiscale catchment classification using traits
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024,https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Multi-model approach in a variable spatial framework for streamflow simulation
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024,https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024,https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024,https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary

Cited articles

Archfield, S. A. and Vogel, R. M.: Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, https://doi.org/10.1016/j.agee.2008.06.014, 2010. 
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L.: Soil and Water Assessment Tool, Input/Output File Documentation, Version 2009, 2011. 
Bannwarth, M. A., Sangchan, W., Hugenschmidt, C., Lamers, M., Ingwersen, J., Ziegler, A. D., and Streck, T.: Pesticide transport simulation in a tropical catchment by SWAT, Environ. Pollut., 191, 70–79, https://doi.org/10.1016/j.envpol.2014.04.011, 2014. 
Bartels, H., Weigl, E., Reich, T., Lang, P., Wagner, A., Kohler, O., and Gerlach, N.: Projekt RADOLAN, Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer), Abschlussbericht, Deutscher Wetterdienst, 2004 (in German). 
Beck, M.: Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23, 1393–1442, 1987. 
Download
Short summary
Many chemicals such as pesticides, pharmaceuticals or household chemicals impair water quality in many areas worldwide. Measuring pollution everywhere is too costly. Models can be used instead to predict where high pollution levels are expected. We tested a model that can be used across large river basins. We find that for the selected chemicals predictions are generally within a factor of 2 to 4 from observed concentrations. Often, knowledge about the chemical use limits the predictions.