Articles | Volume 22, issue 6
https://doi.org/10.5194/hess-22-3421-2018
https://doi.org/10.5194/hess-22-3421-2018
Research article
 | 
22 Jun 2018
Research article |  | 22 Jun 2018

Hydroclimatic control on suspended sediment dynamics of a regulated Alpine catchment: a conceptual approach

Anna Costa, Daniela Anghileri, and Peter Molnar

Related authors

Temperature signal in suspended sediment export from an Alpine catchment
Anna Costa, Peter Molnar, Laura Stutenbecker, Maarten Bakker, Tiago A. Silva, Fritz Schlunegger, Stuart N. Lane, Jean-Luc Loizeau, and Stéphanie Girardclos
Hydrol. Earth Syst. Sci., 22, 509–528, https://doi.org/10.5194/hess-22-509-2018,https://doi.org/10.5194/hess-22-509-2018, 2018
Short summary
A Process–Based Rating Curve to model suspended sediment concentration in Alpine environments
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-419,https://doi.org/10.5194/hess-2017-419, 2017
Manuscript not accepted for further review
Short summary
Lithological control on the landscape form of the upper Rhône Basin, Central Swiss Alps
Laura Stutenbecker, Anna Costa, and Fritz Schlunegger
Earth Surf. Dynam., 4, 253–272, https://doi.org/10.5194/esurf-4-253-2016,https://doi.org/10.5194/esurf-4-253-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Karst aquifer discharge response to rainfall interpreted as anomalous transport
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024,https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024,https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Large-sample hydrology – a few camels or a whole caravan?
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024,https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024,https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024,https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary

Cited articles

Aas, E. and Bogen, J.: Colors of Glacier Water, Water Resour. Res., 24, 561–565, 1988. 
Anselmetti, F. S., Bühler, R., Finger, D., Girardclos, S., Lancini, A., Rellstab, C., and Sturm, M.: Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation, Aquat. Sci., 69, 179–198, 2007. 
Bakker, M., Costa, A., Stutenbecker, L., Girardclos, S., Loizeau J.-L., Molnar P., Schlunegger, F., and Lane S. N.: Combined flow abstraction and climate change impacts on an aggrading Alpine river, Water Resour. Res., 54, 223–242, https://doi.org/10.1002/2017WR021775, 2018. 
Bennett, G., Molnar, P., Eisenbeiss, H., and McArdell, B. W.: Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben, Earth Surf. Proc. Land., 37, 1627–1640, https://doi.org/10.1002/esp.3263, 2012. 
Boulton, G. S.: Processes and patterns of glacial erosion, edited by: Coates, D. R., Glacial Geomorphology, New York State University, 41–87, 1974. 
Download
Short summary
We analyse the control of hydroclimatic factors – erosive rainfall, ice melt, and snowmelt – on suspended sediment concentration (SSC) of Alpine catchments regulated by hydropower, and we develop a multivariate hydroclimatic–informed rating curve. We show that while erosive rainfall determines the variability of SSC, ice melt generates the highest contribution to SSC per unit of runoff. This approach allows the exploration of climate–driven changes in fine sediment dynamics in Alpine catchments.