Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1175-2018
https://doi.org/10.5194/hess-22-1175-2018
Research article
 | 
12 Feb 2018
Research article |  | 12 Feb 2018

Evaluation of statistical methods for quantifying fractal scaling in water-quality time series with irregular sampling

Qian Zhang, Ciaran J. Harman, and James W. Kirchner

Related authors

OLIGOTREND, a global database of multi-decadal chlorophyll a and water quality time series for rivers, lakes, and estuaries
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025,https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary

Cited articles

Aubert, A. H., Kirchner, J. W., Gascuel-Odoux, C., Faucheux, M., Gruau, G., and Mérot, P.: Fractal water quality fluctuations spanning the periodic table in an intensively farmed watershed, Environ. Sci. Technol., 48, 930–937, https://doi.org/10.1021/es403723r, 2014.
Beran, J.: Long-range dependence, Wiley Interdiscip. Rev. Comput. Stat., 2, 26–35, https://doi.org/10.1002/wics.52, 2010.
Beran, J., Feng, Y., Ghosh, S., and Kulik, R.: Long-Memory Processes: Probabilistic Properties and Statistical Methods, Berlin, Heidelberg, Springer Berlin Heidelberg, 884 pp., 2013.
Boutahar, M., Marimoutou, V., and Nouira, L.: Estimation Methods of the Long Memory Parameter: Monte Carlo Analysis and Application, J. Appl. Stat., 34, 261–301, https://doi.org/10.1080/02664760601004874, 2007.
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C.: Time Series Analysis, Fourth Edition. Hoboken, NJ, John Wiley & Sons, Inc., 47–92, 2008.
Download
Short summary
River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. This paper provides a comprehensive overview of the various approaches for quantifying fractal scaling in irregularly sampled data and provides new understanding and quantification of the methods’ performances. More generally, the findings and approaches may be broadly applicable to irregularly sampled data in other scientific disciplines.
Share