Articles | Volume 21, issue 12
https://doi.org/10.5194/hess-21-5971-2017
https://doi.org/10.5194/hess-21-5971-2017
Research article
 | 
30 Nov 2017
Research article |  | 30 Nov 2017

On the value of water quality data and informative flow states in karst modelling

Andreas Hartmann, Juan Antonio Barberá, and Bartolomé Andreo

Related authors

Performance assessment of geospatial and time series features on groundwater level forecasting with deep learning
Mariana Gomez, Maximilian Noelscher, Andreas Hartmann, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2023-1836,https://doi.org/10.5194/egusphere-2023-1836, 2023
Short summary
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023,https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Estimating karst groundwater recharge from soil moisture observations – a new method tested at the Swabian Alb, southwest Germany
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023,https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022,https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Pitfalls and a feasible solution for using KGE as an informal likelihood function in MCMC methods: DREAM(ZS) as an example
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022,https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024,https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024,https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024,https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024,https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary

Cited articles

Aquilina, L., Ladouche, B., Dörfliger, N., and Doerfliger, N.: Water storage and transfer in the epikarst of karstic systems during high flow periods, J. Hydrol., 327, 472–485, 2006.
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Barberá, J. A.: Hydrogeological research in the carbonate aquifers of eastern Serranía de Ronda (Málaga) in Spanish and English, PhD thesis at the Centre of Hydrogeology of the University of Málaga CEHIUMA (Spain), 2014.
Barberá, J. A. and Andreo, B.: Hydrogeological characterization of two karst springs in southern Spain by hydrochemical data and intrinsic natural fluorescence, in: IAH Selected Papers – Groundwater Quality Sustainability, edited by: Maloszewski, P., Witczak, S., and Malina, G., Vol. 17, 281–295, ISBN:978-0-415-69841-2, 2012.
Barberá, J. A. and Andreo, B.: Hydrogeological processes in a fluviokarstic area inferred from the analysis of natural hydrogeochemical tracers. The case study of eastern Serranía de Ronda (S Spain), J. Hydrol., 523, 500–514, https://doi.org/10.1016/j.jhydrol.2015.01.080, 2015.
Download
Short summary
In karst modeling, there is often an imbalance between the complexity of model structures and the data availability for parameterization. We present a new approach to quantify the value of water quality data for improved karst model parameterization. We show that focusing on “informative” time periods, which are time periods with decreased observation uncertainty, allows for further reduction of simulation uncertainty. Our approach is transferable to other sites with limited data availability.