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Abstract. If properly applied, karst hydrological models are
a valuable tool for karst water resource management. If they
are able to reproduce the relevant flow and storage processes
of a karst system, they can be used for prediction of water
resource availability when climate or land use are expected
to change. A common challenge to apply karst simulation
models is the limited availability of observations to identify
their model parameters. In this study, we quantify the value
of information when water quality data (NO−3 and SO2−

4 ) is
used in addition to discharge observations to estimate the pa-
rameters of a process-based karst simulation model at a test
site in southern Spain. We use a three-step procedure to (1)
confine an initial sample of 500 000 model parameter sets by
discharge and water quality observations, (2) identify alter-
ations of model parameter distributions through the confine-
ment, and (3) quantify the strength of the confinement for the
model parameters. We repeat this procedure for flow states,
for which the system discharge is controlled by the unsatu-
rated zone, the saturated zone, and the entire time period in-
cluding times when the spring is influenced by a nearby river.
Our results indicate that NO−3 provides the most information
to identify the model parameters controlling soil and epikarst
dynamics during the unsaturated flow state. During the sat-
urated flow state, SO2−

4 and discharge observations provide
the best information to identify the model parameters related
to groundwater processes. We found reduced parameter iden-
tifiability when the entire time period is used as the river in-
fluence disturbs parameter estimation. We finally show that
most reliable simulations are obtained when a combination
of discharge and water quality date is used for the combined
unsaturated and saturated flow states.

1 Introduction

It is estimated that around 10–15 % of emerged Earth surface
is covered by soluble rocks that are susceptible to be karsti-
fied (Ford and Williams, 2007). Today, aquifers developed in
such types of rock roughly supply groundwater to a quarter
of the world’s population. The importance of groundwater
resources from karst aquifers is not only limited to satisfy
the fresh water demand of large regions with millions of in-
habitants (e.g. Austria or Slovenia) but also it guarantees the
water supply in small settlements where karst waters are the
only source of drinking water.

The intrinsic characteristics of karst aquifers such as the
development of a secondary porosity through enlarged con-
duits and fractures, as well as the duality of the recharge (dif-
fuse vs. concentrated), result in a high-permeability media
(Bakalowicz, 2005; White and White, 2003). The shallower
parts of the aquifers, including soil and epikarst (i.e. unsat-
urated zone), play a key role in the understanding of sys-
tem functioning. Epikarst is characterized by slow percola-
tion of air and water into narrow fissures, inducing water
storage, and by a rapid drainage through a connected con-
duit system promoting flow concentration (Aquilina et al.,
2006; Ford and Williams, 2007; Labat et al., 2000). Thus, in
the top few metres of aquifer rock, biogeochemical processes
occur in a multiphase environment (gas, liquid, and solid)
and recharge waters rapidly acquire their chemical compo-
sition, remaining practically unaltered until they reach the
emergence points. Rapid drainage deters that such a physic-
ochemical processes may dissipate naturally a potential con-
taminant entering into the system. Therefore, karst aquifers
are especially vulnerable to contamination despite the fact
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that the unsaturated zone, jointly with soil and epikarst, acts
chemically as a reaction layer that is able to modify the
groundwater quality in a substantial way.

Simulation models are a common tool to address water
management questions such as the impacts of climate and
land use changes on karst water resources (Hartmann et al.,
2014a). In order to provide reliable predictions, these models
need to include the most relevant processes of karst systems
and various approaches have been developed to include karst
processes in distributed and lumped karst simulation models
(Ghasemizadeh et al., 2012; Hartmann et al., 2014a; Hart-
mann and Baker, 2017; Kovacs and Sauter, 2007; Sauter et
al., 2006). The choice of the model approach is usually due
to the required purpose. A key challenge in all of these karst
modelling approaches is the identification of the model pa-
rameters. Methods to explore and analyse karst systems can
provide prior knowledge on karst system properties (Gold-
scheider and Drew, 2007) that can be used to gain prior in-
formation on karst model parameters such as hydraulic con-
ductivities or catchment boundaries. However, capturing the
entire heterogeneity of karst systems with those methods is
commonly impossible (Hartmann et al., 2013a) and inverse
parameter estimation schemes, for instance automatic cali-
bration by observed discharge, have to be applied.

Work with automatic calibration approaches showed that
using only discharge observations for model calibration al-
lows us to identify up to six model parameters (Jakeman
and Hornberger, 1993; Wheater et al., 1986; Ye et al., 1997).
More recent works also revealed that including disinforma-
tive periods in the calibration, i.e. periods when errors in
the observation can be expected, may significantly bias the
results of model calibration and evaluation of hydrological
models (Beven et al., 2011; Beven and Westerberg, 2011;
Kauffeldt et al., 2013). Due to the complexity of karst pro-
cesses, karst models usually require more than six model
parameters to reflect the most important hydrological pro-
cesses. Some studies tried to compensate for this apparent
lack of information by using auxiliary data such as gravimet-
ric information (Mazzilli et al., 2012), artificial tracer exper-
iments (Hartmann et al., 2012; Oehlmann et al., 2015), or
hydrochemical information (Charlier et al., 2012; Hartmann
et al., 2013b, 2016). However, to our knowledge the problem
of disinformative observations, either discharge observations
or auxiliary information, has not been addressed explicitly in
karst modelling studies.

This study proposes a new approach to quantitatively as-
sess the information content of discharge and hydrochemi-
cal information for karst model calibration including periods
with disinformative observations. A process-based model is
used to simulate the hydrodynamic and hydrochemical (NO−3
and SO2−

4 ) behaviour of a karst system, at which the unsat-
urated zone dynamics dominate under recharge conditions,
controlling groundwater flow and solute transport processes.
During specific periods, the discharge and chemistry of the

system is influenced by the surface flow of a nearby river,
which constitutes disinformative periods for model parame-
ter estimation. A new parameter estimation approach is em-
ployed to estimate the information content of the different
types of calibration data during predefined flow states that
focus on time periods dominated by unsaturated zone dis-
charge, saturated zone discharge, and periods that include the
disinformative observations. Even though it is applied to only
one particular study site this approach can easily be trans-
ferred to any hydrological system where different observa-
tion types are available for calibration.

2 Study site description

The experimental area is located in the eastern Ronda moun-
tains, in the NW of Málaga province (southern Spain). It con-
sists of steep and rugged NE–SW oriented reliefs (e.g. Sierra
Blanquilla), reaching a maximum height of 1 428 m a.s.l.
(Viento peak; Fig. 1). Geologically, three main stratigraphic
groups can be differentiated (Cruz-Sanjulián, 1974; Martín-
Algarra, 1987; Fig. 1): (i) clays and evaporites of upper Tri-
assic age (the older formation), (ii) a thick (up to 500 m)
carbonate sequence of Jurassic dolostones and limestones
forming the main aquifer (i.e. Sierra Blanquilla), and (iii)
Cretaceous-Paleogene marls and marly limestones as the up-
permost materials. The geological structure of the Sierra
Blanquilla is constituted by a NE–SW oriented box-shaped
anticline, plunging towards NE (Martín-Algarra, 1987), with
a flat and wide hinge, as well as subvertical flanks. The folded
structure is also fractured by two sets of faults 50◦ N–70◦ E
and N150E oriented (Fernández, 1980). From the point of
view of the karst landscape development in plateau areas, the
horizontal bedding planes of carbonate exposures together
with the high precipitation rate have favoured the formation
of exokarstic features including karrenfields, dolines, uvalas,
shafts, and swallets, as a result of intense karstification pro-
cesses.

2.1 Karst hydrogeology

The Sierra Blanquilla carbonate aquifer is permeable through
fractures and by karstification. Recharge is mostly produced
by rainwater infiltration through the carbonate exposures, al-
though seepage from a losing river and streams also account
for groundwater input (Barberá and Andreo, 2015, 2012).
Natural groundwater discharge is preferentially conducted
towards the SE border of the aquifer (Fig. 1), through sev-
eral springs that constitute the discharge area towards the
Turón river valley (Barberá, 2014). Among them, El Burgo
(BG, 600 m a.s.l.) and Hierbabuena (HB, 645 m a.s.l.) peren-
nial springs drain most of the groundwater of the hydrogeo-
logical system (Fig. 1). During high-flow periods, when the
total flow of the BG and HB springs exceeds 1.1 m3 s−1, two
overflow springs (Ofs-I, 655 m a.s.l.; and Ofs-II, 670 m a.s.l.),
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Figure 1. Geographic, geological, and hydrogeological features of the Sierra Blanquilla carbonate aquifer.

located upstream of the permanent ones, activate after heavy
rainfall events (Barberá and Andreo, 2015). Low flow is es-
tablished when the permanent groundwater flow (from BG
and HB springs) is below 0.2 m3 s−1.

The main hydrological feature in the test site, the Turón
river, intermittently crosses the carbonate exposures at the
southern border of the Blanquilla aquifer (Fig. 1). The sur-
face flow has been demonstrated to alter the hydrodynamic
functioning of both perennial springs (Barberá and Andreo,
2015), which are partly affected by the existence of two regu-
lation dams (20–25 m high) built over the Turón riverbed, just
several tens of meters downstream from the springs (Fig. 1).
In high-flow periods, both headwater and groundwater dis-
charge from the Sierra Blanquilla aquifer maintain the river
flow, while during low-flow conditions, the Turón river is ex-
clusively fed by karst groundwater.

2.2 Dominant hydrogeological processes

Electrical conductivity (EC) has been used as a global
physicochemical marker for distinguishing the hydrochem-
ical states that characterize the El Burgo spring discharge.
Generally, EC peaks seem to be concomitant with maximum
spring discharge on the event scale, which is evidence that
more mineralized groundwater is drained immediately after
each rainfall episode (green shaded areas in Fig. 2). Barberá
and Andreo (2015) stated that this high EC groundwater is
also characterized by higher alkalinity and logPCO2 values
and higher Ca2+ and TOC (total organic carbon) contents,
suggesting the predominant limestone dissolution in the shal-
lower parts of the aquifer. This spring behaviour reflects a
functioning based on a “piston effect”, by which groundwa-
ter stored in the epikarst reservoir is pulled out to the unsatu-
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Figure 2. Decomposition of the El Burgo spring flow in selected hydrochemical states from EC and discharge time series: (1) unsaturated
zone dominates discharge; (2) saturated zone dominates discharge; and (3) discharge (and EC) influenced by the Turón river flow; the
combination of unsaturated and saturated states represents the combined flow state.

rated and saturated zone until the discharge zone by a subse-
quent recharge pulse. Therefore, unsaturated flow dominates
under high-water conditions in the El Burgo spring (unsatu-
rated state in Fig. 2).

Under low-flow conditions (no rainfall, light gray areas
with data areas in Fig. 2), EC levels in the groundwater re-
main quite stable in the range of 320–330 µS cm−1. This pro-
vides the chemical baseline of the system (saturated state
in Fig. 2), which is dependent on the accumulated rainfall
on each hydrological year. The lower and less variable EC
values of groundwater compared with those obtained un-
der high-water conditions can be explained by the loss of
“aggressiveness” of groundwater (degassed waters with re-
spect to CO2) flowing through the system as a consequence
of the lack of aquifer recharge (Barberá and Andreo, 2015).
Therefore, groundwater drainage under low-water conditions
consists of a system of slower flows coming from capaci-
tive compartments of the aquifer (the phreatic zone). With
these circumstances, the functioning of the hydrogeologi-
cal system is mainly dominated by the saturated zone (sat-
urated state in Fig. 2). Even though there still might be some
seepage from the soil and epikarst during this stage, the hy-
drochemical signature of the spring, which is dominated by
the signal of the phreatic zone (Barberá and Andreo, 2015),
shows that these fractions are not very important.

Marked dilutions in groundwater mineralization (below
the chemical baseline of the system), which very often oc-
cur during the spring recession after flood events, are also
observed in the chemograph of the El Burgo spring (pref-
erentially from March to June in Fig. 2). Since the Turón
river waters are less mineralized than groundwater and that
the temporary storage of surface water in the nearby river
dam favours water mixing, surface water dilutes groundwater
from the spring (river influenced state in Fig. 2). This occurs

when the river stage is higher than the groundwater level in
the discharge zone, promoting water flow towards the aquifer
(Barberá and Andreo, 2015).

3 Methodology

3.1 Available data

Continuous daily measurements of precipitation and air tem-
perature were recorded at Añoreta weather station (Fig. 1)
and discrete sampling campaigns for meteoric water chem-
istry (NO−3 and SO2−

4 among others) were performed in a
rain collector installed to the north of Viento peak (Fig. 1),
from August 2007 to April 2010. From meteorological data,
potential evapotranspiration was calculated on a daily time
scale using Thornthwaite’s approach (Thornthwaite, 1948).
Discontinuous measurements of the Turón river flow in two
selected sections (Tup and Tdn), upstream and downstream of
the permanent and temporary springs, were conducted during
the same study period to quantify the net groundwater dis-
charge from the Sierra Blanquilla aquifer. Simultaneously, a
representative sampling of the chemical composition (NO−3
and SO2−

4 ) of karst groundwater was performed (daily to
biweekly) at the El Burgo spring. Additionally, hourly data
of EC were recorded at this outlet. Detailed methodological
procedures can be found in Barberá and Andreo (2015). The
environmental tracers NO−3 and SO2−

4 were chosen as com-
plementary time series for the model development because
they are expected to provide distinctive chemical signatures
that characterize flow and transport processes in the soil and
epikarst (nitrogen cycling) and saturated zone (dissolution of
evaporites at the aquifer basement) of the Sierra Blanquilla
aquifer. Table 1 provides a summary of all available data.
In addition, the information on the three differentiated flow
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Table 1. Main characteristics of the time series of hydrodynamic and hydrochemical data used in this study. CV is the coefficient of variation.

Sampling site Parameter Unit n Max Min Mean CV Average sampling Period
(%) frequency

Añoreta weather st. rainfall (accumulated) mm day−1 959 71 0 3.3 – 1 day 16/08/2007–31/03/2010
air temperature (daily mean) ◦C 959 14.9 2.6 8 – 1 day 16/08/2007–31/03/2010

Viento rain collector NO−3 mg L−1 38 23 0 3 2 15 days∗ 04/10/2007–16/02/2010
SO2−

4 mg L−1 38 4.9 0.3 1.2 1 15 days∗ 04/10/2007–16/02/2010
Turón river discharge (GW component) m3 s−1 132 18.5 0.06 1.63 169 7 days 16/08/2007–30/03/2010
El Burgo spring electrical conductivity (EC) µS cm−1 17 296 384 288 326 3 1 h 07/11/2007–15/04/2010

NO−3 mg L−1 130 21.2 0.8 5.1 56 8 days 01/08/2007–30/03/2010
SO2−

4 mg L−1 130 24.4 4.2 11.4 49 8 days 01/08/2007–30/03/2010
∗ Sampling frequency was dependent on the occurrence of rainfall episodes.

states of the system (Sect. 2.2) was used to provide an inde-
pendent consideration of observations that can be attributed
to time periods of the unsaturated state, saturated state, and
all states including the period influenced by the Turón river
dynamics (river influenced state).

3.2 The model

The VarKarst model was previously developed at a neigh-
bouring karst system in southern Spain (Hartmann et al.,
2013b) and it was successfully applied at different karst sys-
tems around Europe (Brenner et al., 2016; Hartmann et al.,
2013a, 2014b, 2016). It includes the variability of karst sys-
tem properties by statistical distribution functions (Fig. 3).
Explicitly, it considers the spatial variability in (i) soil and
epikarst depths, (ii) fractions of concentrated and diffuse
recharge to the groundwater, (iii) epikarst hydrodynamics,
and (iv) groundwater hydrodynamics by distribution func-
tions that are applied to a set of N model compartments.
This allows the simulation of variably dynamic pathways of
water and solutes through the karst system. Solute transport
simulations within the model follow the assumption of in-
stantaneous and complete mixing within each storage (soil,
epikarst, groundwater) and each of the N model compart-
ments (Fig. 3). In the particular case of NO−3 , this implies
neglecting plant uptake and release processes, which were
found to be important in more humid regions (Hartmann et
al., 2016) but it was found a valid assumption at Mediter-
ranean regions such as our study site (Hartmann et al., 2013b,
2014b). The detailed equations of the model are in the ap-
pendix and a list of all model parameters including their de-
scription are provided in Table 2.

3.3 Parameter estimation for the distinctive flow states
and different observation types

The low resolution of observed discharge and hydrochem-
istry as well as the complex karstic setting of the study
site creates a rather uncertain environment for modelling.
For that reason, a traditional multi-objective parameter es-
timation was omitted as in previous studies (Hartmann et
al., 2013b, 2016). Instead, a parameter estimation scheme

Figure 3. Schematic representation of the VarKarst model structure
(modified from Hartmann et al., 2013a).

considering “soft rules” was used to confine a large uni-
formly sampled set of model parameters therefore explicitly
allowing for some uncertainty to remain but to be quanti-
fied. A similar approach was already applied successfully in
the frame of a large-scale karst groundwater recharge study
(Hartmann et al., 2015, 2017).

As a measure of performance, the Kling–Gupta efficiency
KGE (Gupta et al., 2009) is used. It is defined to show num-
bers approaching 1 for the best simulations:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (1)

with

α =
σS

σO
and β =

µS

µO
. (2)

r expresses the linear correlation coefficient between simula-
tions and observations, while µS/µO and σS/σO are defined
as the mean and standard deviation of simulations and ob-
servations, respectively. Consequently, α expresses the simi-
larity of simulated and observed variability, while β quanti-
fies the bias between them. For the calculation of KGE, only
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time steps for which observations are available are consid-
ered. Hence, the KGE values will only express the model
performance to reflect the discharge, NO−3 , and SO2−

4 obser-
vations that were sampled in a 7- to 8-day temporal resolu-
tion (Table 1) even though the model runs on a daily time
step.

For parameter estimation, an initial sample of 500 000
parameter sets was created from predefined ranges (Ta-
ble 2) that were chosen by prior knowledge and previous
model experiences in the same region (Hartmann et al.,
2013b, 2014b). A 4-year warm-up period was set up and
the model was run 500 000 times with the initial parame-
ter sample. Using the observed time series, the Kling–Gupta
efficiency was calculated for each of the simulation runs:
KGEQ (groundwater discharge), KGENO3 (NO−3 concentra-
tions) and KGESO4 (SO2−

4 concentrations). Similar to Choi
and Beven (2007) “soft rules” were used to reduce the initial
sample of parameters in four steps:

– All parameter sets from the initial sample with
KGEQ<0.2 were discarded.

– All parameter sets from the initial sample with
KGENO3<0.2 were discarded.

– All parameter sets from the initial sample with
KGESO4<0.2 were discarded.

– All parameter sets from the initial sample with KGEQ,
KGENO3 , and KGESO4<0.2 at the same time were dis-
carded.

The threshold value of 0.2 was found by preliminary anal-
ysis. Its rather low value is meant to take into account
that the simulation is exposed to various sources of uncer-
tainty including uncertainties in the model input (observa-
tion of climate variables and their application to the entire
recharge area), model structure uncertainty (representation of
karst processes by conceptual mathematical formulations in
a semi-distributed way), and the uncertainty of observations
(discharge measurement and hydrochemical analysis, as well
as their low temporal resolution).

The application of the soft rules is repeated four times for
observations falling into the unsaturated flow state, the satu-
rated flow state, the combined unsaturated and saturated flow
state and into the entire time period including the hydrody-
namic state defined by the influence of the Turón river flow
on groundwater discharge. For each of these time periods the
four soft rules will result in a reduction in the initial sample,
and the prior ranges of the model parameters will experience
a confinement (Hartmann et al., 2015).

3.4 Evaluation of information content and simulation
uncertainty for the different flow states and
different observation types

In this study, the strength of this confinement is used to as-
sess the information content of the set of observations during

the different flow states. The strength of the confinement is
quantified by the reduction in the distance between the 25th
and 75th percentiles of each model parameter after the con-
finement through the soft rules. For instance, parameter cSO4

(Table 2) has the prior range of 0–100 mg L−1. Consequently,
the uniform sampling strategy for the initial sample will re-
sult in values close to 25 and 75 mg L−1 for the 25th and 75th
percentiles, respectively. Applying one of the soft rules may
now result in values of 10 and 30 mg L−1 for the 25th and
75th percentiles, respectively. Hence, the reduction in the dis-
tance between the 25th and 75th percentiles is 50–20 mg L−1,
i.e. a reduction of 60 % took place. In this example case, we
would find that the observations applied through the selected
soft rule provided useful information to estimate this parame-
ter. Applying this procedure for each of the four soft rules and
the four time series defined by the flow states, we can assess
how (1) the different types of observations (discharge, NO−3
and SO2−

4 ) contribute to parameter identification, and (2) the
focus on particular time periods and flow stages strengthens
or weakens the confinement of the model parameters.

Particular attention is given to the comparison of the en-
tire time period, including the times when the spring is influ-
enced by the river, with the time periods when only the un-
saturated zone and the saturated zone control the discharge
of the spring. It is expected that this time period contains
disinformative information for parameter estimation as the
VarKarst model does not take into account the river’s influ-
ence. The reduction between the 25th and 75th percentiles of
the model parameters is used after applying the fourth soft
rule (Sect. 3.3) of the combined unsaturated and saturated
flow state, and the entire time period including the period
that is influenced by the river to understand the impact of the
disinformative information on parameter identification. In a
last step, the simulation uncertainty is quantified for the two
time periods by plotting the simulations of the parameter sets
that remained after the fourth soft rule was applied to the two
observation time series. After including the disinformative
time period, a greater simulation uncertainty is expected.

4 Results

4.1 Parameter estimation for the different flow states
and different observation types

Different reductions of the initial sample are found by the dif-
ferent soft rules and during the different flow states (Fig. 4).
The reduction by discharge (KGEQ ≥ 0.2) varies among the
different flow states but remains rather limited. The same is
seen for the individual use of the hydrochemical information
(KGENO3 ≥ 0.2 or KGESO4 ≥ 0.2). However, using the com-
bination of all soft rules (all KGE≥ 0.2), a significant reduc-
tion in the initial sample is obtained for all flow states. This
is most evident for the combined unsaturated and saturated
state. The weakest reduction in the initial sample for all soft
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Table 2. Description of model parameters, ranges for parameters estimation and average values found for the combined unsaturated and
saturated flow states, and the entire time period including the disinformative period of river influence.

Parameter Description Unit Parameter ranges Combined unsat. All
and sat. states states

lower upper mean∗ mean∗

A recharge area km2 30 80 55.5 57.5
VS mean soil storage capacity mm 0 250 159.9 174.1
VE mean epikarst storage capacity mm 0 250 23.5 75.8
aSE soil/epikarst depth variability constant – 0 3 0.6 1.8
KE epikarst mean storage coefficient d−1 15 65 49.4 43.4
af recharge separation variability constant – 0 3 1.4 1.3
KC conduit storage coefficient d−1 1 25 5.7 12.4
aGW groundwater variability constant – 0 3 1.8 1.3
cSO4 mean equilibrium concentration of SO2−

4 mg L−1 0 100 16.6 22.0
aSO4 SO2−

4 variability constant – 0 3 0.6 1.4
KGEQ performance concerning discharge – 0 1 0.37 0.36
KGENO3 performance concerning NO−3 – 0 1 0.47 0.32
KGESO4 performance concerning SO2−

4 – 0 1 0.58 0.40

∗ variability of model parameters shown in Fig. 5.

Figure 4. Reduction in the initial sample by the four soft rules for
the unsaturated state, saturated state, combined saturated and satu-
rated states, and all system states.

rules is found for the consideration of all stages including the
disinformative time period influenced by the river.

The influence of the soft rules during the different flow
states varies for all model parameters (Fig. 5). The reduc-
tion in the initial sample by discharge (KGEQ ≥ 0.2) alters
the uniform distribution of the initial sample for the different
flow states, mostly for the parameters A, VE, and KC. These
changes are most prominent in the unsaturated state (A), the
saturated state (VE and KC), and the combined unsaturated
and saturated states (A, VE, and KC). Using NO−3 for the
reduction (KGENO3 ≥ 0.2), the parameters VS, VE, and aSE
experience the strongest change in their initial distribution.
This change is most pronounced at the unsaturated state and

the combined unsaturated and saturated states. The reduction
by the observations of SO2−

4 concentrations (KGESO4 ≥ 0.2)
mostly affects the model parameters cSO4 and aSO4 , but also
find a strong impact on aSE, mainly at the saturated state and
the combined unsaturated and saturated state. Finally apply-
ing all information in the fourth soft rule (all KGE≥ 0.2), we
find again an alteration of the model parameters that were af-
fected by soft rules 1–3 (A, VE, VS, aSE,KC, cSO4 , and aSO4)

and, additionally, a moderate alteration of VE and af . This
is most notable at the combined unsaturated and saturated
states; using all states including the disinformative period
that is influenced by the river the alterations are generally
less pronounced.

4.2 Evaluation of information content and simulation
uncertainty for the distinctive flow states and
different observation types

Using the change in distance between the 25th and 75th
percentiles of each model parameter for the different soft
rules and the different flow states we are able to quantify
the information content of the available observations (Fig. 6).
We find that discharge (KGEQ ≥ 0.2) and SO2−

4 (KGESO4 ≥

0.2) provide most information during the saturated flow state,
while NO−3 reduces the distance between the two percentiles
most during the unsaturated stage. The state that uses all in-
formation including the disinformative time period of river
influence shows generally the weakest reduction between the
25th and 75th percentiles as already indicated by Fig. 4.

Again the most evident changes in model parameter distri-
butions are found for the combined unsaturated and saturated
states: here, we see that observed discharge (KGEQ ≥ 0.2)
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Figure 5. Distribution of model parameters (normalized by their ranges) after applying the four soft rules for the unsaturated, saturated,
combined unsaturated and saturated, and all stages.

provides the most information on the parameter KC, but the
change in distance for the parameters A and VE is still con-
siderable. This is most evident in the combined unsaturated
and saturated states. We find a more balanced distribution of
information on the altered parameters when regarding the re-
duction obtained by NO−3 (KGENO3 ≥ 0.2). Here, the change
in distances is considerable (but similar) for VS, VE, and
aSE. For SO2−

4 (KGESO4 ≥ 0.2), the alteration mostly affects
cSO4 , followed by a considerable alteration in aSO4 and a
moderate change in aSE. Using all information to confine the
initial sample (all KGE ≥ 0.2) shows that the combined use
of discharge, NO−3 and SO2−

4 observations provide the most
information on VE, aSE, KC, cSO4 , and aSO4 . Still, consid-
erable information is provided for A, VS, and af . However,
no reduction in the distance between the 25th and 75th per-
centiles is found for VE, and even a widening takes place for
aGW.

The proceeding analysis indicates that most information
to identify the largest number of model parameters is pro-
vided by the combined unsaturated and saturated flow states
using discharge, NO−3 , and SO2−

4 observations. It further re-
veals that using the entire time period, using discharge, NO−3 ,

and SO2−
4 observations and including the period that is influ-

enced by the river, provided the least information; only 5 (A,
VS, VE, aSE, and cSO4) of the 10 model parameters show a
detectable reduction in the two flow percentiles (Fig. 6, bot-
tom).

The final averages of the estimated parameters (after ap-
plying the 4th soft rule; Table 2) of the combined unsaturated
and saturated flow states, and the state that uses the entire
set of observations are similar for the parameters A, VS, and
cSO4 , while there is a strong difference for VE and aSE. Fur-
ther comparing the resulting simulation uncertainty (Fig. 7),
we find that the final parameter sets that were found using
the entire observed time series, including the disinformative
river-influenced time period, results in a larger simulation un-
certainty than the final parameter sample that used only the
combined unsaturated and saturated flow states for parameter
estimation.
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Figure 6. Change in distance between the 25th and 75th percentiles
of each model parameter when the different soft rules are applied
(top to bottom) for the four flow states.

5 Discussion

5.1 Application of the soft rules during the different
flow states

The application of the four soft rules results in a general re-
duction in the initial sample for all flow states (Fig. 4). A
weak reduction for all four flow states takes place when only
discharge observations are applied to confine the sample.
Previous research with lumped model calibration showed
that the information content of discharge observations usu-
ally suffices to calibrate 5–6 parameters (Jakeman and Horn-
berger, 1993; Wheater et al., 1986; Ye et al., 1997); more
parameters often lead to over parameterization (Perrin et al.,
2003) and equifinality (Beven, 2006). Hence, the small re-
duction in the VarKarst initial parameter sample may be due
to the large number of model parameters (Table 2) within
the VarKarst model. The same behaviour of a weak decrease
in the initial parameter sample is found when the hydro-
chemical observations are used individually (soft rules 2 and
3). The weakest reduction in the initial parameter sample
among all four flow states is found for the entire time period
that includes the periods of river influence (see discussion in
Sect. 5.2).

When soft rule 4 (all KGE ≥ 0.2) is applied, we find the
strongest reduction in the initial sample across all of the four
flow states. This means that the combined information of
discharge, NO−3 , and SO2−

4 observations provides the most
information to reduce the initial sample of model parame-
ters. Previous research already showed that hydrochemical
information can reduce parameter uncertainty (Kuczera and
Mroczkowski, 1998; Rimmer and Hartmann, 2014; Son and
Sivapalan, 2007). In this study, a similar reduction in param-
eter uncertainty could be observed (Fig. 5). Depending on the
applied soft rule and the considered flow states, the initially
uniform distributions of the model parameters are altered dif-
ferently. Some model parameter distributions change their
mean without much change in the shape of their distribution
(same distance between 25th and 75th percentiles); some of
them show a more confined distribution when the soft rules
are applied.

5.2 Information provided by discharge and
hydrochemistry during the different flow states

The differences in the reduction across the model parame-
ters reveals the influence of different types of observations
that were used for parameter estimation. We find that the
reductions of the distance between the 25th and 75th per-
centiles is most pronounced during the saturated stage for
the discharge observations (Fig. 6). This indicates that dis-
charge provides the most information during the recession
period. Information about hydrodynamic parameters A, VE,
and KC is derived directly from the discharge observations.
This makes sense because hydrodynamic changes in the main
discharge area of the Sierra Blanquilla aquifer reflect the hy-
draulic pressure transference from the unsaturated zone to
the saturated zone of the system. Similar results were found
by Wagener et al. (2003) when they applied dynamic identifi-
ability analysis to a lumped rainfall-runoff model using only
discharge data.

They also found that the parameters, which control the
unsaturated zone and fast flow components of their model,
are most identifiable during and just after the rainfall-runoff
events. Our results indicate a similar behaviour by show-
ing the strongest reduction in the distance between the 25th
and 75th percentiles for the unsaturated zone parameters dur-
ing the unsaturated flow state using the NO−3 observations
(parameters VS, VE, and aSE). This is in accordance with
Reusser and Zehe (2011) who showed that model parame-
ters that control the recession period are most sensitive dur-
ing the recession period with a time dynamic resection and
cluster analysis using discharge information. NO−3 has been
used almost as an ideal tracer to determine infiltration pro-
cesses through the soil and epikarst in the shallower aquifer
zones (Hunkeler and Mudry, 2007; Mudarra et al., 2014).
Thus, NO−3 observations contribute strongly to the identifi-
cation of surface and evapotranspiration processes during the
unsaturated flow state. This can be explained by the relative
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Figure 7. Observed discharge and the simulation uncertainty of the final parameter sample (all KGE ≥ 0.2) of the combined unsaturated
and saturated flow states and the all flow states including the disinformative period of river influence. Background colours representing flow
states match those in Fig. 2.

stability of NO−3 dynamics within the karst system under ox-
idizing conditions (Mudarra et al., 2014), which favours its
preservation from surface to the spring.

SO2−
4 provided most information on the parameters cSO4 ,

aSO4 , and aSE during the saturated state. This makes sense
as SO2−

4 is stored within the saturated zone of the system
where groundwater is in touch with gypsum-bearing geolog-
ical formations (Triassic clays with evaporites), which are
found in contact with deeper aquifer compartments. SO2−

4
time series provide more information about the unsaturated
zone/epikarst drainage during the saturated flow stage. Such
findings mean that the high chemical contrast observed in
SO2−

4 concentrations of fresh (recently infiltrated) and old
(stored) groundwater is useful to assess the relative impor-
tance of unsaturated flow and saturated flow during the satu-
rated flow stage (Barberá and Andreo, 2015; Mudarra et al.,
2011).

The highest number of identifiable parameters is found
when all information (discharge, NO−3 , and SO2−

4 observa-
tions) is combined and estimated during the combined un-
saturated and saturated flow stages (Fig. 6). In addition to
the parameters that showed an increase in identifiability at
the individual stages (A, VE, KC, VS, KE, aSE, cSO4 , and
aSO4), we also see an increased identifiability of the parame-
ter af , most probably due to parameter interactions (Pianosi
et al., 2016). Only aGW and KE remain with low identifiabil-
ity, which may be due to structural limitations of the model
structure (Clark et al., 2008) or due to parameter interactions
that are not explicitly considered in our approach. In fact, a
lower identifiability of VE in favour of a high identifiability
of VE was found in a previous study with a similar version
of the model (Hartmann et al., 2015). Compared to that, us-
ing all information during the entire time period, including
the disinformative period, only five of the model parameters
show a visible decrease in the distance between the 25th and
75th percentiles of their distribution. Hence, the inclusion of

the disinformative period led to an increase in posterior pa-
rameter uncertainty compared to using only the informative
time periods represented by the unsaturated and saturated
states. This was also shown by Beven and Westerberg (2011)
or Beven et al. (2011), when they considered the impact of
disinformative discharge events.

The impact of the disinformative time period on the preci-
sion of the observations is clearly visible in Fig. 7. Since the
model has to compensate for structural errors, i.e. the missing
representation of the influence of the river on the discharge
of the karst spring, it is forced to allow for a wider range of
parameter combinations to account for the simulation errors.
Using only the unsaturated and saturated states allows for
a much better confinement of model parameters and there-
fore a much smaller simulation uncertainty, although show-
ing some deviations during the periods when the fiver affects
the flow system of the spring (blue shaded areas in Fig. 7).
Hence, similar to Kauffeldt et al. (2013), our study shows
that a proper pre-analysis of the information content of ob-
servations for model parameter estimation (Sect. 2.2) allows
for excluding disinformative information to reduce model pa-
rameter and simulation uncertainty.

5.3 Limits and transferability of the approach

The analysis of variations in the groundwater component in
the Turón river flow has permitted us to determine the timing,
duration, and magnitude of the global hydrodynamic aquifer
responses under influenced hydrological conditions, as well
as to assess the discharge thresholds from which different
compartments of the system activate (i.e. flooding of relict
conduit networks; Barberá and Andreo, 2015). However, a
more accurate decomposition of flow components from the
study of spring hydrographs has not been possible due to
the relatively low resolution of discharge time series (Ta-
ble 1). Even though the chemical signature of groundwater
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that drains the different aquifer zones (unsaturated zone and
saturated zone), and that is affected by the Turón river, can
be estimated using EC (Fig. 2), it is rather based on subjec-
tive interpretation. However, it can be argued that the previ-
ous knowledge based on the accurate interpretation of the El
Burgo spring chemographs has permitted a realistic flow de-
composition from EC time series as our results show a clear
difference in estimated parameter distributions and resulting
simulation uncertainty using the unsaturated and saturated
flow states and the entire time period including the disinfor-
mative data. A more precise distinction between the states is
only possible if specific chemical indicators are available to
better constrain the differentiation of flow states contribut-
ing to the El Burgo spring discharge, which was not possible
within the frame of this study. But even though due to sub-
jectivity, the identification of time periods or data sets that
contain disinformative contributions to parameter estimation
is a useful way to reduce the simulation uncertainty of hydro-
logical models. Building on previous research on disinforma-
tive data that focussed on disinformative discharge informa-
tion, our approach provides a systematic procedure that also
includes hydrochemical observations to identify disinforma-
tive periods and to improve parameter estimation of models
for complex hydrological systems. Another limitation of our
research is the low resolution of the discharge and hydro-
chemical observations (7–8 days). Although our approach
took into account this weakness by the soft rules allowing
for remaining uncertainty after the reduction in our 500 000
parameter sets, we believe that a higher resolution of the ob-
servations (preferably 1 day) would have resulted in a more
pronounced reduction in the initial sample and consequently
to a lower remaining uncertainty.

6 Conclusions

In this research, a new approach to estimate the information
content of water quality data and the value of identifying
most informative periods for model parameter estimation has
been proposed. Using soft rules to include discharge, NO−3
and SO2−

4 observations into the parameter estimation proce-
dure, we were able to reduce an initial sample of 500 000 pa-
rameter sets during predefined flow states; one being a known
period of disinformative data. Comparing the distributions of
the initial and reduced parameter sets, we were able to quan-
tify the information contained in our observations to identify
the parameters of our simulation model.

We found that the information content of the observations
varies for the different states that we considered. NO−3 pro-
vided most of its information when the unsaturated zone
processes dominate the discharge behaviour of the spring.
During the time when the saturated zone controls the out-
flow behaviour, SO2−

4 and discharge observations provide the
best information to identify the model parameters. Including
the disinformative period, the information content of all data
generally decreases, as well as the uncertainty in simulations
increases. We finally show that the combination of saturated
and unsaturated flow states provides the most precise infor-
mation about the model parameters. Due to parameter in-
teractions, even model parameters that were not identifiable
during the unsaturated or saturated flow state alone became
identifiable. As a result, the simulation uncertainty is signif-
icantly reduced compared to the simulations obtained by the
entire time series of observations that include the disinforma-
tive data.

Even though exemplified at a particular karst spring in
southern Spain, our approach is easily transferrable to other
modelling studies that want to use water quality data for the
identification of disinformative periods and for the estimation
of model parameters. Our results add to previous findings on
the value of removing disinformative data from model pa-
rameter estimation to reduce simulation uncertainty. Further-
more our results can help building a better communication
between experimental hydrologists and modelers (Hartmann,
2016; Seibert and McDonnell, 2002) as hydrochemical data
is often used for system characterization. Our study showed
that NO−3 and SO2−

4 , often used for understanding the un-
saturated and saturated zone processes, also help to identify
the corresponding process parameters in our model. Further
research should, therefore, include the evaluation of other
hydrochemical variables that can be attributed to particular
hydrological processes, and their value to identify the cor-
responding processes in process-based simulation models.
Also, a further disaggregation of the Kling–Gupta efficiency
into its components, correlation, bias, and variability, con-
tains high promise for further advancement of our approach.

Data availability. The data used in this study can be requested from
the Department of Geology and the Centre of Hydrogeology of the
University of Malaga (CEHIUMA), Malaga 29071, Spain.
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Appendix A

The parameter Vmean,S (mm) and the distribution coefficient
aSE (–) control the variability in soil depths over theN model
compartments. Using them, the soil storage capacity VS,i
(mm) for every compartment i is defined by the following:

VS,i = Vmax,S ·

(
i

N

)aSE

. (A1)

Vmax,S (mm) represents the maximum soil storage capacity
and is derived from VS by the following:

i1/ 2∫
0
Vmax,S

( x
N

)aSE
dx =

N∫
0
Vmax,S

(
x
N

)aSE dx

2
; VS = Vmax,S

(
i1/ 2
N

)aSE

m

Vmax,S = VS · 2

(
aSE
aSE+1

) ,

(A2)

where the compartment at which the volumes on the left
equal the volumes on the right is found at i1/2. The same dis-
tribution coefficient aSE is used to derive the epikarst storage
distribution by the mean epikarst depth VE (mm) (derivation
of Vmax,E likewise to Vmax,S in Eq. 4)

VE,i = Vmax,E ·

(
i

N

)aSE

. (A3)

Actual evapotranspiration from each soil compartment Eact,i
is calculated by

Eact,i (t)= Epot (t) (A4)

·
min

[
VSoil,i (t)+P (t)+QSurface,i (t) ,VS,i

]
VS,i

.

Potential evapotranspiration Epot (mm) is found by the
Thornthwaite equation (Thornthwaite, 1948) and Qsurface,i
(mm) is the surface inflow that originates from compartment
i− 1 (see Eq. 11). VSoil,i (mm) is the volume of water stored
in the soil at time step t . Recharge from the soil to the epikarst
REpi,i (mm) is found by water balance

REpi,i (t)=Qinf (t)+max (A5)[
VSoil,i (t)+P (t)+QSurface,i (t)−Eact,i (t)−VS,i,0

]
,

with Qinf(t) being the river infiltration (Eq. 5). The epikarst
storage coefficient KE,i (d) controls the outflow from the
epikarst

QEpi,i (t)=
min

[
VEpi,i (t)+REpi,i (t) ,VE,i

]
KE,i

·1t, (A6)

KE,i =Kmax,E ·

(
N − i+ 1

N

)aSE

. (A7)

Here, VEpi,i (mm) is the water stored in the epikarst at time
step t . Kmax,E is found by the mean epikarst storage coef-
ficient VE and by applying the same distribution coefficient
aSE

N ·KE =
N∫
0
Kmax,E

( x
N

)aSE
dx

m

Kmax,E =KE · (aSE+ 1) .

(A8)

Surface flow to the next model compartment QSurf,i+1 (mm)
initiates when soil and epikarst storage capacities are ex-
ceeded:

QSurf,i+1 (t)=max
[
VEpi,i (t)+REpi,i (t)−VE,i,0

]
. (A9)

The vertical percolation from the epikarst is split into dif-
fuse (Rdiff,i , mm) and concentrated groundwater recharge
(Rconc,i , mm) again by a variable separation factor fC,i (–)
and a distribution coefficient af (–)

Rconc,i (t)= fC,i ·QEpi,i (t) , (A10)

Rdiff,i (t)=
(
1− fC,i

)
·QEpi,i (t) , (A11)

fC,i =

(
i

N

)af
. (A12)

The diffuse recharge reaches the groundwater compartments
(i = 1. . .N−1) directly below, while concentrated recharge is
routed laterally to the conduit system (compartment i =N ).
Similar to epikarst storage coefficients, variable groundwater
storage coefficients KGW,i (d) are calculated. The, ground-
water contributions of the matrix system QGW,i (mm) in
therefore found by the following:

QGW,i (t)=
VGW,i (t)+Rdiff,i (t)

KGW,i

; i = 1. . .N − 1, (A13)

with

KGW,i =KC ·

(
i

N

)−aGW

. (A14)

The conduit system discharges from compartment N

QGW,i (t)=

VGW,N (t)+
N∑
i=1
Rconc,i (t)

KC
; i =N, (A15)

where the conduit storage coefficient is given by KC (d).
The discharge of the main spring Qmain (L s−1) is comprised
of the sum of the matrix and the conduit system discharge
rescaled to L s−1 units the recharge area A (km2)

Qmain (t)=
A

N
·

N∑
i=1

QGW,i (t) . (A16)
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Solute transport within the VarKarst model follows the as-
sumption of complete mixing for every model compartment.
Hence, enrichment only takes place due to evaporation and
by geogenic dissolution (only SO2−

4 ), for which varying
equilibrium concentrations are defined according to

cSO4,i = cmax,SO4 ·

(
N − i+ 1

N

)aSO4
, (A17)

where aSO4 is a variability constant and cmax,SO4 is derived
from cSO4 (mg L−1) (similar to Eq. 10).
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