Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4591-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-4591-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model
Laetitia Gal
CORRESPONDING AUTHOR
Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France
Manuela Grippa
Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France
Pierre Hiernaux
Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France
Léa Pons
Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France
Laurent Kergoat
Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France
Related authors
No articles found.
Erwan Le Roux, Valentin Wendling, Gérémy Panthou, Océane Dubas, Jean-Pierre Vandervaere, Basile Hector, Guillaume Favreau, Jean-Martial Cohard, Caroline Pierre, Luc Descroix, Eric Mougin, Manuela Grippa, Laurent Kergoat, Jérôme Demarty, Nathalie Rouche, Jordi Etchanchu, and Christophe Peugeot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1965, https://doi.org/10.5194/egusphere-2025-1965, 2025
Short summary
Short summary
In hydrological science, better accounting for regime shift (abrupt and/or irreversible changes) remains a challenge that could lead to a new paradigm for the adaptation to extreme events (flood , drought). In this article, we present a simple model that can account for a hydrological regime shift in Sahelian watersheds. Based on this model, we find that the Dargol, Nakanbé, and Sirba watersheds have shifted during the droughts of the '70s–'80s, while the Gorouol watershed has shifted before.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Eric Mougin, Mamadou Oumar Diawara, Nogmana Soumaguel, Ali Amadou Maïga, Valérie Demarez, Pierre Hiernaux, Manuela Grippa, Véronique Chaffard, and Abdramane Ba
Earth Syst. Sci. Data, 11, 675–686, https://doi.org/10.5194/essd-11-675-2019, https://doi.org/10.5194/essd-11-675-2019, 2019
Short summary
Short summary
The leaf area index of Sahelian rangelands was measured between 2005 and 2017 in northern Mali. These observations collected over more than a decade, in a remote and not very accessible region, provide a relevant and unique data set that can be used for a better understanding of the Sahelian vegetation response to the current rainfall changes. The collected data can also be used for satellite product evaluation and land surface model validation.
Torbern Tagesson, Jonas Ardö, Bernard Cappelaere, Laurent Kergoat, Abdulhakim Abdi, Stéphanie Horion, and Rasmus Fensholt
Biogeosciences, 14, 1333–1348, https://doi.org/10.5194/bg-14-1333-2017, https://doi.org/10.5194/bg-14-1333-2017, 2017
Short summary
Short summary
Vegetation growth in semi-arid regions is an important sink for human-induced fossil fuel emissions of CO2 and this study addresses the strong need for improved understanding and spatially explicit estimates of CO2 uptake by semi-arid ecosystems. We show that a model incorporating photosynthetic parameters upscaled using satellite-based earth observation simulates CO2 uptake well for the Sahel, one of the largest semi-arid regions in the world.
C. Leauthaud, J. Demarty, B. Cappelaere, M. Grippa, L. Kergoat, C. Velluet, F. Guichard, E. Mougin, S. Chelbi, and B. Sultan
Proc. IAHS, 371, 195–201, https://doi.org/10.5194/piahs-371-195-2015, https://doi.org/10.5194/piahs-371-195-2015, 2015
C. Delon, E. Mougin, D. Serça, M. Grippa, P. Hiernaux, M. Diawara, C. Galy-Lacaux, and L. Kergoat
Biogeosciences, 12, 3253–3272, https://doi.org/10.5194/bg-12-3253-2015, https://doi.org/10.5194/bg-12-3253-2015, 2015
Short summary
Short summary
This study provides seasonal and interannual variation of simulated biogenic NO emission fluxes in a Sahelian rangeland in Mali, a region where intense NO emissions occur during the wet season. Emissions are related to their biogeochemical origin, to the quantity of biomass, and to the quantity of livestock, which drive the N pool and N turnover in the soil, using a coupled vegetation–litter decomposition–emission model.
C. Delon, E. Mougin, D. Serça, M. Grippa, P. Hiernaux, M. Diawara, C. Galy-Lacaux, and L. Kergoat
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11785-2014, https://doi.org/10.5194/bgd-11-11785-2014, 2014
Revised manuscript not accepted
F. Lohou, L. Kergoat, F. Guichard, A. Boone, B. Cappelaere, J.-M. Cohard, J. Demarty, S. Galle, M. Grippa, C. Peugeot, D. Ramier, C. M. Taylor, and F. Timouk
Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, https://doi.org/10.5194/acp-14-3883-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Extended-range forecasting of stream water temperature with deep-learning models
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Projections of streamflow intermittence under climate change in European drying river networks
Economic valuation of subsurface water contributions to watershed ecosystem services using a fully integrated groundwater–surface-water model
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Multi-variable process-based calibration of a behavioural hydrological model
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
A Distributed Hybrid Physics-AI Framework for Learning Corrections of Internal Hydrological Fluxes and Enhancing High-Resolution Regionalized Flood Modeling
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Soil moisture and precipitation intensity control the transit time distribution of quick flow in a flashy headwater catchment
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
Hydrological regime index for non-perennial rivers
Constraining pesticide degradation in conceptual distributed catchment models with compound-specific isotope analysis (CSIA)
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Comparative Hydrological Modeling of Snow-Cover and Frozen Ground Impacts Under Topographically Complex Conditions
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Controls on spatial and temporal variability of soil moisture across a heterogeneous boreal forest landscape
Where can rewetting of forested peatland reduce extreme flows?
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025, https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Short summary
We assessed the value of high-resolution data and parameter transferability across temporal scales based on seven catchments in northern China. We found that higher-resolution data do not always improve model performance, questioning the need for such data. Model parameters are transferable across different data resolutions but not across computational time steps. It is recommended to utilize a smaller computational time step when building hydrological models even without high-resolution data.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025, https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Short summary
Land changes and landscape features critically impact water systems. Studying two watersheds in China’s Greater Bay Area, we found slope strongly influences water processes in mountainous areas. However, this relationship is weak in the lower regions of steeper watersheds. Urbanization leads to an increase in annual surface runoff, while flatter watersheds exhibit a buffering capacity against this effect. However, this buffering capacity diminishes with increasing annual rainfall intensity.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025, https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Short summary
Accurate early-warning systems are crucial for reducing the damage caused by flooding events. In this study, we explored the potential of long short-term memory networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025, https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conduct simulation experiments using data with various temporal resolutions across multiple catchments and find that higher-resolution data do not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025, https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for 32 consecutive days at 54 stations in Switzerland with our best-performing data-driven model. The average forecast error is 0.38 °C for 1 d ahead and increases to 0.90 °C for 32 d ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025, https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Short summary
Long short-term memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modelling. However, most studies focus on predictions at a daily scale, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use inputs of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci., 29, 1549–1568, https://doi.org/10.5194/hess-29-1549-2025, https://doi.org/10.5194/hess-29-1549-2025, 2025
Short summary
Short summary
This study determines the value of subsurface water for ecosystem services' supply in an agricultural watershed in Ontario, Canada. Using a fully integrated water model and an economic valuation approach, the research highlights subsurface water's critical role in maintaining watershed ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025, https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025, https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Short summary
Owing to differences in the existing published results, we conducted a detailed analysis of the runoff components and future trends in the Yarlung Tsangpo River basin and found that the contributions of snowmelt and glacier melt runoff to streamflow (both ~5 %) are limited and much lower than previous results. The streamflow in this area will continuously increase in the future, but the overestimated contribution of glacier melt could lead to an underestimation of this increasing trend.
Moritz Maximilian Heuer, Hadysa Mohajerani, and Markus Christian Casper
EGUsphere, https://doi.org/10.5194/egusphere-2025-636, https://doi.org/10.5194/egusphere-2025-636, 2025
Short summary
Short summary
This study presents a calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025, https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation–Runoff Relationships (DPRR) to explore the controlling changes in precipitation–runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation–runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025, https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine learning (ML) models are increasingly being applied for flood forecasting. Such models are typically trained on large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets that maximise the spatio-temporal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025, https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets which undermines the robustness of hydrological inferences. This study proposes a Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling to enhance water budget closure, termed PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3665, https://doi.org/10.5194/egusphere-2024-3665, 2025
Short summary
Short summary
Understanding and modeling flash flood-prone areas remains challenging due to limited data and scale-relevant hydrological theory. While machine learning shows promise, its integration with process-based models is difficult. We present an approach incorporating machine learning into a high-resolution hydrological model to correct internal fluxes and transfer parameters between watersheds. Results show improved accuracy, advancing development of learnable and interpretable process-based models.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-359, https://doi.org/10.5194/hess-2024-359, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or are also controlled by precipitation intensity. We used soil moisture-dependent and precipitation intensity-conditional transfer functions. We showed that significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential flow paths) in dry soil conditions for both low and high-intensity precipitation.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-338, https://doi.org/10.5194/hess-2024-338, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The Desaguadero-Salado-Chadiluevú-Curacó (DSCC) River is a semiarid river which is severely dammed in its tributaries which collect the snowmelt runoff. This runoff feeds mostly gravitational irrigation systems of very low efficiency. As a result, the DSCC River does not have natural runoff. The proposed Hydrological Regime Index (HRI) is able to discriminate and quantify regime alterations under permanent and non-permanent flow conditions and with low and high impoundment conditions.
Sylvain Payraudeau, Pablo Alvarez-Zaldivar, Paul van Dijk, and Gwenaël Imfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-2840, https://doi.org/10.5194/egusphere-2024-2840, 2024
Short summary
Short summary
Our study focuses on the rising concern of pesticides damaging aquatic ecosystems, which puts drinking water, the environment, and human health at risk. We provided more accurate estimates of how pesticides break down and spread in small water systems, helping to improve pesticide management practices. By using unique chemical markers in our analysis, we enhanced the accuracy of our predictions, offering important insights for better protection of water sources and natural ecosystems.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-324, https://doi.org/10.5194/hess-2024-324, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The hydrology of cold regions in the human population is poorly understood due to complex motion and limited data, hindering streamflow analysis. Using existing models, we compared runoff from an extended model with snowmelt and frozen ground, validating its reliability and integration. This study focuses on the effects of snowmelt and frozen ground on runoff, affecting precipitation type, surface-groundwater partitioning, and evapotranspiration.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2909, https://doi.org/10.5194/egusphere-2024-2909, 2024
Short summary
Short summary
We investigated the factors influencing soil moisture variations across a boreal forest catchment in northern Sweden, where data is usually scarce. We found that soil moisture is shaped by topographical features, vegetation and soil characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Maria Elenius, Charlotta Pers, Sara Schützer, and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-271, https://doi.org/10.5194/hess-2024-271, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Simulations of peatland rewetting in Sweden under various conditions of climate, local hydrology and rewetting practices showed insubstantial changes in landscape flow extremes due to mixing with runoff from various landcover. The impact on local hydrological extremes are governed by groundwater levels prior to rewetting and reduced tree cover, hence wetland allocation and management practices are crucial if the purpose is to reduce flow extremes in peatland streams.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Cited articles
Abdourhamane Touré, A., Guillon, R., Garba, Z., Rajot, J. L., Petit, C., Bichet, V., Durand, A., and Sebag, D.: Sahelian landscape evolution during the six last decades in the Niamey vicinity: from the bush disappearing to the soil crusting, Pangea, 47, 35–40, 2011.
Aich, V., Liersch, S., Vetter, T., Andersson, J., Müller, E., and Hattermann, F.: Climate or Land Use? – Attribution of Changes in River Flooding in the Sahel Zone, Water, 7, 2796–2820, https://doi.org/10.3390/w7062796, 2015.
Albergel, J.: Sécheresse, désertification et ressources en eau de surface – Application aux petits bassins du Burkina Faso, in: The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources, vol. 168, IAHS Publications, Vancouver, Canada, 355–441, 1987.
Al-Qurashi, A., McIntyre, N., Wheater, H., and Unkrich, C.: Application of the Kineros2 rainfall-runoff model to an arid catchment in Oman, J. Hydrol., 355, 91–105, https://doi.org/10.1016/j.jhydrol.2008.03.022, 2008.
Anyamba, A., Justice, C., Tucker, C. J., and Mahoney, R.: Seasonal to interannual variability of vegetation and fires at SAFARI-2000 sites inferred from advanced very high resolution rediometer time series data, J. Geophys. Res., 108, 8507, https://doi.org/10.1029/2002JD002464, 2003.
Barnes, H. J.: Roughness Characteristics of Natural Channels, Tech. Report, Geol. Surv. Water-Supply, United States Gov. Print. Off, Washington, USA, 219, https://doi.org/10.1016/0022-1694(69)90113-9, 1987.
Boudet, G.: Désertification de l'Afrique tropicale sèche, Adansonia, 12, 505–524, 1972.
Canfield, H. E. and Goodrich, D. C.: The impact of parameter lumping and geometric simplification in modelling runoff and erosion in the shrublands of southeast Arizona, Hydrol. Process., 20, 17–35, https://doi.org/10.1002/hyp.5896, 2006.
Carlyle-Moses, D. E.: Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community, J. Arid Environ., 58, 181–202, https://doi.org/10.1016/S0140-1963(03)00125-3, 2004.
Casenave, A. and Valentin, C.: Les états de surface de la zone Sahélienne: Influence sur l'infiltration, ORSTOM, Paris, France, 1989.
Casenave, A. and Valentin, C.: Les états de surface: une des clefs de l'hydrologie Sahélienne, in: The state-of-the-art of hydrology and hydrogeology in the arid and semi-arid areas of Africa: proceedings of the Sahel Forum, Urbana, International Seminar, International Water Ressources Association, Ouagadougou, 135–147, 1990.
Casse, C., Gosset, M., Vischel, T., Quantin, G., and Tanimoun, B. A.: Model-based study of the role of rainfall and land use–land cover in the changes in the occurrence and intensity of Niger red floods in Niamey between 1953 and 2012, Hydrol. Earth Syst. Sci., 20, 2841–859, https://doi.org/10.5194/hess-20-2841-2016, 2016.
Chow, V. T.: Open Channel Hydraulics, McGraw-Hill B. Company, New York, USA, 680 pp., 1959.
Collinet, J.: Comportement hydrodynamiqué et érosifs de sols de l'Afrique de l'ouest: Evolution des matériaux et des organisations sous simulation de pluies, Mémoire Thèse – Sci. la Vie la Tere – Inst. géologie – Univ. Louis Pasteur, Strasbourg, France, 615 pp., 1988.
Corradini, C., Melone, F., and Smith, R. E.: Modeling local infiltration for a two-layered soil under complex rainfall patterns, J. Hydrol., 237, 58–73, https://doi.org/10.1016/S0022-1694(00)00298-5, 2000.
Dardel, C., Kergoat, L., Hiernaux, P., Grippa, M., Mougin, E., Ciais, P., and Nguyen, C.-C.: Rain-Use-Efficiency: What it Tells about the Conflicting Sahel Greening and Sahelian Paradox, Remote Sens., 6, 1–26, https://doi.org/10.3390/rs6043446, 2014a.
Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M., and Tucker, C. J.: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger), Remote Sens. Environ., 140, 350–364, https://doi.org/10.1016/j.rse.2013.09.011, 2014b.
De Rosnay, P., Gruhier, C., Timouk, F., Baup, F., Mougin, E., Hiernaux, P., Kergoat, L., and LeDantec, V.: Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali, J. Hydrol., 375, 241–252, https://doi.org/10.1016/j.jhydrol.2009.01.015, 2009.
Descroix, L. and Diedhiou, A.: Etat des sols et évolution dans un contexte de changements climatiques, in: La Grande Muraille Verte?: Capitalisation des recherches et valorisation des savoirs locaux, vol. 9, edited by: Dia, A. and Duponnois, R., Montpellier, France, 161–198, 2012.
Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., Olivry, J.-C., Albergel, J., Amogu, O., Cappelaere, B., Dessouassi, R., Diedhiou, A., Le Breton, E., Mamadou, I., and Sighomnou, D.: Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis, J. Hydrol., 375, 90–102, 2009.
Descroix, L., Moussa, I. B., Genthon, P., Sighomnou, D., Mahé, G., Mamadou, I., Vandervaere, J.-P., Gautier, E., Maiga, O. F., Rajot, J.-L., Abdou, M. M., Dessay, N., Ingatan, A., Noma, I., Yéro, K. S., Karambiri, H., Fensholt, R., Albergel, J., and Olivry, J.-C.: Impact of Drought and Land–Use Changes on Surface–Water Quality and Quantity: The Sahelian Paradox, Curr. Perspect. Contam. Hydrol. Water Res. Sustain., in: Current Perspectives in Contaminant Hydrology and Water Resources Sustainability, chap. 10, edited by: Bradley, P. M., 243–271, https://doi.org/10.5772/54536 2013.
D'Herbès, J. M. and Valentin, C.: Land surface conditions of the Niamey region: Ecological and hydrological implications, J. Hydrol., 188–189, 18–42, https://doi.org/10.1016/S0022-1694(96)03153-8, 1997.
Diallo, A., Gjessing, J., Doumbia, O., Djitteye, M., Kammerud, T. A., Coulibaly, A., Diarra, N., and Diallo, O.: Gestion des ressources naturelles: Morpho-pédologie du Gourma, edited by: Diallo, A. and Gjessing, J., Institut d'Economie Rurale, Mali, 1999.
D'Orgeval, T. and Polcher, J.: Impacts of precipitation events and land-use changes on West African river discharges during the years 1951–2000, Clim. Dynam., 31, 249–262, 2008.
Dunne, T., Zhang, W., and Aubry, B. F.: Effects of Rainfall, Vegetation, and Microtopography on Infiltration and Runoff, Water Resour. Res., 27, 2271–2285, 1991.
Estèves, M.: Rapport de campagne hydrologique, saison 1994, Report of field collection of hydrological data, 1994 season, Orstom, Niamey, Niger, 26 pp., 1995.
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., and Leduc, C.: Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review, Water Resour. Res., 45, 1–18, https://doi.org/10.1029/2007WR006785, 2009.
Forkuor, G. and Maathuis, B. M.: Comparison of SRTM and ASTER Derived Digital Elevation Models over Two Regions in Ghana: Implications for Hydrological and Environmental Modeling, in: Studies on Environmental and Applied Geomorphology, edited by: Piacentini, T. and Miccadei, E., InTech, 219–240, https://doi.org/10.5772/28951, 2012.
Frappart, F., Hiernaux, P., Guichard, F., Mougin, E., Kergoat, L., Arjounin, M., Lavenu, F., Koité, M., Paturel, J.-E., and Lebel, T.: Rainfall regime across the Sahel band in the Gourma region, Mali, J. Hydrol., 375, 128–142, 2009.
Gal, L.: Modélisation de l'évolution paradoxale de l'hydrologie sahélienne. Application au bassin d'Agoufou (Mali), Thèse de l'Université Toulouse III – Paul Sabatier, Laboratoire Géosciences Environnement, Toulouse, France, 2016.
Gal, L., Grippa, M., Hiernaux, P., Peugeot, C., Mougin, E., and Kergoat, L.: Changes in lakes water volume and runoff over ungauged Sahelian watersheds, J. Hydrol., 540, 1176–1188, https://doi.org/10.1016/j.jhydrol.2016.07.035, 2016.
Gardelle, J., Hiernaux, P., Kergoat, L., and Grippa, M.: Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali), Hydrol. Earth Syst. Sci., 14, 309–324, https://doi.org/10.5194/hess-14-309-2010, 2010.
Goodrich, D. C., Guertin, D. P., Burns, I. S., Nearing, M. A., Stone, J. J., Wei, H., Heilman, P., Hernandez, M., Spaeth, K., Pierson, F., Paige, G. B., Miller, S. N., Kepner, W. G., Ruyle, G., McClaran, M. P., Weltz, M., and Jolley, L.: AGWA: The Automated Geospatial Watershed Assessment Tool to Inform Rangeland Management, Rangelands, 33, 41–47, 2011.
Grimaud, J.-L., Chardon, D., and Beauvais, A.: Very long-term incision dynamics of big rivers, Earth Planet. Sc. Lett., 405, 74–84, https://doi.org/10.1016/j.epsl.2014.08.021, 2014.
Grippa, M., Kergoat, L., Boone, A., Peugeot, C., Demarty, J., Cappelaere, B., Gal, L., Hiernaux, P., Mougin, E., Anderson, M., and the A. working Group: Modelling surface runoff and water fluxes over contrasted soils in pastoral Sahel: evaluation of the ALMIP2 land surface models over the Gourma region in Mali, J. Hydrometeorol., 18, 1847–1866, 2017.
Guichard, F., Kergoat, L., Mougin, E., Timouk, F., Baup, F., Hiernaux, P., and Lavenu, F.: Surface thermodynamics and radiative budget in the Sahelian Gourma: Seasonal and diurnal cycles, J. Hydrol., 375, 161–177, https://doi.org/10.1016/j.jhydrol.2008.09.007, 2009.
Helmlinger, K. R., Kumar, P., and Foufoula-Georgiou, E.: On the use of digital elevation model data for Hortonian and fractal analyses of channel networks, Water Resour. Res., 29, 2599–2614, 1993.
Hernandez, M., Miller, S. N., Goodrich, D. C., Goff, B. F., Kepner, W. G., Edmonds, C. M., and Jones., K. B.: Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-arid Watersheds, Environ. Monit. Assess., 64, 285–298, 2000.
Hernandez, M., Semmens, D. J., Miller, S. N., and Goodrich, D. C.: Development and Application of the Automated Geospatial Watershed Assessment Tool, in: Modeling and Remote Sensing Applied to Agriculture, USDA-INIFAP, US and Mexico, 127–158, 2005.
Heumann, B. W., Seaquist, J. W., Eklundh, L., and Jónsson, P.: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005, Remote Sens. Environ., 108, 385–392, https://doi.org/10.1016/j.rse.2006.11.025, 2007.
Hiernaux, P. and Gérard, B.: The influence of vegetation pattern on the productivity, diversity and stability of vegetation: the case of
brousse tigréein the Sahel, Acta Oecol., 20, 147–158, 1999.
Hiernaux, P., Bielderst, C. L., Bationo, A., and Fernández-rivera, S.: Effects of livestock grazing on pysical and chimical properties of sandy soils in Sahelian rangelands, J. Arid Environ., 41, 231–245, 1999.
Hiernaux, P., Mougin, E., Diarra, L., Soumaguel, N., Lavenu, F., Tracol, Y., and Diawara, M.: Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali, J. Hydrol., 375, 114–127, https://doi.org/10.1016/j.jhydrol.2008.11.005, 2009a.
Hiernaux, P., Diarra, L., Trichon, V., Mougin, E., Soumaguel, N., and Baup, F.: Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali), J. Hydrol., 375, 103–113, https://doi.org/10.1016/j.jhydrol.2009.01.043, 2009b.
HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. T., and De Kroon, H.: Vegetation Pattern Formation in Semi-Arid Grazing Systems, Ecology, 82, 50–61, 2001.
Hulme, M.: Climatic perspectives on Sahelian desiccation: 1973–1998, Glob. Environ. Chang., 11, 19–29, https://doi.org/10.1016/S0959-3780(00)00042-X, 2001.
Isioye, O. A. and Yang, I. C.: Comparison and validation of ASTER-GDEM and SRTM elevation models over parts of Kaduna State, Nigeria, SASGI Proceedings, 2013.
Kalin, L., Govindaraju, R. S., and Hantush, M. M.: Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds, J. Hydrol., 276, 89–111, https://doi.org/10.1016/S0022-1694(03)00072-6, 2003.
Kepner, W. G., Semmens, D. J., Hernandez, M., and Goodrich, D. C.: Evaluating Hydrological Response to Forecasted Land-Use Change?: Scenario Testing with the Automated Geospatial Watershed Assessment (AGWA) Tool, Third Interag. Conf. Res. Watersheds, 8–11 September 2008, Estes Park, CO, USA, 77–82, 2008.
Kergoat, L., Grippa, M., Hiernaux, P., Ramarohetra, J., Gardelle, J., Dardel, C., Gangneron, F., Gal, L., and Descroix, L.: Évolutions paradoxales des mares en Sahel non cultivé, in: Diagnostic, causes et conséquences, edited by: Sultan, B., Lalou, R., Sanni, M. A., Oumarou, A., and Soumaré, M. A., Les sociétés rurales face aux changements climatiques et environnementaux en Afrique de l'Ouest, IRD, 193–207, 2015.
Lajili-Ghezal, L.: Utilisation du modèle KINEROS pour la simulation des hydrogrammes et des turbidigrammes en zone semi-aride tunisienne, Rev. des Sci. l'eau, 17, 227–244, 2004.
Lane, L. J., Woolhiser, D. A., and Yevjevich, V.: Influence of simplifications in watershed geometry in simulation of surface runoff, Hydrology papers, Colorado State University, 1975.
Le Barbé, L., Lebel, T., and Tapsoba, D.: Rainfall Variability in West Africa during the Years 1950–90, Am. Meteorol. Soc., 15, 187–202, 2002.
Lebel, T. and Ali, A.: Recent trends in the Central and Western Sahel rainfall regime (1990–2007), J. Hydrol., 375, 52–64, https://doi.org/10.1016/j.jhydrol.2008.11.030, 2009.
Lebel, T., Cappelaere, B., Galle, S., Hanan, N., Kergoat, L., Levis, S., Vieux, B., Descroix, L., Gosset, M., Mougin, E., Peugeot, C., and Seguis, L.: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview, J. Hydrol., 375, 3–13, 2009.
Leblanc, M., Favreau, G., Tweed, S., Leduc, C., Razack, M., and Mofor, L.: Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa, Hydrogeol. J., 15, 97–100, https://doi.org/10.1007/s10040-006-0126-0, 2007.
Leblanc, M. J., Favreau, G., Massuel, S., Tweed, S. O., Loireau, M., and Cappelaere, B.: Land clearance and hydrological change in the Sahel: SW Niger, Global Planet. Change, 61, 135–150, 2008.
Leprun, J. C.: Etude de quelques brousses tigrées sahéliennes, in: L'aridité, une contrainte au développement, Caractérisation, réponses biologiques, stratégies des sociétés, edited by: Le Floc'h, E., Grouzis, M., Cornet, A., and Bille, J. C., ORSTOM, Paris, 221–244, 1992.
Li, K. Y., Coe, M. T., Ramankutty, N., and Jong, R. De: Modeling the hydrological impact of land-use change in West Africa, J. Hydrol., 337, 258–268, 2007.
Mahé, G. and Olivry, J. C.: Assessment of freshwater yields to the ocean along the intertropical Atlantic coast of Africa (1951–1989), Comptes Rendus l'Academie Sci. – Ser. IIa Sci. la Terre des Planetes, 328, 621–626, https://doi.org/10.1016/S1251-8050(99)80159-1, 1999.
Mahé, G. and Paturel, J.-E.: 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers, Comptes Rendus Geosci., 341, 538–546, 2009.
Mahé, G., Leduc, C., Amani, A., Paturel, J.-E., Girard, S., Servat, E., and Dezetter, A.: Augmentation récente du ruissellement de surface en région soudano-sahélienne et impact sur les ressources en eau, IAHS Publication, 215–222, 2003.
Mahé, G., Paturel, J., Servat, E., Conway, D., and Dezetter, A.: The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso, J. Hydrol., 300, 33–43, https://doi.org/10.1016/j.jhydrol.2004.04.028, 2005.
Mahé, G., Diello, P., Paturel, J., Barbier, B., Dezetter, A., Dieulin, C., and Rouché, N.: Baisse des pluies et augmentation des écoulements au Sahel: impact climatique et anthropique sur les écoulements du Nakambe au Burkina Faso, Sécheresse, 21, 1–6, 2010.
Mahé, G., Lienou, G., Bamba, F., Paturel, J. E., Adeaga, O., Descroix, L., Mariko, A., Olivry, J. C., Sangare, S., Ogilvie, A., and Clanet, J. C.: The River Niger and climate change over 100 years, Hydro-Climatology Var. Chang., 344, 131–137, 2011.
Mansouri, T., Albergel, J., and Seguis, L.: Modélisation hydrologique spatialisée de petits bassins versants en contexte semi-aride Méditerranéen, in: Hydrologie des régions méditerranéennes, edited by: Servat, E. and Albergel, J., UNESCO, IRD, Montpellier, France, 225–236, 2001.
Marzolff, I., Poesen, J., and Ries, J. B.: Short to medium-term gully development?: Human activity and gully erosion variability in selected Spanish gully catchments, Landf. Anal., 17, 111–116, 2011.
Massuel, S.: Evolution récente de la ressource en eau consécutive aux changements climatiques et environnementaux du sud-ouest Niger?: modélisation des eaux de surface et souterraines du bassin du kori de Dantiandou sur la période 1992–2003, Thesis, Université Montpellier 2, France, 2005.
Miller, S. N., Semmens, D. J., Goodrich, D. C., Hernandez, M., Miller, R. C., Kepner, W. G., and Guertin, D. P.: The Automated Geospatial Watershed Assessment tool, Environ. Model. Softw., 22, 365–377, 2007.
Miller, S. N., Kepner, W. G., Mehaffey, M. H., Hernandez, M., Miller, R. C., Goodrich, D. C., Devonald, K. K., Heggem, D. T., and Miller, W. P.: Integrating Landscape Assessment And Hydrologic Modeling For Land Cover Change Analysis, J. Am. Water Resour. As., 38, 915–929, 2002.
Mougin, E., Seen, D. Lo, Rambal, S., Gaston, A., and Hiernaux, P.: A Regional Sahelian Grassland Model To Be Coupled with Multispectral Satellite Data. I: Model Description and Validation, Remote Sens. Environ., 52, 181–193, 1995.
Mougin, E., Hiernaux, P., Kergoat, L., Grippa, M., de Rosnay, P., Timouk, F., Le Dantec, V., Demarez, V., Lavenu, F., Arjounin, M., Lebel, T., Soumaguel, N., Ceschia, E., Mougenot, B., Baup, F., Frappart, F., Frison, P. L., Gardelle, J., Gruhier, C., Jarlan, L., Mangiarotti, S., Sanou, B., Tracol, Y., Guichard, F., Trichon, V., Diarra, L., Soumaré, A., Koité, M., Dembélé, F., Lloyd, C., Hanan, N. P., Damesin, C., Delon, C., Serça, D., Galy-Lacaux, C., Seghieri, J., Becerra, S., Dia, H., Gangneron, F., and Mazzega, P.: The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources, J. Hydrol., 375, 14–33, 2009.
Mougin, E., Demarez, V., Diawara, M., Hiernaux, P., Soumaguel, N., and Berg, A.: Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali), Agr. Forest Meteorol., 198, 155–167, https://doi.org/10.1016/j.agrformet.2014.08.006, 2014.
Nicholson, S. E.: On the question of the
recoveryof the rains in the West African Sahel, J. Arid Environ., 63, 615–641, https://doi.org/10.1016/j.jaridenv.2005.03.004, 2005.
Nicholson, S. E., Tucker, C. J., and Ba, M. B.: Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel, B. Am. Meteorol. Soc., 79, 815–829, https://doi.org/10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2, 1998.
Olsson, L., Eklundh, L., and Ardö, J.: A recent greening of the Sahel – Trends, patterns and potential causes, J. Arid Environ., 63, 556–566, https://doi.org/10.1016/j.jaridenv.2005.03.008, 2005.
Panthou, G., Vischel, T., Lebel, T., Blanchet, J., Quantin, G., and Ali, A.: Extreme rainfall in West Africa: A regional modeling, Water Resour. Res., 48, 1–19, https://doi.org/10.1029/2012WR012052, 2012.
Panthou, G., Vischel, T., and Lebel, T.: Recent trends in the regime of extreme rainfall in the central sahel, Int. J. Climatol., 34, 3998–4006, https://doi.org/10.1002/joc.3984, 2014.
Peugeot, C., Esteves, M., Galle, S., Rajot, J. L., and Vandervaere, J. P.: Runoff generation processes: Results and analysis of field data collected at the East Central Supersite of the HAPEX-Sahel experiment, J. Hydrol., 188–189, 179–202, https://doi.org/10.1016/S0022-1694(96)03159-9, 1997.
Peugeot, C., Cappelaere, B., Vieux, B. E., Séguis, L., and Maia, A.: Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger. 1. Model-aided data analysis and screening, J. Hydrol., 279, 224–243, 2003.
Peugeot, C., Cappelaere, B., Vieux, B. E., Luc, S., Maia, A., Peugeot, C., Cappelaere, B., Vieux, B. E., Luc, S., and Hydrologic, A. M.: Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger?: 1. Model-aided data analysis and screening, J. Hydrol., 279, 224–243, 2007.
Pierre, C., Grippa, M., Mougin, E., Guichard, F., and Kergoat, L.: Changes in Sahelian annual vegetation growth and phenology since 1960?: A modeling approach, Global Planet. Change, 143, 162–174, https://doi.org/10.1016/j.gloplacha.2016.06.009, 2016.
Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C.: Gully erosion and environmental change?: importance and research needs, Catena, 50, 91–133, 2003.
Rietkerk, M., Ouedraogo, T., Kumar, L., Sanou, S., Van Langevelde, F., Kiema, A., Van De Koppel, J., Van Andel, J., Hearne, J., Skidmore, A. K., De Ridder, N., Stroosnijder, L., and Prins, H. H. T.: Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel, Plant Soil, 239, 69–77, https://doi.org/10.1023/A:1014970523241, 2002.
San Emeterio, L. J., Alexandre, F., Andrieu, J., Génin, A., and Mering, C.: Changements socio- environnementaux et dynamiques des paysages ruraux le long du gradient bioclimatique nord-sud dans le sud- ouest du Niger (régions de Tillabery et de Dosso)?, VertigO – la Rev. électronique en Sci. l'environnement, 13, 2–27, 2013.
Séguis, L., Cappelaere, B., Peugeot, C., and Vieux, B.: Impact on Sahelian runoff of stochastic and elevation-induced spatial distributions of soil parameters, Hydrol. Process., 16, 313–332, https://doi.org/10.1002/hyp.337, 2002.
Séguis, L., Cappelaere, B., Milési, G., Peugeot, C., Massuel, S., and Favreau, G.: Simulated impacts of climate change and land-clearing on runoff from a small Sahelian catchment, Hydrol. Process., 18, 3401–3413, https://doi.org/10.1002/hyp.1503, 2004.
Séguis, L., Boulain, N., Cappelaere, B., Cohard, J. M., Favreau, G., Galle, S., Guyot, A., Hiernaux, P., Mougin, É., Peugeot, C., Ramier, D., Seghieri, J., Timouk, F., Demarez, V., Demarty, J., Descroix, L., Descloitres, M., Grippa, M., Guichard, F., Kamagaté, B., Kergoat, L., Lebel, T., Le Dantec, V., Le Lay, M., Massuel, S., and Trichon, V.: Contrasted land-surface processes along the West African rainfall gradient, Atmos. Sci. Lett., 12, 31–37, https://doi.org/10.1002/asl.327, 2011.
Semmens, D. J., Goodrich, D. C., Unkrich, C. L., Smith, R. E., Woolhiser, D. A., and Miller, S. N.: KINEROS2 and the AGWA modeling framework, in: Hydrological Modeling in Arid and Semi-Arid Areas, edited by: Wheater, H., Sorooshian, S., and Sharma, K. D., Cambridge University Press, London, UK, 49–68, 2008.
Sighomnou, D., Descroix, L., Genthon, P., Mahé, G., Moussa, I. B., Gautier, E., Mamadou, I., Vandervaere, J., Bachir, T., Coulibaly, B., Rajot, J., Malam Issa, O., Malam Abdou, M., Dessay, N., Delaitre, E., Faran Maiga, O., Diedhiou, A., Panthou, G., Vischel, T., Yacouba, H., Karambiri, H., Paturel, J.-E., Diello, P., Mougin, E., Kergoat, L., and Hiernaux, P.: La crue de 2012 à Niamey: un paroxysme du paradoxe du Sahel??, Sècheresse, 24, 3–13, 2013.
Smith, R. E. and Parlange, J. Y.: A parameter efficient hydrologic infiltration model, Water Resour. Res., 14, 533–538, https://doi.org/10.1029/WR014i003p00533, 1978.
Smith, R. E., Goodrich, D. C., and Quinton, J. N.: Dynamic, distributed simulation of watershed erosion: The KINEROS2 and EUROSEM models, J. Soil Water Conserv., 50, 517–520, 1995.
Smith, R. E., Goodrich, D. C., and Unkrich, C. L.: Simulation of selected events on the Catsop catchment by KINEROS2. A report for the GCTE conference on catchment scale erosion models, Catena, 37, 457–475, https://doi.org/10.1016/S0341-8162(99)00033-8, 1999.
Stone, J. J., Lane, L. J., and Shirley, E. D.: Infiltration and runoff simulation on a plane, Trans. Am. Soc. Agric. Eng., 35, 161–170, 1992.
Thieken, A. H., Lücke, A., Diekkrüger, B., and Richter, O.: Scaling input data by GIS for hydrological modelling, Hydrol. Process., 13, 611–630, https://doi.org/10.1002/(SICI)1099-1085(199903)13:4<611::AID-HYP758>3.0.CO;2-6, 1999.
Timouk, F., Kergoat, L., Mougin, E., Lloyd, C. R., Ceschia, E., Cohard, J. M., Rosnay, P. de, Hiernaux, P., Demarez, V., and Taylor, C. M.: Response of surface energy balance to water regime and vegetation development in a Sahelian landscape, J. Hydrol., 375, 178–189, https://doi.org/10.1016/j.jhydrol.2009.04.022, 2009.
Trichon, V., Hiernaux, P., Walcker, R., and Mougin, E.: Collapse of a tiger bush vegetation and run-off changes during a 55 years period (1955–2010) as observed by aerial photographs and HR satellite data, in: AMMA 4th International Conference, 2–6 July 2012, Toulouse, France, 2012.
Valentin, C. and Janeau, J.: Cartographie des états de surface de trois bassins versants du Mali?: Tin Adjar, Koumbaka et Dounfing, in: ORSTOM, Abidjan, Côte d'Ivoire, 12 pp., 1988.
Valentin, C., D'Herbès, J. M., and Poesen, J.: Soil and water components of banded vegetation patterns, Catena, 37, 1–24, https://doi.org/10.1016/S0341-8162(99)00053-3, 1999.
Valentin, C., Rajot, J. L., and Mitja, D.: Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa, Agr. Ecosyst. Environ., 104, 287–302, https://doi.org/10.1016/j.agee.2004.01.035, 2004.
Valentin, C., Poesen, J., and Li, Y.: Gully erosion: Impacts, factors and control, Catena, 63, 132–153, https://doi.org/10.1016/j.catena.2005.06.001, 2005.
Vischel, T. and Lebel, T.: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff. Part 2: Idealized modeling of runoff sensitivity, J. Hydrol., 333, 340–355, https://doi.org/10.1016/j.jhydrol.2006.09.007, 2007.
Wooding, R. A.: A hydraulic model for the catchment-stream problem, J. Hydrol., 4, 21–37, https://doi.org/10.1016/0022-1694(66)90065-5, 1966.
Woolhiser, D.-A., Smith, R.-E., and Goodrich, D.-C.: KINEROS, a kinematic Runoff and Erosion Model: Documentation and User Manual, ARS, 77, Agric. Res. Serv., US Dept. of Agric., Washington, D.C., 1990.
Short summary
The intense, prolonged Sahel drought has caused a widespread increase in surface runoff and surface waters like lakes or rivers, against all expectations. Using long-term observations and the Kineros2 hydrological model, we show that the runoff coefficient of the Agoufou watershed increased from ~ 0 to 5.5 % in 1950–2011. We attribute this phenomenon to a change in vegetation and soil surface properties, in response to the drought, rather than land–use change or rainfall regime intensification.
The intense, prolonged Sahel drought has caused a widespread increase in surface runoff and...