Articles | Volume 21, issue 8
https://doi.org/10.5194/hess-21-4233-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-4233-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
Shoubo Li
CORRESPONDING AUTHOR
School of Geography and Remote Sensing, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Yan Zhao
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences, the University of Queensland, 4072 Brisbane, Australia
Yongping Wei
School of Earth and Environmental Sciences, the University of Queensland, 4072 Brisbane, Australia
Hang Zheng
School of Earth and Environmental Sciences, the University of Queensland, 4072 Brisbane, Australia
Related authors
Jingqiu Yin, Xinfa Qiu, Shoubo Li, Guoping Shi, and Huiyu Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-161, https://doi.org/10.5194/hess-2020-161, 2020
Manuscript not accepted for further review
Short summary
Short summary
The agricultural activities, hydrologic cycle, and ecological environment are seriously influenced by evapotranspiration (ET), especially in arid and semi-arid areas. A new method for estimating daily global solar radiation (GSR) is developed. Bringing the new model into surface energy balance algorithm for land (SEBAL) model, and with the multisource remote sensing data, the accuracy of the ET significantly is improved.
Shuanglei Wu and Yongping Wei
Hydrol. Earth Syst. Sci., 28, 3871–3895, https://doi.org/10.5194/hess-28-3871-2024, https://doi.org/10.5194/hess-28-3871-2024, 2024
Short summary
Short summary
This study developed a framework to understand the structures of knowledge development in 72 river basins globally from 1962–2017 using Web of Science. It was found that the knowledge systems were characterized by increasingly interconnected management issues addressed by limited disciplines and were linked more strongly to societal impacts than that to policy. Understanding the current state of knowledge casts a light on sustainable knowledge transformations for river basin management.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Shuanglei Wu, Yongping Wei, and Xuemei Wang
Hydrol. Earth Syst. Sci., 25, 5381–5398, https://doi.org/10.5194/hess-25-5381-2021, https://doi.org/10.5194/hess-25-5381-2021, 2021
Short summary
Short summary
Using publications indexed in the Web of Science, we investigated water resources knowledge development at the river basin scale since 1900 and found that legacy-driven knowledge structures, increasingly homogenized management issues, and largely static cross-disciplinary collaborations dominated highly researched river basins. A structural shift of water resources knowledge development to cope with the rapidly changing hydrological systems and associated management issues is urgently needed.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021, https://doi.org/10.5194/hess-25-1603-2021, 2021
Jingqiu Yin, Xinfa Qiu, Shoubo Li, Guoping Shi, and Huiyu Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-161, https://doi.org/10.5194/hess-2020-161, 2020
Manuscript not accepted for further review
Short summary
Short summary
The agricultural activities, hydrologic cycle, and ecological environment are seriously influenced by evapotranspiration (ET), especially in arid and semi-arid areas. A new method for estimating daily global solar radiation (GSR) is developed. Bringing the new model into surface energy balance algorithm for land (SEBAL) model, and with the multisource remote sensing data, the accuracy of the ET significantly is improved.
Chinchu Mohan, Andrew W. Western, Yongping Wei, and Margarita Saft
Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, https://doi.org/10.5194/hess-22-2689-2018, 2018
Short summary
Short summary
To ensure a sustainable supply of groundwater, scientific information about what is going into the system as recharge and what is taken out of the system via pumping is essential. This study identified the most influential factors in groundwater recharge and developed an empirical global recharge model. The meteorological and vegetation factors were the most important factors, and the long-term global average recharge was 134 mm per year. This model will aid in groundwater policy-making.
Yan Zhao, Yongping Wei, Shoubo Li, and Bingfang Wu
Hydrol. Earth Syst. Sci., 20, 4469–4481, https://doi.org/10.5194/hess-20-4469-2016, https://doi.org/10.5194/hess-20-4469-2016, 2016
Short summary
Short summary
The paper finds that combined inflow from both current and previous years' discharge determines water availability in downstream regions. Temperature determines broad vegetation distribution while hydrological variables show significant effects only in near-river-channel regions. Agricultural development curtailed further vegetation recovery in the studied area. Enhancing current water allocation schemes and regulating regional agricultural activities are required for future restoration.
Y. Zhao, Y. Z. Wang, Z. H. Xu, and L. Fu
Biogeosciences, 12, 6279–6290, https://doi.org/10.5194/bg-12-6279-2015, https://doi.org/10.5194/bg-12-6279-2015, 2015
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Remote Sensing and GIS
Circumarctic land cover diversity considering wetness gradients
Multi-decadal floodplain classification and trend analysis in the Upper Columbia River valley, British Columbia
Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth
Simulating carbon and water fluxes using a coupled process-based terrestrial biosphere model and joint assimilation of leaf area index and surface soil moisture
Untangling irrigation effects on maize water and heat stress alleviation using satellite data
Information-based uncertainty decomposition in dual-channel microwave remote sensing of soil moisture
Assessing the large-scale plant–water relations in the humid, subtropical Pearl River basin of China
Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes
Long-term water stress and drought assessment of Mediterranean oak savanna vegetation using thermal remote sensing
Temporal interpolation of land surface fluxes derived from remote sensing – results with an unmanned aerial system
Pattern and structure of microtopography implies autogenic origins in forested wetlands
The influence of water table depth on evapotranspiration in the Amazon arc of deforestation
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales
Laser vision: lidar as a transformative tool to advance critical zone science
Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China
Evapotranspiration and water yield over China's landmass from 2000 to 2010
Satellite-based analysis of recent trends in the ecohydrology of a semi-arid region
Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach
Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones
Quantifying the performance of automated GIS-based geomorphological approaches for riparian zone delineation using digital elevation models
Climate change, growing season water deficit and vegetation activity along the north–south transect of eastern China from 1982 through 2006
Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data
The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model
The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Italo Sampaio Rodrigues, Christopher Hopkinson, Laura Chasmer, Ryan J. MacDonald, Suzanne E. Bayley, and Brian Brisco
Hydrol. Earth Syst. Sci., 28, 2203–2221, https://doi.org/10.5194/hess-28-2203-2024, https://doi.org/10.5194/hess-28-2203-2024, 2024
Short summary
Short summary
The research evaluated the trends and changes in land cover and river discharge in the Upper Columbia River Wetlands using remote sensing and hydroclimatic data. The river discharge increased during the peak flow season, resulting in a positive trend in the open-water extent in the same period, whereas open-water area declined on an annual basis. Furthermore, since 2003 the peak flow has occurred 11 d earlier than during 1903–1928, which has led to larger discharges in a shorter time.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Sinan Li, Li Zhang, Jingfeng Xiao, Rui Ma, Xiangjun Tian, and Min Yan
Hydrol. Earth Syst. Sci., 26, 6311–6337, https://doi.org/10.5194/hess-26-6311-2022, https://doi.org/10.5194/hess-26-6311-2022, 2022
Short summary
Short summary
Accurate estimation for global GPP and ET is important in climate change studies. In this study, the GLASS LAI, SMOS, and SMAP datasets were assimilated jointly and separately in a coupled model. The results show that the performance of joint assimilation for GPP and ET is better than that of separate assimilation. The joint assimilation in water-limited regions performed better than in humid regions, and the global assimilation results had higher accuracy than other products.
Peng Zhu and Jennifer Burney
Hydrol. Earth Syst. Sci., 26, 827–840, https://doi.org/10.5194/hess-26-827-2022, https://doi.org/10.5194/hess-26-827-2022, 2022
Short summary
Short summary
Satellite data were used to disentangle water and heat stress alleviation due to irrigation. Our findings are as follows. (1) Irrigation-induced cooling was captured by satellite LST but air temperature failed. (2) Irrigation extended maize growing season duration, especially during grain filling. (3) Water and heat stress alleviation constitutes 65 % and 35 % of the irrigation benefit. (4) The crop model simulating canopy temperature better captures the irrigation benefit.
Bonan Li and Stephen P. Good
Hydrol. Earth Syst. Sci., 25, 5029–5045, https://doi.org/10.5194/hess-25-5029-2021, https://doi.org/10.5194/hess-25-5029-2021, 2021
Short summary
Short summary
We found that satellite retrieved soil moisture has large uncertainty, with uncertainty caused by the algorithm being closely related to the satellite soil moisture quality. The information provided by the two main inputs is mainly redundant. Such redundant components and synergy components provided by two main inputs to the satellite soil moisture are related to how the satellite algorithm performs. The satellite remote sensing algorithms may be improved by performing such analysis.
Hailong Wang, Kai Duan, Bingjun Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 4741–4758, https://doi.org/10.5194/hess-25-4741-2021, https://doi.org/10.5194/hess-25-4741-2021, 2021
Short summary
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
David N. Dralle, W. Jesse Hahm, K. Dana Chadwick, Erica McCormick, and Daniella M. Rempe
Hydrol. Earth Syst. Sci., 25, 2861–2867, https://doi.org/10.5194/hess-25-2861-2021, https://doi.org/10.5194/hess-25-2861-2021, 2021
Short summary
Short summary
Root zone water storage capacity determines how much water can be stored belowground to support plants during periods without precipitation. Here, we develop a satellite remote sensing method to estimate this key variable at large scales that matter for management. Importantly, our method builds on previous approaches by accounting for snowpack, which may bias estimates from existing approaches. Ultimately, our method will improve large-scale understanding of plant access to subsurface water.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020, https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary
Short summary
Remote sensing only provides snapshots of rapidly changing land surface variables; this limits its application for water resources and ecosystem management. To obtain continuous estimates of surface temperature, soil moisture, evapotranspiration, and ecosystem productivity, a simple and operational modelling scheme is presented. We demonstrate it with temporally sparse optical and thermal remote sensing data from an unmanned aerial system at a Danish bioenergy plantation eddy covariance site.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Hydrol. Earth Syst. Sci., 23, 5069–5088, https://doi.org/10.5194/hess-23-5069-2019, https://doi.org/10.5194/hess-23-5069-2019, 2019
Short summary
Short summary
We found evidence for spatial patterning of soil elevation in forested wetlands that was well explained by hydrology. The patterns that we found were strongest at wetter sites, and were weakest at drier sites. When a site was wet, soil elevations typically only belonged to two groups: tall "hummocks" and low "hollows. The tall, hummock groups were spaced equally apart from each other and were a similar size. We believe this is evidence for a biota–hydrology feedback that creates hummocks.
John O'Connor, Maria J. Santos, Karin T. Rebel, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 23, 3917–3931, https://doi.org/10.5194/hess-23-3917-2019, https://doi.org/10.5194/hess-23-3917-2019, 2019
Short summary
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Olanrewaju O. Abiodun, Huade Guan, Vincent E. A. Post, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 2775–2794, https://doi.org/10.5194/hess-22-2775-2018, https://doi.org/10.5194/hess-22-2775-2018, 2018
Short summary
Short summary
In recent decades, evapotranspiration estimation has been improved by remote sensing methods as well as by hydrological models. However, comparing these methods shows differences of up to 31 % at a spatial resolution of 1 km2. Land cover differences and catchment averaged climate data in the hydrological model were identified as the principal causes of the differences in results. The implication is that water management will have to deal with large uncertainty in estimated water balances.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
Y. Wang, M. L. Roderick, Y. Shen, and F. Sun
Hydrol. Earth Syst. Sci., 18, 3499–3509, https://doi.org/10.5194/hess-18-3499-2014, https://doi.org/10.5194/hess-18-3499-2014, 2014
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
M. Gokmen, Z. Vekerdy, W. Verhoef, and O. Batelaan
Hydrol. Earth Syst. Sci., 17, 3779–3794, https://doi.org/10.5194/hess-17-3779-2013, https://doi.org/10.5194/hess-17-3779-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
T. S. Ahring and D. R. Steward
Hydrol. Earth Syst. Sci., 16, 4133–4142, https://doi.org/10.5194/hess-16-4133-2012, https://doi.org/10.5194/hess-16-4133-2012, 2012
D. Fernández, J. Barquín, M. Álvarez-Cabria, and F. J. Peñas
Hydrol. Earth Syst. Sci., 16, 3851–3862, https://doi.org/10.5194/hess-16-3851-2012, https://doi.org/10.5194/hess-16-3851-2012, 2012
P. Sun, Z. Yu, S. Liu, X. Wei, J. Wang, N. Zegre, and N. Liu
Hydrol. Earth Syst. Sci., 16, 3835–3850, https://doi.org/10.5194/hess-16-3835-2012, https://doi.org/10.5194/hess-16-3835-2012, 2012
M. Otto, D. Scherer, and J. Richters
Hydrol. Earth Syst. Sci., 15, 1713–1727, https://doi.org/10.5194/hess-15-1713-2011, https://doi.org/10.5194/hess-15-1713-2011, 2011
C. Cammalleri, M. C. Anderson, G. Ciraolo, G. D'Urso, W. P. Kustas, G. La Loggia, and M. Minacapilli
Hydrol. Earth Syst. Sci., 14, 2643–2659, https://doi.org/10.5194/hess-14-2643-2010, https://doi.org/10.5194/hess-14-2643-2010, 2010
E. Teferi, S. Uhlenbrook, W. Bewket, J. Wenninger, and B. Simane
Hydrol. Earth Syst. Sci., 14, 2415–2428, https://doi.org/10.5194/hess-14-2415-2010, https://doi.org/10.5194/hess-14-2415-2010, 2010
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015.
Beuchle, R., Grecchi, R. C., Shimabukuro, Y. E., Seliger, R., Eva, H. D., Sano, E., and Achard, F.: Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach, Appl.Geogr., 58, 116–127, https://doi.org/10.1016/j.apgeog.2015.01.017, 2015
Cheng, G.: Study on the sustainable development in the Heihe River watershed from the view of ecological economics, J. Glaciol. Geocryol., 24, 335–343, 2002.
Esteban, E. and Albiac, J.: Groundwater and ecosystems damages: Questioning the Gisser–Sánchez effect, Ecol. Econ., 70, 2062–2069, https://doi.org/10.1016/j.ecolecon.2011.06.004, 2011.
Feng, X., Fu, B., Lu, N., Zeng, Y., and Wu, B.: How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China Loess Plateau, Scient. Rep., 3, 2846, https://doi.org/10.1038/srep02846, 2013.
Fu, L., Zhang, L., and He, C.: Analysis of Agricultural Land Use Change in the Middle Reach of the Heihe River Basin, Northwest China, Int. J. Environ. Res. Publ. Health, 11, 2698–2712, https://doi.org/10.3390/ijerph110302698, 2014.
Hu, N. and Li, X.: Spatial distribution of an ancient agricultural oasis in Juyan, northwestern China, Front. Earth Sci., 8, 338–350, https://doi.org/10.1007/s11707-014-0452-9, 2014.
Huang, G., Qin, X., He, L., Zhang, H., Li, Y., and Li, Z.: Nonstationary desertification dynamics of desert oasis under climate change and human interference, J. Geophys. Res.-Atmos., 120, 11878–11888, https://doi.org/10.1002/2015JD023826, 2015.
Ian, M. F. and Reed, M. M.: Human impacts on terrestrial hydrology: climate change versus pumping and irrigation, Environ. Res. Lett., 7, 1–8, https://doi.org/10.1088/1748-9326/7/4/044022, 2012.
Kefi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P., ElAich, A., and de Ruiter, P. C.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems, Nature, 449, 213–217, https://doi.org/10.1038/nature06111, 2007.
Lan, Y., Ding, Y., and Kang, E.: Variations and Trends of Temperature and Precipitation in the Mountain Drainage Basin of the Heihe River in Recent 50 Years, Plateau Meteorol., 23, 724–727, 2004.
Leggett, K., Fennessy, J., and Schneider, S.: Does land use matter in an arid Environment? A case study from the Hoanib River catchment, north-western Namibia, J. Arid Environ., 53, 529–543, https://doi.org/10.1006/jare.2002.1066, 2003.
Li, X., Xiao, D., He, X., Chen, W., and Song, D.: Evaluation of landscape changes and ecological degradation by GIS in arid regions: a case study of the terminal oasis of the Shiyang River, northwest China, Environ. Geol., 52, 947–956, https://doi.org/10.1007/s00254-006-0536-2, 2007.
Lowry, D. P. and Morrill, C.: Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum, American Geophysical Union, Fall Meeting, 5–9 December 2011, San Francisco, California, USA, 2011.
Lu, Z., Wei, Y., Xiao, H., Zou, S., Xie, J., Ren, J., and Western, A.: Evolution of the human–water relationships in the Heihe River basin in the past 2000 years, Hydrol. Earth Syst. Sci., 19, 2261–2273, https://doi.org/10.5194/hess-19-2261-2015, 2015a.
Lu, Z., Wei, Y., Xiao, H., Zou, S., Ren, J., and Lyle, C.: Trade-offs between midstream agricultural production and downstream ecological sustainability in the Heihe River basin in the past half century, Agr. Water Manage., 152, 233–242, https://doi.org/10.1016/j.agwat.2015.01.022, 2015b.
Lu, Z., Xiao H., Wei, Y., Zou, S., Ren, J., and Zhang, Z.: Advances in the study on the human-water-ecology evolution in the past two thousand years in Heihe River Basin, Adv. Earth Sci., 30, 396–406, https://doi.org/10.11867/j.issn.1001-8166.2015.03.0396, 2015c.
Mi, L., Xiao, H., Zhu, W., Li, J., Xiao, S., and Li, L.: Dynamic variation of the groundwater level in the middlereaches of the Heihe River during 1985–2013, J. Glaciol. Geocryol., 37, 461–469, 2015.
Nian, Y. Y., Li, X., and Zhou, J.: Landscape changes of the Ejin Delta in the Heihe River Basin in Northwest China from 1930 to 2010, Int. J. Remote Sens., 38, 537–557, https://doi.org/10.1080/01431161.2016.1268732, 2017.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., and Stenseth, N. C.: Using the satellite-derived NDVI to assess ecological responses to environmental change, Trends Ecol. Evol., 20, 503–510, https://doi.org/10.1016/j.tree.2005.05.011, 2005.
Pinsky, M. L. and Fogarty, M.: Lagged social-ecological responses to climate and range shifts in fisheries, Climatic Change, 115, 883–891, https://doi.org/10.1007/s10584-012-0599-x, 2012.
Ramankutty, N. and Foley, J. A.: Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochem. Cy., 13, 997–1027, https://doi.org/10.1029/1999GB900046, 1999.
Sakai, A., Inoue, M., Fujita, K., Narama, C., Kubota, J., Nakawo, M., and Yao, T.: Variations in discharge from the Qilian mountains, northwest China, and its effect on the agricultural communities of the Heihe basin, over the last two millennia, Water Hist., 4, 177–196, https://doi.org/10.1007/s12685-012-0057-8, 2012.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Sociohydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
Su, Y. Z., Zhao, W. Z., Su, P. X., Zhang, Z. H., Wang, T., and Ram, R.: Ecological effects of desertification control and desertified land reclamation in an oasis–desert ecotone in an arid region: A case study in Hexi Corridor, northwest China, Ecol. Eng., 29, 117–124, https://doi.org/10.1016/j.ecoleng.2005.10.015, 2007.
Thevs, N., Peng, H., Rozi, A., Zerbe, S., and Abdusalih, N.: Water allocation and water consumption of irrigated agriculture and natural vegetation in the Aksu-Tarim river basin, Xinjiang, China, J. Arid Environ., 112, 87–97, https://doi.org/10.1016/j.jaridenv.2014.05.028, 2015.
Turner, B. L., Lambin, E. F., and Reenberg, A.: The emergence of land change science for global environmental change and sustainability, P. Natl. Acad. Sci. USA, 104, 20666–20671, https://doi.org/10.1073/pnas.0704119104, 2007.
Wang, J. F., Cheng, G. D., Gao, Y. G., Long, A. H., Xu, Z. M., Li, X., Chen, H., and Barker, T.: Optimal Water Resource Allocation in Arid and Semi-Arid Areas, Water Resour. Manage., 22, 239–258, https://doi.org/10.1007/s11269-007-9155-2, 2007.
Wang, Y., Xiao, H., and Lu, M.: Analysis of water consumption using a regional input–output model: Model development and application to Zhangye City, Northwestern China, J. Arid Environ., 73, 894–900, https://doi.org/10.1016/j.jaridenv.2009.04.005, 2009.
Xiao, S. and Xiao, H.: Advances in the study of the water regime process and driving mechanism in the Heihe River basin, Adv. Earth Sci., 23, 748–755, 2008.
Xie, Y.: Dataset of cultivated oasis distribution in the Heihe River Basin during the historical period, Heihe Plan Science Data Center, Lanzhou, China, https://doi.org/10.3972/heihe.092.2013.db, 2013.
Xie, Y., Wang, X., Wang, G., and Yu, L.: Cultivated land distribution simulation based on grid in middle reaches of Heihe River basin in the historical periods, Adv. Earth Sci., 28, 71–78, 2013.
Xie, Y., Wang, G., Wang, X., and Fan, P.: Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China, Front. Earth Sci., 1–14, https://doi.org/10.1007/s11707-016-0607-y, 2016.
Xue, X., Liao, J., Hsing, Y., Huang, C., and Liu, F.: Policies, Land Use, and Water Resource Management in an Arid Oasis Ecosystem, Environ. Manage., 55, 1036–1051, https://doi.org/10.1007/s00267-015-0451-y, 2015.
Yang, B., Braeuning, A., Johnson, K. R., and Shi, Y.: General characteristics of temperature variation in China during the last two millennia, Geophys. Res. Lett., 29, 38-1–38-4, https://doi.org/10.1029/2001GL014485, 2002.
Yang, W., Khanna, M., Farnsworth, R., and Onal, H.: Integrating economic, environmental and GIS modeling to target cost effective land retirement in multiple watersheds, Ecol. Econ., 46, 249–267, https://doi.org/10.1016/S0921-8009(03)00141-1, 2003.
Zhao, W., Chang, X., He, Z., and Zhang, Z.: Study on vegetation ecological water requirement in Ejina Oasis, China Earth Sci., 50, 121–129, https://doi.org/10.1007/s11430-007-2035-z, 2007.
Zhao, W., Niu, Z., Chang, X., and Li, S.: Water consumption in artificial desert oasis based on net primary productivity, China Earth Sci., 53, 1358–1364, https://doi.org/10.1007/s11430-010-4028-6, 2010.
Zhao, Y., Wei, Y. P., Li, S. B., and Wu, B. F.: Downstream ecosystem responses to middle reach regulation of river discharge in the Heihe River Basin, China, Hydrol. Earth Syst. Sci., 20, 4469–4481, https://doi.org/10.5194/hess-20-4469-2016, 2016.
Zhou, S., Huang, Y., Wei, Y., and Wang, G.: Socio-hydrological water balance for water allocation between human and environmental purposes in catchments, Hydrol. Earth Syst. Sci., 19, 3715–3726, https://doi.org/10.5194/hess-19-3715-2015, 2015.
Short summary
This study aims to investigate the evolution of natural and crop vegetation systems over the past 2000 years accommodated with the changes in water regimes at the basin scale. It is based on remote-sensing data and previous historical research. The methods developed and the findings obtained from this study could assist in understanding how current ecosystem problems were created in the past and what their implications for future river basin management are.
This study aims to investigate the evolution of natural and crop vegetation systems over the...