Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3915-2017
https://doi.org/10.5194/hess-21-3915-2017
Research article
 | Highlight paper
 | 
31 Jul 2017
Research article | Highlight paper |  | 31 Jul 2017

An intercomparison of approaches for improving operational seasonal streamflow forecasts

Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (13 Jun 2017) by Ilias Pechlivanidis
AR by Pablo Mendoza on behalf of the Authors (17 Jun 2017)  Author's response   Manuscript 
ED: Publish as is (22 Jun 2017) by Ilias Pechlivanidis
AR by Pablo Mendoza on behalf of the Authors (30 Jun 2017)
Download
Short summary
Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.