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Replies to Referee #1 
 

“An intercomparison of approaches for improving predictability in operational seasonal 
streamflow forecasting” 

 
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart 

Nijssen, Levi D. Brekke, and Jeffrey R. Arnold 
 
We thank this reviewer for his time in commenting on our paper. We provide responses to each 
individual point below. For clarity, comments are given in italics, and our responses are given in 
plain text. 
 
This is an interesting and well written comprehensive evaluation of over a dozen statistical, 
dynamical and hybrid seasonal streamflow forecasting techniques. The evaluation is done for about 
20 years of 5 reservoirs in mostly snow-dominated climates of the Pacific Northwest US. My 
suggestions for changes are minor at best, with detailed comments below.  
 
We are very pleased that this reviewer appreciates the contributions of this study. 
 
Title: I don’t think "predictability" is the right word for the title. It implies something that’s 
immutable and intrinsic, in the sense of theoretical maximum predictability, which is not something 
that could be "improved". Predictive skill of certain techniques or a forecasting enterprise can be 
improved, however.  
 
The reviewer makes a good point. To avoid confusion on the concept of “predictability”, we have 
modified the title to “An intercomparison of approaches for improving operational seasonal 
streamflow forecasts” (L1-2). 
 
Line 57 "current operational practice in the US still takes little to no advantage of largescale 
climate information for realtime seasonal streamflow forecasting" and later line 64-65 "these 
[operational] approaches rely solely on the predictability of [initial hydrologic conditions] and do 
not leverage any type of large-scale current or future climate information". From my experience as 
a forecaster, there were only very limited locations and leadtimes where the climate information 
provided substantial benefits. Things like El Nino indices were used in pacific northwest and 
southwest US for early (i.e. January) and pre-season (i.e. October-December) forecasts. I think it’s 
strong to say that there was no use at all of climate information. 
 
We have modified the text to reflect the reviewer’s experience on this topic, though in truth the vast 
majority of statistical forecasting locations in the western US do not use climate indices to our 
knowledge – even in the Pacific Northwest (PNW).  The paragraph now reads (L59-69): 
 
"Despite generally promising findings from this body of work and from a number of agency 
development efforts (Weber et al., 2012; Demargne et al., 2014), the use of large-scale climate 
information for real-time seasonal streamflow forecasting in the US remains rare. In the western 
United States, where snowmelt commonly dominates the annual cycle of runoff, official WSFs are 
produced via two main approaches: (i) statistical models leveraging in situ watershed moisture 
measurements such as snow water equivalent (SWE), accumulated precipitation and streamflow 
(Garen, 1992; Pagano et al., 2004); and (ii) outputs from the National Weather Service (NWS) 
Ensemble Streamflow Prediction method (ESP; Day, 1985), which is based on watershed modeling. 
For the overwhelming majority of forecast locations, these approaches rely solely on the 
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predictability from IHCs (measured or modelled). A small number of locations can be found, 
however, where climate indices also serve as predictors in the statistical framework, and the NWS 
has recently implemented techniques through which climate model forecasts may eventually be 
applied to ESP (Demargne et al., 2014)” 
 
Line 89 Following the list of statistical water supply forecasting techniques. It may be useful to 
include in that list http://onlinelibrary.wiley.com/doi/10.1111/j.1752- 1688.2009.00321.x/abstract 
because it also includes z-score regression and describes operational products. 
 
Certainly!  This was an oversight as we are aware of that work, thus we have included the 
aforementioned reference, following the reviewer´s suggestion (L94). 
 
Line 172 The universal use of the log transform on all the predictands. Operationally, forecasters 
use linear, square root, cube root and log transform statistical models, with log being the most 
extreme. The use of log everywhere wouldn’t have been my first choice, and is probably responsible 
for "forecast blowouts" like 1993 in the Apr-1 / e panel on figure 11 (far lower right corner, only 
the lower whisker is visible on the chart). But since it’s applied the same everywhere, it means that 
the intercomparison is valid in a relative rather than absolute sense. You might reassure the reader 
that you tried other transforms and the results were insensitive.  
 
We regret that we did not try other transformations as we were focused on relative outcomes, 
though this would have been a reasonable thing to do. In truth, we did place a great deal of 
importance on the transformation when the work was done, though since then our interactions with 
CSIRO has opened our eyes to the variation in the effectiveness of different transformations 
(including, for instance, the log-sinh).  We do not have the bandwidth to go back and explore this 
issue, but for now we will highlight it for the readers based of the text of the comment. Hence, we 
have added the following sentences (L179-182): 
 
“In practice, forecasters use a variety of transforms such as linear, square root, cube root, log and 
log-sinh (Wang et al. 2012).  We did not explore alternative transforms, using the log consistently 
throughout, but recognize that the choice of transform can affect the quality of the forecast.” 
 
Line 261 The use of stepwise approach to model building. I think what you’re describing here is the 
case where El Nino is predicting fall precipitation, and by the time January 1 comes around the 
precipitation is "in the bank" and so continued use of El Nino as a seasonal streamflow predictor 
after January 1 is redundant, if the equation also includes IHC variables. This was a common 
operational challenge in the US and a frustration to forecasters.  
 
The reviewer correctly identifies the motivation for the technique, in the sense that HESP intends to 
handle seasonally varying sources of predictability separately, applying the climate predictors only 
to the portion of the flow variation that has not already been explained by the IHCs, if possible. If 
the signal from watershed moisture conditions becomes strong and is redundant,  eclimate = Q - 
f(IHC) (i.e., the residual from that relationship) cannot be explained robustly by climate information 
and HESP just defaults to Stat-IHC.  
 
Line 379 I think you find that El Nino provides a small amount of predictability in October-
December and by 1 January comes, initial hydrologic conditions are comparable to El Nino skill, 
but then by 1 February and later, IHC are heavily dominant. This is consistent with 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.3158&rep=rep1&type=pdf 
https://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=5hdY14AAAAAJ&ci
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tation_for_view=5hdY14AAAAAJ:YsMSGLbcyi4C For many years 1 February was the start of the 
operational forecasting season and so there is little surprise that hydrologists were underwhelmed 
with what El Nino had to offer them. It wasn’t until leadtimes were pushed back to 1 January, and 
then back to 1 October that hydrologists became more operationally interested. 
 
Indeed, our skill plots (Figures 5 and 8) align with the findings by Pagano and Garen (2006) and 
other researchers as to this point, specifically with the progression of seasonal streamflow forecast 
skill provided in their Figure 1. We thank the reviewer for this observation about the original 
initialization dates in February, which is encouraging if it indicates a trend toward even earlier start 
times where the climate information is relatively more important.  We add the following sentence 
(L400-401): 
 
“This progression of relative predictabilities from climate and watershed moisture conditions 
(Figures 5 and 8) is consistent with previous findings for the region (e.g., Pagano and Garen 
2006).” 
 
Line 410 On explanations of why ESP is under-dispersive- The common way of explaining this is 
that NWS-style ESP does not consider parameter, data or model uncertainty, only uncertainty of 
future forcings. 
 
This is a good point. Indeed, ESPs are particularly under-dispersive at late forecast initializations, 
when uncertainty in IHCs dominates the total streamflow forecast uncertainty (Wood and Schaake 
2008). We thank the reviewer for this observation, and have modified the text accordingly (L432-
435): 
 
“For such lead times, the uncertainty in ESP streamflow forecasts is underestimated due to reliance 
on a single modeled IHC that does not account for modeling errors (Wood and Schaake 2008), such 
that forecast spread derives only from uncertainty represented by the ensemble of future forcings.” 
 
Line 477 Generating custom climate indices beyond El Nino, creates useful information. I feel like 
this contradicts the statements on lines 383-385 where you say that this technique was the worst 
performer. 
 
The reviewer refers to a comparison between the three hybrid regression techniques (Stat-Ind-IHC, 
Stat-CFSR-IHC, and HESP) in terms of probabilistic skill. We did find that for some basins (e.g., 
Dworshak and Hungry Horse) Stat-CFSR provides higher skill than using custom climate indices 
(Stat-Ind), outperforming also benchmark techniques at early initializations. Nevertheless, our 
results also show that when custom-indices are used in combination with stronger predictors, 
attempting to explain smaller amounts of variance, they are not as robust as using standard climate 
indices. We add a sentence to help explain this context (L407-409): 
 
“When used in combination with other, stronger predictors, the parameter estimation cost of the 
CFSR-PLSR relative to an off-the-shelf index may be more exposed (leading to greater shrinkage of 
skill after cross-validation).” 
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Replies to Referee #2 
 

“An intercomparison of approaches for improving predictability in operational seasonal 
streamflow forecasting” 

 
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart 

Nijssen, Levi D. Brekke, and Jeffrey R. Arnold 
 
 
We thank this reviewer for his time in commenting on our paper. We provide responses to each 
individual point below. For clarity, comments are given in italics, and our responses are given in 
plain text. 
 
The manuscript compares different methods for seasonal water supply forecasts in several 
catchments in the Pacific Northwest region of the US. A large variety of different models was 
applied: purely statistical methods, methods based on watershed modelling as well as hybrid 
approaches using initial hydrologic conditions and / or climate information as input. Additionally, 
different post-processing and merging methods are tested. The snow-dominated test catchments 
cover a wide range of hydrometeorological conditions and different atmospheric teleconnection 
signals. 
 
The literature review of the most commonly used methods in seasonal streamflow forecasting is 
exhaustive and the results are nicely presented and compared. The real value of this study is the 
comparison of a large variety of methods based on a common hindcast/verification framework 
using rigorous three years out cross validation. Using such a common framework an objective 
comparison of the performance of the different methods is possible. The paper is well written and 
should be foreseen for publication in HESS after minor revisions. 
 
We are very pleased that this reviewer appreciates the contributions of this study. 
 
You should probably use SI units instead of KCFS (Thousands of Cubic Feet Per Second) and MAF 
(Million acre Feet) (Standard in HESS) 
 
We appreciate this sentiment. However, we consider that the paper would have much more value if 
the results are presented in units that are familiar to water managers in the US, since this is basically 
a water supply forecasting study. Therefore, we kindly ask the Editor and Publisher for permission 
to preserve the current flow units throughout the manuscript. We have added a short sentence to 
prepare readers for non-metric units (L199-L200): 
“In this paper, results are reported in non-metric units because of their greater familiarity to readers 
from the US water management community.” 
Additionally, we have added SI units where possible, in parenthesis (L372-373, L377). 
 
P 5 line 155: missing first three year period in the brackets could be confusing why it is missing, 
add period: “... (e.g., 1981-1983, 1984-1986, 1987-1989, 1990-1992, etc.),...” 
 
We have added the first three-year period (1981-1983), following the reviewers’ suggestion, and 
taken out the part of the series after the first two (L160). 
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P 5 line 171: “...predictant data are normalized before ...” what do you mean by normalizing in this 
context? I assume z-scores are calculated or do you apply a normalization method such as box-
cox? Please specify!  
 
The reviewer is correct: z-scores are computed using z = (x - µ)/s, where x represents the original 
variable, and µ and s represent the mean and standard deviation of the population, respectively. We 
clarify this procedure in the revised manuscript (L174-179). 
 
Explain why you have used log-transformation of the predictant data and no other transformation 
method (e.g. BoxCox, ...). 
 
We regret that we did not try other transformations as we were focused on relative outcomes, 
though this would have been a reasonable thing to do. In truth, we did place a great deal of 
importance on the transformation when the work was done, though since then our interactions with 
CSIRO has opened our eyes to the variation in the effectiveness of different transformations 
(including, for instance, the log-sinh).  We do not have the bandwidth to go back and explore this 
issue, but for now we will highlight it for the readers based of the text of the comment. Hence, we 
have added the following sentences (L179-182): 
 
“In practice, forecasters use a variety of transforms such as linear, square root, cube root, log and 
log-sinh (Wang et al. 2012).  We did not explore alternative transforms, using the log consistently 
throughout, but recognize that the choice of transform can affect the quality of the forecast.” 
 
P 6 line 201: If the predictand was normalized (subtracting its expected value and dividing the 
difference by its standard deviation) before as stated above, the predictand has to be multiplied 
with the standard deviation and the mean has to be added before exponentiation. Is this correct? In 
this case the explanation of this procedure should be added. 
 
The reviewer is correct, and the text has been modified to reflect this (L207, L211). 
 
P 7 line 210: Replace MRL with MLR  
 
We have corrected the text (L220), following the reviewer´s suggestion. 
 
P 7 line 213: “... predicting seasonal predictor average and seasonal streamflow volume...” Is the 
MLR applied to log-transformed streamflow? Do you normalize the climate indices? Please 
specify! 
 
The reviewer is correct: MLR is applied to log-transformed streamflow, and then both predictand 
(flow in log space) and predictors (e.g., climate indices) are normalized. The general procedure used 
in this paper for statistical approaches is clarified, following this and a previous comment from this 
reviewer (L174-179): 
 
“In the statistical approaches, seasonal flows are log-transformed, and predictor and predictand data 
are normalized before training statistical method parameters or weights (i.e., z-scores are computed 
using z = (x - µ)/s, where x represents the original variable, and µ and s represent the mean and 
standard deviation of x, respectively).  The statistical models were applied in log-standard-normal 
space for forecast generation, then predictands are transformed from z-scores to log space (i.e., 
apply x = zs + µ, with x = log(Q)), and finally transformed back to streamflow space”. 
 



 3 

P 8 line 246: Re-transformation of predicted streamflow should be added as additional step 
 
The step suggested by the reviewer is actually done, and therefore it has been added as part of the 
method description (L257-258): 
 
“Ensemble forecasts are transformed from z-scores to log space, and finally exponentiated for 
conversion to flow space”. 
 
P 9 line 284: Please explain shortly how the weighted resampling using the weights 1/RMSE works.  
 
RWE performs a weighted resampling from the two forecast sources (i.e., the best climate-only and 
best watershed-only forecasts) according to their skill during the training period. I.e., two weights 
1/RMSE are obtained, where RMSE the root mean squared error of the ensemble median. These 
weights are normalized to make them sum 1, and finally obtain the fraction of the new 500-member 
ensemble coming from each forecast source. For example, if the resulting normalized weights are 
0.4 and 0.6 for the best climate-only and best watershed-only forecasts, respectively, the RWE 
ensemble will contain 200 and 300 members from each prediction. This explanation has been added 
to the text in the revised manuscript (L296-L301). 
 
P 24 Table 1: In the table and in the main section the abbreviation RE (runoff efficiency) is used, in 
the table caption runoff ratio RR is used, please harmonize  
 
We have replaced runoff efficiency (RE) by runoff ratio (RR) in Table 1. Thanks for noting this. 
 
P 34 and p 36: Please add explanation of red line (observation?) to figure caption 
 
Indeed, the red line represents the observed flow volumes. We have incorporated this information to 
the caption of Figures 9 (L869) and 11 (L878). 
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Abstract. For much of the last century, forecasting centers around the world have offered seasonal streamflow 13 

predictions to support water management. Recent work suggests that the two major avenues to advance seasonal 14 

predictability are improvements in the estimation of initial hydrologic conditions (IHCs) and the incorporation of 15 

climate information. This study investigates the marginal benefits of a variety of methods using IHC and/or climate 16 

information, focusing on seasonal water supply forecasts (WSFs) in five case study watersheds located in the U.S. 17 

Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches – 18 

statistical regression against IHCs, and model-based ensemble streamflow prediction (ESP) – and then 19 

systematically inter-compare WSFs across a range of lead times. Additional methods include: (i) statistical 20 

techniques using climate information either from standard indices or from climate reanalysis variables; and (ii) 21 

several hybrid/hierarchical approaches harnessing both land surface and climate predictability. In basins where 22 

atmospheric teleconnection signals are strong, and when watershed predictability is low, climate information alone 23 

provides considerable improvements. For those basins showing weak teleconnections, custom predictors from 24 

reanalysis fields were more effective in forecast skill than standard climate indices. ESP predictions tended to have 25 

high correlation skill but greater bias compared to other methods, and climate predictors failed to substantially 26 

improve these deficiencies within a trace weighting framework.  Lower complexity techniques were competitive 27 

with more complex methods, and the hierarchical expert regression approach introduced here (HESP) provided a 28 

robust alternative for skillful and reliable water supply forecasts at all initialization times. Three key findings from 29 

this effort are: (1) objective approaches supporting methodologically consistent hindcasts open the door to a broad 30 

range of beneficial forecasting strategies; (2) the use of climate predictors can add to the seasonal forecast skill 31 

available from IHCs; and (3) sample size limitations must be handled rigorously to avoid over-trained forecast 32 

solutions. Overall, the results suggest that despite a rich, long heritage of operational use, there remain a number of 33 

compelling opportunities to improve the skill and value of seasonal streamflow predictions. 34 
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1 Introduction 35 

The operational hydrology community has long grappled with the challenge of producing skillful seasonal 36 

streamflow forecasts to support water supply operations and planning. Proactive water management has become 37 

critical for many regions in the world that are susceptible to water stress associated with the intensification of the 38 

water cycle. Paradoxically, although we have seen important technological advances – including increased 39 

computing power, the broader availability to climate reanalysis, forecasts and reforecasts, and more complex 40 

process-based hydrologic models (Pagano et al., 2016), the skill of operational seasonal runoff predictions in the US, 41 

termed water supply forecasts (WSFs), has shown little or no improvement over time (e.g., Pagano et al., 2004; 42 

Harrison and Bales, 2016). Hence, there is both a scientific and practical need to understand the potential of new 43 

datasets, modeling resources and methods to accelerate progress towards more skillful and reliable operational 44 

seasonal streamflow forecasts. 45 

There is general consensus in the research community on the main opportunities to improve seasonal 46 

streamflow prediction skill (e.g., Maurer et al., 2004; Wood and Lettenmaier, 2008; Yossef et al., 2013). These 47 

include improving knowledge of: (i) the amount of water stored in the catchment – hereinafter referred to as initial 48 

hydrologic conditions (IHCs), and (ii) weather and climate outcomes during the forecast period. Our ability to 49 

leverage the first predictability source (i.e., hydrologic predictability) depends on the accuracy of watershed 50 

observations and models, including model input forcings (e.g., precipitation and temperature), process 51 

representations, and the effectiveness of hydrologic data assimilation (DA) methods. Our ability to leverage the 52 

second source (climate predictability) depends both on how well we can characterize and predict the state of the 53 

climate and on how effectively we can incorporate this information into streamflow forecasting methods. This idea 54 

has been explored in different frameworks using standard indices – e.g., Niño3.4, the Pacific Decadal Oscillation 55 

(PDO) – and/or custom (i.e., watershed-specific) climate indices derived from climate reanalyses (e.g., Grantz et al., 56 

2005; Bradley et al., 2015), or using seasonal climate forecasts to run hydrologic model simulations (e.g., Wood et 57 

al., 2005; Yuan et al., 2013). 58 

Despite generally promising findings from this body of work and from a number of agency development 59 

efforts (Weber et al., 2012; Demargne et al., 2014), the use of large-scale climate information for real-time seasonal 60 

streamflow forecasting in the US remains rarecurrent operational practice in the US still takes little to no advantage 61 

of large-scale climate information for real-time seasonal streamflow forecasting. Clear examples can be found i In 62 

the western United States, a large where snowmelt dominated regioncommonly dominates the annual cycle of 63 

runoff,  where official WSFs are produced via two main approaches: (i) statistical models leveraging in situ 64 

watershed moisture measurements such as snow water equivalent (SWE), accumulated precipitation and streamflow 65 

(Garen, 1992; Pagano et al., 2004); and (ii) outputs from the National Weather Service (NWS) Ensemble 66 

Streamflow Prediction method (ESP; Day, 1985), which is based on watershed modeling.  For the overwhelming 67 

majority of forecast locations, tThese approaches rely solely on the predictability from IHCs (measured or 68 

modelled).   A small number of locations can be found, however, where climate indicesexes also serve as predictors 69 

in the statistical framework, and the NWS has recently implemented techniques through which climate model 70 

forecasts may eventually be applied to ESP (Demargne et al., 2014)(Demargne et al., 2014). and do not leverage any 71 
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type of large-scale current or future climate state information that might influence the forecasted hydrologic 72 

outcomes. 73 

This paper presents an assessment of several seasonal streamflow prediction approaches in harnessing both 74 

watershed and climate related predictability. The methods are applied to seasonal WSFs and span a range of 75 

complexity, from purely statistical to purely dynamical and hybrid statistical/dynamical approaches. In this paper, 76 

‘increased complexity’ indicates a gradient from purely data-driven techniques (e.g., linear regression) to the use of 77 

dynamical watershed models (Plummer et al., 2009), the outputs of which may be further processed using additional 78 

statistical approaches. Although most of the techniques evaluated here are not new, the intercomparison offers new 79 

insights for researchers and developers in the operational community because: (1) the experiment is broader than 80 

prior efforts and benchmarks alternative methods against current operational ones; and (2) the methods are chosen to 81 

be operationally feasible, avoiding the use of data that cannot be obtained in real-time. In addition, the work uses a 82 

hindcast/verification framework and follows more rigorous standards for cross-validation than were used in some of 83 

the prior studies. 84 

The remainder of this paper is organized as follows. Section 2 describes prior methodological work and context 85 

for statistical, dynamical and hybrid approaches to seasonal streamflow forecasting. The study domain is described 86 

in Section 3. Datasets, experimental design, individual methods, and forecast verification measures are detailed in 87 

Section 4. Results and discussion are presented in Section 5, followed by the main conclusions of this study (Section 88 

6). 89 

2 Background 90 

Seasonal streamflow forecasting methods can be categorized as dynamical, statistical, or hybrid, and span 91 

different degrees of complexity and information requirements. Dynamical methods use time-stepping simulation 92 

models to represent hydrologic processes. They describe future climate using either historical meteorology or inputs 93 

derived from seasonal climate forecasts (e.g., Beckers et al., 2016). On the other hand, statistical or purely data-94 

driven methods rely on empirical relationships between seasonal streamflow volumes, and large-scale climate 95 

variables and/or in situ watershed observations. Several statistical approaches can be found in the literature, 96 

encompassing different degrees of complexity (e.g., Garen, 1992; Piechota et al., 1998; Grantz et al., 2005; Tootle et 97 

al., 2007; Pagano et al., 2009; Wang et al., 2009; Moradkhani and Meier, 2010). Other studies have tested multi-98 

model combination techniques for purely statistical seasonal forecasts, using objective performance criteria (e.g., 99 

Regonda et al., 2006), both performance and predictor state information (Devineni et al., 2008), and Bayesian model 100 

averaging (e.g., Mendoza et al., 2014), among others. 101 

Hybrid methods strive to combine the strengths from both dynamical and statistical techniques. For instance, 102 

uncertainties in dynamical predictions indicate that dynamical forecasts can benefit from statistical post-processing 103 

(e.g., Wood and Schaake, 2008). One line of research has examined the potential benefits of using simulated 104 

watershed state variables – either from hydrologic or land surface models – as predictors for statistical models (e.g., 105 

Rosenberg et al., 2011; Robertson et al., 2013). Another popular technique consists in incorporating climate 106 

information within ESP frameworks, either deriving input sequences of mean areal precipitation and temperature 107 
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from current climate or climate forecast considerations (e.g., Werner et al., 2004; Wood and Lettenmaier, 2006; Luo 108 

and Wood, 2008; Gobena and Gan, 2010; Yuan et al., 2013) – referred to as pre-ESP –, or ESP weighting (also 109 

referred to as post-ESP) based on climate information (e.g., Smith et al., 1992; Werner et al., 2004; Najafi et al., 110 

2012; Bradley et al., 2015). Werner et al. (2004) found that the post-ESP method (termed ‘trace weighting’) was 111 

more effective than pre-ESP to improve forecast skill. 112 

The combination of outputs from different models has also been shown to benefit seasonal hydroclimatic 113 

forecasting (e.g., Hagedorn et al., 2005). Although several studies have demonstrated that statistical multimodel 114 

techniques applied on dynamical models tend to outperform the ‘best’ single model (e.g., Georgakakos et al., 2004; 115 

Duan et al., 2007), fewer insights have been gained on combining statistical or dynamical models in seasonal 116 

streamflow forecasting. Recently, Najafi and Moradkhani (2015) tested multimodel combination techniques of 117 

different complexities from both statistical and dynamical forecasts, concluding that model combination generally 118 

outperforms the best individual forecast model. Many sophisticated seasonal forecasting frameworks can be found in 119 

the literature, some of which incorporate DA techniques (e.g., Dechant and Moradkhani, 2011), a topic not 120 

discussed here.  For this reason, the hydrology community may benefit from a broad assessment of the marginal 121 

benefits of choices made in a range of seasonal streamflow forecasting frameworks. 122 

3 Study Domain 123 

Our test domain is the U.S. Pacific Northwest (PNW) region (Figure 1), which relies heavily on winter snow 124 

accumulation and spring snowmelt to fulfill meet water needs during spring and summer (e.g., Mote, 2003; Maurer 125 

et al., 2004; Wood et al., 2005). We select catchments contributing to five reservoirs: Dworshak (DWRI1), Howard 126 

Hanson (HHDW1), Hungry Horse (HHWM8), Libby (LYDM8) and Prineville (PRVO). Two of them – Hungry 127 

Horse and Prineville reservoirs – are owned and operated by the U.S. Bureau of Reclamation (USBR), while the rest 128 

are operated by the U.S. Army Corps of Engineers (USACE). 129 

The main physical and hydroclimatic characteristics of the case study basins are summarized in Table 1. These 130 

basins cover a wide range of runoff ratios (from 0.13 at Prineville to 0.78 at Howard Hanson) and dryness indices 131 

(from 0.63 at Howard Hanson to 3.83 at Prineville). Relatively high basin-averaged elevations condition a 132 

pronounced seasonal temperature pattern, with minimum values below the freezing point between December and 133 

February, and maximum temperatures during June-September (not shown). These topographic and hydroclimatic 134 

features favor snowpack development in the months October-April, stressing the seasonal behavior of other water 135 

storages and fluxes. This is illustrated in Figure 2, including model precipitation (i.e., observed precipitation with a 136 

snow correction factor, SCF) and monthly averages of hydrologic variables simulated with the Sacramento Soil 137 

Moisture Accounting (SAC-SMA, Burnash et al., 1973) and SNOW-17 (Anderson, 1973) watershed models (see 138 

Section 4). Although seasonal precipitation patterns may differ, water starts accumulating in October as snow water 139 

equivalent (SWE) and/or soil moisture (SM) in all basins. Increases in SM and runoff in most basins are driven by 140 

snowmelt at the beginning of spring with the exception of Howard Hanson, where the bulk of annual streamflow 141 

occurs in November-May. Among these basins, Dworshak, Hungry Horse and Libby share similar SWE, soil 142 

moisture, and runoff cycles, although precipitation is relatively uniform in the last one throughout the year. 143 
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The hydroclimatology of the PNW region is affected by a number of large-scale climate teleconnections. The 144 

warm (cold) phase of El Niño Southern Oscillation (ENSO) is typically associated with above (below) average 145 

temperatures and below (above) average precipitation during winter (e.g., Redmond and Koch, 1991), and therefore 146 

decreased (increased) snowpack (Clark et al., 2001) and spring/summer runoff (e.g., Piechota et al., 1997). The 147 

Pacific Decadal Oscillation (PDO; Mantua et al., 1997) – which reflects the dominant mode in decadal variability of 148 

SSTs – has also been found a relevant driver for the hydroclimatology of the PNW (e.g., McCabe and Dettinger, 149 

2002). The joint influence of ENSO and PDO on North American climate conditions, snowpack and spring/summer 150 

runoff has been also well recognized and documented (e.g., Hamlet and Lettenmaier, 1999). As a consequence, 151 

many authors have explored the incorporation of large-scale climate information for seasonal streamflow forecasting 152 

in the PNW – using either standard indices (e.g., Hamlet and Lettenmaier, 1999; Maurer et al., 2004), custom 153 

indices from reanalysis fields (e.g., Opitz-Stapleton et al., 2007; Tootle et al., 2007), both (e.g., Moradkhani and 154 

Meier, 2010), or downscaled climate forecasts (e.g., Wood et al., 2005) – finding improved predictability for lead 155 

times longer than 2 months, and particularly in years of strong anomalies in climate oscillations such as ENSO.  156 

4 Approach 157 

4.1 Experimental Design 158 

We use several decades of seasonal streamflow hindcasts to assess a suite of methods (Figure 3), focusing on 159 

April-July streamflow (runoff) volume, the most common western US water supply forecast predictand.  160 

Probabilistic (ensemble) WSFs for this period are generated the first day of each month from October to April, in 161 

every year of the hindcast period 1981-2015. For the methods involving statistical prediction, we use a leave-three-162 

out cross validation at all stages of the forecast process. This procedure is repeated for consecutive 3-year periods 163 

(e.g., 1981-1983, 1984-1986, 1987-1989, 1990-1992, etc.), except for the last time window (2014-2015). 164 

The techniques assessed here are categorized as follows. The first group, IHC-based methods, includes two 165 

approaches (referred to as benchmark methods) – ESP and IHC-based statistical – currently used operationally in the 166 

western U.S. (both harnessing only IHC information), and a very simple ESP post-processor to reduce systematic 167 

biases. A second group, climate-only methods, includes statistical techniques harnessing climate information from 168 

two different sources – standard indices (e.g., Niño3.4, PDO, AMO), or variables extracted from the Climate System 169 

Forecast Reanalysis (CFSR; Saha et al., 2010). A third group of hybrid or hierarchical methods includes subgroups 170 

of techniques that: (i) combine watershed predictors (IHCs) and climate predictors (either indices or CFSR 171 

variables) within a statistical framework, (ii) use climate information to post-process outputs from a dynamical 172 

method (i.e., ESP), or (iii) combine purely climate-based ensembles with purely watershed-based ensembles.   173 

In operational practice, ESP produces an ensemble of streamflow estimates whereas statistical water supply 174 

forecasting yields a statistical distribution.  In this study, we generate ensembles of the final predictand for all 175 

methods. An ensemble size 500 is used – wherein the members are generated through a resampling (in some cases 176 

weighted) of the predictive distributions – except for the ESP and bias-corrected ESP methods, for which 32 177 

members are generated (i.e., 35 total historical years less the three out of sample test years). In the statistical 178 
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approaches, seasonal flows are log-transformed, and predictor and predictand data are normalized before training 179 

statistical method parameters or weights (i.e., z-scores are computed using z = (x - µ)/s, where x represents the 180 

original variable, and µ and s represent the mean and standard deviation of x, respectively).  The statistical models 181 

were applied in log-standard-normal space for forecast generation, then predictands weare transformed from z-182 

scores to log space (i.e., apply x = zs + µ, with x = log(Q)), and finally transformed back to streamflow space.  In 183 

practice, forecasters use a variety of transforms such as linear, square root, cube root, log and log-sinh (Wang et al., 184 

2012).  We did not explore alternative transforms, using the log consistently throughout, but recognize that the 185 

choice of transform can affect the quality of the forecast.   186 

4.2 Forecasting Methods 187 

4.2.1 IHC-based methods 188 

Ensemble Streamflow Prediction (ESP) 189 

The traditional ESP method (Day, 1985) relies on deterministic hydrologic model simulations forced with 190 

observed meteorological inputs up to the initialization time of the forecast. The approach assumes that 191 

meteorological data and model are perfect – i.e., there are no errors in IHCs, and that historical meteorological 192 

conditions during the simulation period can be used to represent climate forecast conditions. For hindcast 193 

verification purposes, the meteorological input traces associated with forecast years must be excluded. 194 

The hydrology models used in this study were the NWS Snow-17, SAC-SMA and a unit-hydrograph routing 195 

model, all implemented in lumped fashion with 2-3 snow elevation zones per watershed. The models were calibrated 196 

via an automated multi-objective parameter estimation to reproduce observed daily streamflow. Hydrologic model 197 

forcings were drawn from a 1/16 degree real-time implementation of the ensemble forcing generation method 198 

described in Newman et al. (2015). Naturalized flow data was obtained from a combination of sources, including the 199 

Bonneville Power Administration (BPA, 2011), the USBR Hydromet historical data access system, and the USACE 200 

Data Query System. 201 

Figure 4 shows simulated and observed monthly time series of streamflow for the period Oct/1990 – Sep/2000. 202 

In this paper, results are reported in non-metric units because of their greater familiarity to readers from the US 203 

water management community. With the exception of Prineville, where neither meteorology nor flow are well 204 

measured, all basins show values of NSE and r higher than 0.76 and 0.87, respectively. Further, the climatological 205 

seasonality of streamflow is reproduced well in all basins. 206 

Statistical forecasting using initial hydrologic conditions (Stat-IHC) 207 

This method mimics the approach of the U.S. Natural Resources Conservation Service (NRCS), but differs in 208 

using model-simulated basin-averaged SWE and SM as surrogates for ground-based observations of SWE, 209 

precipitation and streamflow used operationally by the NWS and NRCS (as demonstrated in Rosenberg et al., 2011). 210 

A linear regression equation is developed between normalized log-transformed seasonal runoff and IHCs 211 

represented by the sum of simulated basin-averaged SWE and SM. The training period equations are used to issue a 212 

deterministic runoff volume prediction for each year left out, and ensembles are generated by adding 500 Gaussian 213 
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random numbers with zero mean and a standard deviation equal to the standard error of the individual prediction. 214 

The predictions are then transformed from z-scores to log space, and finally exponentiated. 215 

Bias Corrected Ensemble Streamflow Prediction (BC-ESP) 216 

ESP predictions often exhibit a systematic bias due to inadequate model parameters and/or other sources or 217 

error (e.g., input forcing selection, model structure). If the ESP approach provides a consistent hindcast, as it does 218 

here, post-processing in the form of a simple bias-correction (BC-ESP) can be applied. This is achieved by 219 

multiplying the raw ESP forecasts by a mean scaling factor that is obtained by computing the ratio between the 220 

mean of observed seasonal runoff volumes (i.e., the predictand) and the mean of ESP forecast median volumes, for 221 

each initialization time. Each scaling factor calculation and application is cross-validated. 222 

4.2.2 Statistical forecasting harnessing only climate information 223 

Multiple linear regression (MRLMLR) using standard climate indices (Stat-Ind) 224 

This method evaluates 12 standard climate indices as candidate predictors (Table 2). For each initialization 225 

time (e.g., November 1) and climate index (e.g., Niño3.4), the 3-month time window that maximizes the correlation 226 

coefficient between a preceding seasonal (e.g., August-October) predictor average and seasonal streamflow volume 227 

over the training period is selected. Once this procedure is repeated for all potential predictors, the best possible time 228 

series are obtained for the 12 climate indices, and ensemble forecasts are produced for a given initialization through 229 

the following steps: 230 

1. Several combinations of predictors are selected subject to the constraint that no pairs of predictors with an 231 

inter-correlation larger than Cthresh = 0.3 should be included. 232 

2. Stepwise MLR models are fit for all combinations of predictors identified in Step 1, and the set of 233 

predictors that minimizes the Bayesian Information Criterion (BIC) score (Akaike, 1974) over the training 234 

period is selected. 235 

3. An ensemble forecast is generated (as for Stat-IHC) with the MLR model from Step 2.  236 

We choose MLR over more parameterized regression methods (e.g., local polynomial regression) since these 237 

were found to perform poorly in cross-validation, mainly due to the limited samples sizes available in the seasonal 238 

hydrologic prediction context. 239 

Partial Least Squares Regression using reanalysis fields (Stat-CFSR) 240 

The teleconnections captured in off-the-shelf climate indices are not influential everywhere. Therefore, we also 241 

assess the potential of custom climate predictor indices derived from reanalysis data. Following Tootle et al. (2007), 242 

we use Partial Least Squares Regression (PLSR; Wold, 1966) to extract information from climate fields.  PLSR 243 

decomposes a set of independent variables X and dependent variables Y into a small number of principal components 244 

that explain as much covariance as possible between the two variable sets (Abdi, 2010). PLSR components are 245 

formed from CFSR 700 mb geopotential height (Z700) and sea surface temperatures (SSTs) over the domain 20°S–246 

80°N; 130°E–10°W. For dates beyond 2010, we merged the 1979-2010 CFSR data with monthly analysis fields 247 

from the Climate Forecast System version 2 (CFSv2; Saha et al., 2014), aggregating the latter product to 2.0° × 2.0° 248 
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horizontal resolution. Similar to the Stat-Ind method, we use 3-month averages of these variables. The seasonal 249 

forecasts are generated for each initialization by following these steps: 250 

1. Compute principal components from the combined SST and Z700 gridded values for each training sample 251 

and the left-out prediction years.  252 

2. Fit a regression model to the resulting PLSR components (predictors), accepting each additional component 253 

only when its mean partial correlation with volume runoff is above a threshold.  We used a threshold of 254 

0.30 throughout the study after finding that nearby values – e.g., 0.25, 0.35 – did not substantially change 255 

the results. The small sample size and low predictability supported at most two components. 256 

3. Compute a mean runoff volume forecast using the regression model obtained in Step 2, and generate an 257 

ensemble by adding 500 Gaussian random numbers with zero mean and a standard deviation equal to the 258 

root mean squared error of prediction (RMSEP) obtained from leave-three-out cross validation within the 259 

training period. 260 

3.4. Ensemble forecasts are transformed from z-scores to log space, and finally exponentiated for conversion to 261 

flow space. 262 

The main implication of developing PLSR components and the subsequent estimation of regression 263 

coefficients in cross validation – as conducted here – is that climate information from the target prediction period is 264 

not used at all, as is the case in real-time systems. This is a key methodological difference versus past studies that 265 

used all historical available information to define custom reanalysis predictor fields (e.g., Grantz et al., 2005; 266 

Regonda et al., 2006; Bracken et al., 2010; Mendoza et al., 2014), yielding a moderate yet erroneous boost in 267 

predictability. 268 

4.2.3 Hybrid/hierarchical methods combining watershed and climate information 269 

Stepwise MLRs using IHCs and climate predictors 270 

We applied two statistical methods that combine climate and dynamical watershed model predictors:  Stat-Ind-271 

IHC (which uses climate indices and IHCs), and Stat-CFSR-IHC (which uses CFSR-based PLSR components and 272 

IHCs). These approaches are implemented in identical fashion to Stat-Ind, except that IHCs are added to the 273 

potential suite of climate predictors. 274 

Hierarchical Ensemble Streamflow Prediction (HESP) 275 

The underlying idea of HESP is that the two main sources of predictability – watershed IHCs and climate – 276 

may best be addressed sequentially to ensure that only climate uncertainty is related to climate predictors. This may 277 

not the case if a climate variable enters first into a regression model that attempts to explain streamflow variance 278 

from both IHCs and climate, possibly leading to a sub-optimal predictor selection. HESP is thus a hierarchical 279 

regression approach in which streamflow is first related to IHCs by fitting Q = f(IHC predictors) + εclimate, given 280 

sufficient IHC predictor strength. The residual uncertainty is then related to climate predictors (again if possible) by 281 

fitting εclimate = g(climate predictors) + εresidual, such that the final forecast equation takes the form: 282 

!	 = 	$(IHC	predictors) 	+ 	4(climate	predictors) 	+ 	89:;<=>?@	     (1) 283 
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Here, the predictor pool used to explain εclimate may include standard climate indices or reanalysis PLSR 284 

components, depending on the performance obtained during the training period. Absent IHC predictability, HESP is 285 

equivalent to Stat-Ind or Stat-CFSR; whereas without climate predictability, it defaults to Stat-IHC. Lacking both 286 

IHC and climate predictability, HESP defaults to climatology – i.e., an ensemble forecast is issued by resampling 287 

from historical observations over the training period. 288 

ESP Trace Weighting Scheme (TWS) 289 

A well-known strategy for incorporating climate information into ESP forecasts is called ‘trace weighting’ 290 

(Smith et al., 1992; Werner et al., 2004), where forecasted flow probabilities are corrected by weighting each 291 

ensemble member according to the similarity between a climate-related feature of the current year (e.g., PDO) and 292 

the meteorological year used to generate that member. Here, for a given basin and forecast period, either climate 293 

indices or CFSR-based components are selected based on their training period performance (i.e., RMSE) and used to 294 

weight each trace obtained from BC-ESP (see Section 7.1 for further details). 295 

Equally weighted ensembles (EWE) and RMSE-weighted ensembles (RWE) 296 

EWE combines the best-performing climate-only hindcast (i.e., Stat-Ind or Stat-CFSR, based on RMSE over 297 

the training period) with the best watershed-only hindcast (either Stat-IHC or BC-ESP), resampling ensemble 298 

members equally from each source to form a new 500-member ensemble forecast. A variation of this combination 299 

approach (RWE) instead performs a weighted resampling from the two forecast sources according to their skill 300 

during the training period.:  Ii.e., the two weights equal 1/RMSE are obtained, where RMSE the root mean squared 301 

error of the ensemble median. These weights are normalized to make them sum 1, and finally obtain the fraction of 302 

the new 500-member ensemble coming from each forecast source. For example, if the resulting normalized weights 303 

are 0.4 and 0.6 for the best climate-only and best watershed-only forecasts, respectively, the RWE ensemble will 304 

contain 200 and 300 members from each prediction. 305 

Bayesian Model Averaging (BMA) and Quantile model averaging (QMA) 306 

These methods combine the best-performing climate-only hindcast with the best performing watershed-only 307 

hindcast. While BMA (Raftery et al., 2005) attempts to provide a weighted average of forecast probability densities, 308 

QMA (Schepen and Wang, 2015) applies a weighted average to forecast values (quantiles) for a given cumulative 309 

probability. A notable difference between the two approaches is that QMA produces smoother and consistently 310 

unimodal distributions compared to potentially bimodal BMA outputs (Schepen and Wang, 2015). More details on 311 

these techniques are provided in section 7.2.  312 

4.3 Forecast evaluation 313 

Forecast method performance was evaluated using the metrics listed in Table 3. These include some standard 314 

metrics used in hydrology, such as correlation coefficient (r), root mean squared error (RMSE), and percent bias, and 315 

also probabilistic measures to assess skill and reliability. Skill is obtained using the continuous ranked probability 316 

score (CRPS; Hersbach, 2000), which measures the temporal average error between forecast CDF with that from the 317 

observation. Forecast reliability – i.e., adequacy of the forecast ensemble spread to represent the uncertainty in 318 

observations – is evaluated using an index from the predictive quantile-quantile (QQ) plot (Renard et al., 2010). QQ 319 
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plots compare the empirical CDF of forecast p-values (i.e. Pi(oi), where Pi and oi are the forecast CDF and 320 

observation at year i) with that from a uniform distribution U[0,1] (Laio and Tamea, 2007). 321 

Confidence intervals for the verification statistics are created using bootstrapping with replacement. In each 322 

resampling step, N pairs of ensemble forecasts and observations were resampled from the original joint distribution 323 

(N is the total number of events for which probabilistic forecasts are available). This process is repeated 1000 times, 324 

and all statistics are then computed for each realization and ranked in order to obtain 95 % confidence limits. 325 

5 Results and discussion 326 

5.1 Deterministic evaluation 327 

We first compare methods using the WSF median, a critical predictand for many water decisions (e.g., Lake 328 

Powell releases on the Colorado River in the western US). Figure 5 displays correlation coefficients (r) between 329 

forecast median and observed April-July runoff volumes for the five case study basins. As expected, near-zero or 330 

negative r values were obtained for October 1 and November 1 WSFs with the IHC-based methods.  Negative 331 

correlation scores arise in very low-skill situations as an artifact of cross-validation (e.g., leaving a high predictand 332 

out of a training sample biases the resulting prediction in the opposite direction).  The seasonality of SM and SWE 333 

in the basins of interest (Figure 2) does not yield watershed moisture accumulations with predictive power until 334 

December or January. In contrast, r values as high as 0.48 for Dworshak and 0.49 for Hungry Horse could be 335 

attained on October 1 using only information from climate indices (Stat-Ind). Generally, but not everywhere, 336 

methods harnessing predictability from the climate (with the exception of TWS) enhance skill in comparison to 337 

IHC-based methods at initializations early in the water year. TWS is unable to shift the parent ESP distribution 338 

sufficiently to impart much climate skill at this time of year.   339 

After January, the hydrologic model begins to capture a useful moisture variability signal from the watershed, 340 

thus IHCs start to become a dominant source of predictability in all basins. Indeed, watershed information is 341 

particularly relevant at Libby and Prineville (Figure 5d and 5e), where correlations within the range 0.39-0.47 are 342 

achieved as early as December 1 with the three IHC-based techniques. In these basins, standard climate indices do 343 

not provide useful long-lead predictability, although CFSR-based predictors do support a consistent improvement. 344 

For example, the correlation from Stat-Ind for Libby (Prineville) on December 1 is -0.23 (0.02), while the r value 345 

from Stat-CFSR is 0.19 (0.30). These differences between Stat-Ind and Stat-CFSR remain at these basins for 346 

subsequent monthly initializations. 347 

Figure 5 reveals several notable outcomes that are evident in many of the results plots. First, a linear regression 348 

against IHCs can provide similar r values than the more computationally expensive ESP method, especially at late 349 

initializations (i.e. March 1 or April 1). Likewise, straightforward ensemble combination techniques (e.g., EWE or 350 

RWE) may outperform more complex methods such as BMA (e.g., February 1 – April 1) at all basins. From a 351 

correlation skill perspective, on the other hand, ESP generally outperforms the rest of the methods in late winter and 352 

spring. For example, ESP provides the highest r values for Dworshak (0.82) and Howard Hanson (0.67) on April 1. 353 

Notably, EWE was found to be the best method on April 1 for Hungry Horse (r = 0.88) and Prineville (r = 0.79) 354 



11 
 

based on correlation. This indicates that, although simple post-processing can provide substantial forecast 355 

improvement, the small sample size available for training during the cross-validation process results in noisy 356 

parameter estimates that can undermine the potential correlation skill achievable with techniques that are more 357 

complex. 358 

Root mean squared errors (RMSE) for ensemble forecast medians (Figure 6) show that despite some 359 

discrepancies between techniques, inter-method differences are not as large as for correlation. In most basins, errors 360 

can be reduced at earlier initializations (i.e., Oct 1 and Nov 1) by introducing climate information. For instance, on 361 

October 1, Stat-Ind and Stat. Ind+IHC generate respective reductions in RMSE of 10% and 13% at Dworshak, 23% 362 

and 16% at Howard Hanson, and 14% and 12% at Hungry Horse, relative to the best IHC-based method in each 363 

basin. These benefits are seen in most initializations and catchments except at Libby, where the best results were 364 

mostly achieved using ESP (Oct 1) and Stat-IHC (Dec 1, and Feb 1 – Apr 1). In agreement with Beckers et al. 365 

(2016), this study was unable to find encouraging climate teleconnections at Libby, despite its relative proximity to 366 

Hungry Horse. 367 

Figure 6 underscores that from a median error perspective, intuitive ensemble combinations approaches (i.e., 368 

EWE and RWE, shown in dark green) can be effective for reducing forecast errors once the watershed begins to 369 

provide useful predictability (i.e. after January 1). For instance, EWE was the best performing method in Hungry 370 

Horse and Prineville for forecasts initialized on March 1 and Apr 1. Further, Figure 6 illustrates that the best (or 371 

worst) techniques when looking at RMSE vary with each basin, although it is clear that TWS and only-climate 372 

methods perform poorly at early and late initializations, respectively. The joint inspection of Figures 5 and 6 shows 373 

that inter-method agreement in correlation does not necessarily translate into similar forecast median errors. For 374 

example, while ESP and HESP provide close r values at Dworshak (0.74 and 0.73) on March 1, larger discrepancies 375 

are obtained in RMSE, with values of 0.58 million-acre-feet (MAF) – equivalent to 0.72 billion cubic meters (BCM) 376 

– and 0.79 MAF (0.97 BCM) for ESP and HESP, respectively. 377 

Another interesting result is that no substantial reductions in RMSE were achieved at Howard Hanson between 378 

October 1 and April 1, in contrast to the gradual growth of hydrologic predictability to support forecast skill in other 379 

basins. Indeed, the best performing techniques for October 1 (Stat-Ind) and April 1 (BC-ESP) forecasts provide 380 

similar RMSE values (~0.064 MAF [0.079 BCM] and 0.065 MAF [0.08 BCM], respectively). This outcome can be 381 

attributed to the relatively more rainfall-dominated hydrograph of Howard Hanson in comparison to the rest of the 382 

catchments (Table 1; Figure 2), and sustained runoff variability generated by seasonally high SM and fall-winter 383 

precipitation. 384 

Figure 7 (forecast median bias) shows that raw ESP outputs have the largest biases through most initializations 385 

at Howard Hanson, Libby and Prineville. In particular, absolute biases at Prineville – which is the worst simulated 386 

basin in the group – increase to 53% on October 1 before decreasing to 20% on April 1. Further, relatively large 387 

biases (in comparison to the rest of techniques) were obtained at late initializations in Dworshak and Hungry Horse. 388 

Excepting Prineville, inter-method differences were not substantial, and none of the methods exceeded a 16% bias at 389 

any initialization. The simple bias correction applied in this study was able to reduce absolute biases to less than +/-390 

3% at Prineville, and less than +/-1% at the rest of the basins. Hence, from a bias reduction perspective, BC-ESP 391 
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was the best technique for most basins/initializations, with the exceptions of Dworshak on Feb 1 and Prineville on 392 

Mar 1 and Apr 1, for which Stat. CFSR+IHC and TWS provided the best results. 393 

5.2 Probabilistic verification 394 

Figure 8 displays continuous ranked probability skill scores computed with mean climatology as a reference 395 

(CRPSSclim). Consistent with the correlation analysis results (Figure 5), better skill values are obtained for long lead 396 

times (i.e. Oct 1 and Nov 1) if climate predictors are incorporated in the forecasting framework. For example, Stat. 397 

(Ind+IHC) augments skill by 56% in HHDM1 and 7% in Hungry Horse with respect to Stat-IHC (i.e., the best 398 

benchmark in terms of CRPSSclim) when forecasts are initialized on November 1. The skill of IHC-based methods 399 

generally increases from October 1 to April 1. Nevertheless, at late initializations it is still possible to outperform 400 

these techniques in some basins (e.g., Stat (CFSR+IHC) and EWE in Hungry Horse provide skill increases of 7% 401 

and 5% in April 1 forecasts over the best IHC-based technique). For late season initializations – when IHC 402 

predictability is strong – it is expected that climate-only forecasts are not suitable, and underperform other methods. 403 

This progression of relative predictabilities from climate and watershed moisture conditions (Figures 5 and 8) is 404 

consistent with previous findings for the region (eg, (e.g., Pagano and Garen, 2006). 405 

The results from Figure 8 corroborate several findings alluded to in Section 5.1. Climate predictors applied to 406 

low-skilled (BC-)ESP forecasts in a TWS framework are less effective than when applied in a separate statistical 407 

method. Additionally, less complex multi-model schemes can perform better than more complex approaches (e.g., 408 

BMA), supporting previous findings by Najafi and Moradkhani (2015). Among the three hybrid regression methods 409 

(Figure 3), Stat-CFSR-IHC was in most cases the worst performer. This result may be determined by the relative 410 

strength of standard (in particular ENSO) indices for the PNW region. When used in combination with other, 411 

stronger predictors, Namely, there is less of an opportunity for custom predictor components to fill a climate 412 

influence gap, and tthe parameter estimation cost of the CFSR-PLSR relative to an off-the-shelf index may be more 413 

exposed (leading to greater shrinkage of skill after cross-validation). It should also be noted that sThe skill results – 414 

especially those making use of ESP output –in this study are subject to large uncertainties due to limited sample size 415 

(i.e., only 35 years for forecast generation and verification). 416 

Overall, the results presented in Figures 5 and 8 suggest a division of the study basins into two groups showing 417 

different relative predictabilities – i.e., driven by watershed conditions versus climate – from October to January. 418 

The first group is formed by Dworshak, Howard Hanson and Hungry Horse, where the state of the climate is the 419 

dominant source of predictability from Oct 1 to Dec 1, and IHCs start providing useful information on Jan 1. The 420 

second group is formed by Libby and Prineville, where little or no skill can be found from any source until Dec 1, 421 

when some predictability can be harnessed from IHCs. This is illustrated in Figure 9, where time series with cross-422 

validated seasonal streamflow forecasts – initialized on December 1, period 1981-2015 – are shown for two IHC-423 

based methods (BC-ESP and Stat-IHC), and two climate-based statistical methods (i.e. Stat-Ind and Stat-CFSR). At 424 

such initialization, there is not enough information in the watershed (IHCs) to predict interannual variations in April-425 

July streamflow at Dworshak (Figure 9a) or Howard Hanson (Figure 9b); nevertheless, climate predictors are more 426 

successful, a result that is also reflected in positive correlation results (Figure 5) and skill scores (e.g., CRPSSclim 427 
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increases from 0.23 with Stat-IHC to 0.39 with Stat-Ind at Howard Hanson). For the particular case of Hungry Horse 428 

(Figure 9c), some predictability is provided by watershed information alone (i.e., BC-ESP), although with smaller 429 

correlation and skill than Stat-Ind or Stat-CFSR. Finally, the ensemble forecast time series displayed for Libby 430 

(Figure 9d) and Prineville (Figure 9e) portray the relative predictive power of IHCs in these basins compared to 431 

climate predictors alone. Indeed, at the December 1 initialization in these basins, watershed information alone 432 

supports r values of 0.43 (Libby) and 0.39 (Prineville) from BC-ESP, and r values of 0.47 from Stat-IHC. 433 

Forecast reliability can be critical to support risk-based decision making, in which actions may be tied to the 434 

forecast distribution rather than the median. The reliability index α (Figure 10), which measures the closeness 435 

between the empirical CDF of forecast p-values with a theoretical CDF of U[0,1] (Table 3) shows that – although 436 

(BC-)ESP forecast correlation (Figure 5) and skill (Figure 8) generally increase during the year, forecast reliability 437 

from the ESP methods degrades (i.e., toward lower α) as the initializations approach Apr 1. For such lead times, the 438 

uncertainty in ESP streamflow forecasts is dominated by (smaller) uncertainty inunderestimated due to reliance on a 439 

single modelled IHC that does not account for modelling errorss (Wood and Schaake, 2008), such thatand forecast 440 

spread derives only from uncertainty represented inby the ensemble ofby future forcings (i.e., resampled historical 441 

meteorology). Because TWS is constrained by ESP spread, it cannot provide substantial enhancements to poor late-442 

season reliability indices obtained with (BC-)ESP. 443 

In general, forecasts involving statistical calibration (which helps to improve spread and bias) are most reliable. 444 

Indeed, regression-based forecasting methods (e.g., Stat-IHC, Stat-Ind, Stat. Ind+IHC) stand out in all basins, 445 

suggesting that the ensemble generation approach used in this paper (based on the standard error of the cross-446 

validated hindcasts) is capable of providing statistically consistent ensembles. Multi-model techniques appear to 447 

inherit this characteristic, with only small discrepancies apparent between them (green lines in Figure 10). Similar 448 

inter-method differences across multiple initializations were found when looking at the ε reliability index (not 449 

shown) defined by Renard et al. (2010). 450 

Although HESP was only found to be the ‘most reliable’ method in a limited number of cases (e.g., α = 0.95 at 451 

Dworshak on Oct 1; α = 0.96 at Libby on Apr 1), relatively high α values were consistently attained in all basins and 452 

forecast lead times. This suggests – in conjunction with the results shown in Figures 5-8 – that HESP has strong 453 

potential for operational streamflow forecasting at all initialization dates, since it is capable of flexibly harnessing 454 

seasonally varying sources of predictability. Figure 11 illustrates this idea through time series of cross-validated 455 

ensemble forecasts obtained with HESP for three initialization times (Oct 1, Jan 1, and Apr 1). Forecasts issued on 456 

Oct 1 provide positive skill with respect to climatology in Dworshak, Howard Hanson and Hungry Horse, and 457 

although CRPSS relative to ESP does not necessarily improve, the associated correlation coefficients (0.42, 0.37 and 458 

0.47, respectively) are a clear enhancement over negative r values obtained from IHC-based methods. The lower 459 

probabilistic skill and near-zero correlation in Libby and Prineville reflect the lack of predictability from either the 460 

watershed or climate conditions at such a long lead time. Higher values of CRPSSclim for ensemble forecasts 461 

initialized on Jan 1 and Apr 1 reflect the increasing power of IHCs, while smaller (and sometimes negative) 462 

CRPSSesp values in some basins reflect the increasing difficulty to outperform ESP as IHCs provide more forecast 463 
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signal. Overall, HESP provides positive skill with respect to mean climatology in all cases, relatively high r values, 464 

and statistically consistent forecast ensembles. 465 

5.3 Wet/dry year forecasts 466 

Summary statistics provide an overview of forecast performance, but additional insights can be gained from 467 

exploring extreme years in the record – in which forecasts can have disproportionate value to help water managers 468 

negotiate atypical challenges – and from visualizing the behavior of the forecasting methods as individual seasons 469 

progress. We therefore performed a retrospective comparison of all techniques for two regionally wet (1997 and 470 

2011) and dry (1987 and 2001) water years at Hungry Horse (Figure 12), one of the most teleconnected basins in our 471 

study domain. Figure 12 illustrates how SWE and SM, the primary sources of predictability for IHC-based methods, 472 

progressively gain influence on ensemble forecasts (e.g., HESP and TWS outputs) as the beginning of the snowmelt 473 

season approaches (i.e. April 1). These single-year forecast evolution plots highlight the contrast for late season (i.e. 474 

Feb 1 onwards) between overconfident predictions exhibiting poor reliability (e.g., ESP, BC-ESP, TWS), and under-475 

confident forecasts (e.g. EWE and RWE). 476 

Figure 12a,b show that climate information is required to reduce forecast errors in wet years at very long lead 477 

times (i.e., Oct 1 and Nov 1), either alone or combined with watershed information through hybrid approaches. For 478 

example, the technique that provided the smallest forecast median error on Oct. 1 1997 was TWS. For shorter lead 479 

times (i.e., forecasts initialized on March 1 or Apr 1) and WY 1997, the incorporation of IHCs helps to provide a 480 

better match with observations compared to methods that only use climate information. Interestingly, reanalysis 481 

fields at Hungry Horse provide considerable predictive power for WY 2011 (Figure 12b) at short lead times (e.g., 482 

Stat-CFSR provides a forecast median error of 2.7 % on March 1). 483 

In the two dry years, Figure 12c illustrates that climate predictors alone had considerable predictive power at 484 

long lead times (i.e., Oct 1 and Nov 1) in WY 1987. However, this was not the case for WY 2001 (Figure 12d), 485 

when the method providing smallest forecast median volume errors at all initialization times (i.e., either BC-ESP or 486 

TWS) always required knowledge on watershed moisture conditions. This was also the case for other pilot study 487 

basins (not shown). 488 

The above results suggest that despite the value of large-scale climate information for this study domain, 489 

enhanced hydrologic predictability is critical for accurate streamflow volumes in snowmelt-dominated regions under 490 

extreme climatic conditions, especially during dry years. Past and ongoing efforts aimed to improve basin-scale 491 

meteorological forcing datasets, pursue realistic process representations in hydrologic models, advance parameter 492 

calibration, and improve DA techniques for better IHC estimates have built a robust platform to accelerate progress 493 

in this area. However, a long-term retrospective implementation (that is consistent with the real-time deployment) of 494 

these various modeling decisions and sources of information is critical to understand their performance, and 495 

benchmark methodological choices. 496 
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6 Conclusions 497 

Generating accurate water supply forecasts is an ongoing challenge for improving water resources operations 498 

and planning. Despite substantial work on seasonal streamflow forecasting methods applied worldwide, the marginal 499 

value of increased complexity and combining different sources of information via different strategies has not been 500 

systematically assessed. In this paper, we compare a range of techniques that leverage predictability from watershed 501 

hydrologic conditions and/or large-scale climate information. The forecast intercomparison showed that hybrid 502 

techniques that leverage hindcasts to combine both sources of predictability could lead to improved skill compared 503 

to current operational approaches. Additional key findings that may be relevant beyond the study domain – due to 504 

the inclusion of both teleconnected and non-teleconnected basins – are as follows: 505 

• In basins showing strong teleconnections between large-scale climate and local meteorology, the use of 506 

large-scale climate information can be an effective strategy to improve seasonal streamflow predictability, 507 

potentially providing skillful forecasts at times when watershed predictability is limited.  508 

• Standard climate indices provide useful information, and custom climate predictors from reanalyses were 509 

also an effective complementary strategy for extracting the signal from climate fields (e.g., SST and 510 

geopotential height). 511 

• The relative importance of watershed IHC versus climate information to predict streamflow was found to 512 

vary even within a small region, depending on sub-domain catchment hydroclimatological characteristics. 513 

• The ESP trace weighting method only provided promising results at forecast lead times where ESP raw 514 

forecasts contained moderate skill, indicating that climate information cannot adequately shift the prior 515 

ESP forecast if it lacks forecast resolution or contains significant bias. 516 

• Increasing methodological complexity does not necessarily translate into better ensemble forecast quality 517 

(e.g., Stat-IHC versus BC-ESP; EWE versus BMA), in part because the small sample sizes associated with 518 

seasonal hindcasts preclude reliable parameter estimation for more elaborate methods. There can be a trade-519 

off between improving one forecast characteristic (e.g., bias) and degrading another (e.g., correlation skill). 520 

• Cross-validation is an essential part of seasonal forecast development and implementation, particularly 521 

where multiple predictions may be combined based on their purported relative strengths and predictive 522 

uncertainty must be accurately estimated. In the small-sample context of seasonal streamflow prediction, 523 

cross-validation reveals significant limitations in the supportable complexity of statistical forecasting 524 

elements. 525 

The often equivocal comparison of methods through multiple verification metrics (e.g., correlation, reliability) 526 

for individual wet and dry years, and for different basins, starkly illustrated the challenge of selecting a single 527 

method that will provide optimal results for all forecast initialization dates. There is a significant tension between 528 

optimizing forecast qualities through a mixture of methods and data sources that vary seasonally and across basins, 529 

and an oft-stated preference from forecasters and users for a consistent forecasting methodology. With this in mind, 530 

we developed HESP as a flexible data-driven framework to harness skill across varying predictability regimes, 531 

although it admittedly departs from the constraint of predictor uniformity.  532 
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A notable omission from this intercomparison study is the derivation of climate predictors from global climate 533 

model forecasts, a strategy that has also been pursued in this context (e.g., see Crochemore et al. 2016). The 534 

experiment summarized here did assess the skill of CFSv2 9-month climate forecasts at an earlier stage, but such 535 

evaluation has been excluded from this paper because the results did not show significantly higher skill from the 536 

CFSv2 forecasts than the CFSR-based empirical predictions, as is consistent with prior skill assessments (e.g., Yuan 537 

et al., 2011). Nonetheless, the topic of augmenting hydrologic predictability from dynamical climate forecasts 538 

remains an appealing area for future study and comparison, as does the potential for including IHC data assimilation 539 

to enhance watershed model-based predictability (e.g., Dechant and Moradkhani, 2011; Huang et al., 2016). Future 540 

work can also explore alternative methodological choices such as multiple hydrological models, different climate 541 

datasets or smaller details such as alternative variable transformations in statistical approaches (e.g., Wang et al., 542 

2012). 543 

Finally, this work is part of a larger project that explores the potential of an automated (i.e. ‘over-the-loop’) 544 

forecasting workflow as a viable strategy for operational streamflow prediction that can open the door to potential 545 

scientific and technical advances in streamflow forecasting (Pagano et al., 2016). In this context, a critical lesson is 546 

that the entire study, in particular the assessment of approach alternatives, depends on the automation of the forecast 547 

workflow to enable the generation of hindcasts that are consistent with real-time forecasts. Demonstrating that such 548 

over-the-loop methods – all of which were implemented in real-time by the authors during the study period (2015-549 

2017) – can yield credible predictions should be regarded as a strong argument for exploring this objective paradigm 550 

in real-world operational agency settings. 551 

7 Appendix  552 

7.1 ESP trace weighting 553 

The trace weighting scheme used here involves the following steps (Werner et al., 2004): 554 

1. Compute a vector D of distances between the vector with climate predictors for the target water year ( tx ), 555 

and the vectors with predictors for the training period ( ix ): 556 

D = (BC, BE, … , BG)      (A1) 557 

B< = HI − H<       (A2)  558 

2. Sort the vector D from lowest to highest: 559 

K = B C , B E , … , B G , B C ≤ B E ≤ ⋯ ≤ B G   (A3) 560 

3. Compute weights using the following equation: 561 

N< = 1 −
= P

= Q

R

, B < ≤ B I      (A4) 562 

N< = 0, 																	B < > B I      (A5) 563 

k = VWVX
G

Y
      (A6) 564 
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where λ is a distance-sensitive weighting parameter, α is a parameter that influences the k nearest neighbors 565 

used, and NINT refers to the nearest integer operator. In this paper, we set λ = 2 and α = 1 after conducting 566 

several experiments (not shown). 567 

4. Normalize weights and construct a cumulative distribution function (CDF) based on these values and the 568 

ESP hindcast. 569 

5. Resample from the CDF obtained in step 4 using 500 uniform random numbers. 570 

7.2 BMA and QMA 571 

The principle of BMA (Raftery et al., 2005) is that given an ensemble forecast with M members, each 572 

ensemble member fi (i = 1,2,...,M) is associated with a conditional PDF hi(y|fi), which can be interpreted as the PDF 573 

of the variable y given fi. Thus, the BMA predictive model is: 574 

p y|$C, … , $\ = N<ℎ<(^|$<)
\
<_C     (A7) 575 

where the BMA weight wi is the posterior probability of forecast i and is obtained based on its relative 576 

performance during the training period. Therefore, the weights wi’s are nonnegative and add up to 1, i.e. N<
\
<_C =1 577 

(Raftery et al., 2005). 578 

In this paper, the weights for the two models (best climate-based and best watershed-based) are estimated by 579 

maximum likelihood, assuming that the conditional PDFs of log(Q) are approximated by a normal distribution. The 580 

likelihood is maximized using the expectation-maximization (EM) algorithm (Dempster et al., 1977) which is 581 

implemented in the R package ensembleBMA (https://cran.r-582 

project.org/web/packages/ensembleBMA/ensembleBMA.pdf) at the public domain statistical software R 583 

(http://www.rproject.org/). Prior information (i.e., initial weights) is provided by weights computed as 1/RMSE. 584 

Finally, the BMA forecast ensemble is obtained by sampling a fraction of members from each model equal to the 585 

weight wi. 586 

The quantile model averaging (QMA) forecast values are obtained from the weighted average of forecast 587 

quantiles from all models. Schepen and Wang (2015) recently found that nearly identical skill results can be 588 

obtained with BMA and QMA, and that very similar performance can be achieved either by calibrating QMA 589 

weights or by using BMA weights within a QMA framework. Therefore, we obtain the QMA forecast using the 590 

same weights obtained from the BMA calibration, by sorting the ensemble members from the best climate and best 591 

watershed forecast approaches, and computing the weighted average of equally ranked ensemble members from the 592 

two sources. 593 
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Table 1: List of basin characteristics. Hydrologic variables correspond to the period October 1980 to September 2015. P, 817 
R, PE, RR, and DI denote basin-averaged mean annual values of precipitation, runoff, potential evapotranspiration, 818 
runoff ratio, and dryness index, respectively. 819 

  Dworshak Howard Hungry Libby Prineville 

    Hanson Horse     

Symbol DWRI1 HHDW1 HHWM8 LYDM8 PRVO 

Area (km²) 6300 570 4200 23270 6825 

Basin average elevation (m.a.s.l.)  1290 905 1773 1648 1301 

Mean annual precipitation, P (mm/yr) 1182 1890 1043 813 349 

Mean annual runoff, R (mm/yr) 761 1483 676 408 47 

Mean annual PE* (mm/yr) 1362 1191 1272 990 1338 

Mean annual RRE (R/P) 0.64 0.78 0.65 0.50 0.13 

Mean annual DI (PE/P) 1.15 0.63 1.22 1.22 3.83 

*Potential evapotranspiration using the Priestley-Taylor method 820 

 821 

 822 

 823 

Table 2: List of climate indices included as potential predictors 824 

Index Pattern 
Niño 3.4 East Central Tropical Pacific sea surface temperature (SST) 
Niño 1+2 Extreme Eastern Tropical Pacific SST 
Niño 3 Eastern Tropical Pacific SST 
Niño 4 Central Tropical Pacific SST 
AMO Atlantic Multidecadal Oscillation 
NAO North Atlantic Oscillation 
PDO Pacific Decadal Oscillation 
PNA Pacific North American Index 
SOI Southern Oscillation Index 
MEI Multivariate ENSO index 
WP Western Pacific Index 
TNA Tropical Northern Atlantic Index 
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Table 3: Performance metrics used to assess and compare seasonal streamflow forecasting methods. 825 

Notation Name Equation Description 

r Correlation coefficient 
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2 2
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Deterministic metric that varies [-1,1] with a perfect score of 1. It 
measures the linear association between forecasts and observations 
independent of the mean and variance of the marginal distributions. 

%Bias Percent bias ,1
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Deterministic metric that varies (-∞, ∞), with perfect score of 0. It 
measures the difference between the mean of the forecasts and the mean of 
observations. 

RMSE Root mean squared error  2
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Deterministic metric that varies [0,∞), with perfect score of 0. 

CRPSS Continuous ranked 
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Probabilistic metric that varies (-∞,1], with perfect score of 1. It measures 
the skill of CRPS relative to a reference forecast (Hersbach, 2000). CRPS 
quantifies the difference between the cumulative distribution (CDF) 
function of a forecast (F), and the corresponding CDF of the observations 
(Fo). 

α α reliability index 1
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Probabilistic metric that varies [0,1]. It quantifies the closeness between 
the empirical CDF of sample p-values with the CDF of a uniform 
distribution. A value of 0 is the worst, and 1 reflects perfect reliability 
(Renard et al., 2010). 

,iqm : Forecast ensemble median for year i. 826 

qm : Temporal average over forecast ensemble medians. 827 

oi : Observation for year i. 828 

o : Temporal average of observations. 829 

P (o )i i : Non-exceedance probability of oi using ensemble forecasts at year i. 830 

(o )i iU : Non-exceedance probability of oi using the uniform distribution U[0,1]. 831 

 832 

  833 
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 834 
Figure 1: Location map with the pilot basins included in this study. 835 

 836 

837 
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 838 

Figure 2: Corrected precipitation P (i.e. observed precipitation multiplied by a snow correction factor SCF) and 839 
simulated water balance variables—active SM, SWE, and runoff (RO)—for the five study basins: (a) Dworshak Reservoir 840 
inflow (DWRI1), (b) Howard Hanson reservoir inflow (HHDW1), (c) Hungry Horse reservoir inflow (HHWM8), (d) 841 
Libby dam inflow (LYDM8), and (e) Prineville reservoir inflows (PRVO). For model SM, we subtract the lowest mean 842 
monthly value of the year so that the plotted values show only the active range of variation.  843 
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 844 

Figure 3: Schematic figure showing all seasonal streamflow forecasting methods included in the inter-comparison 845 
framework. The benchmark methods are operationally implemented in the Western United States, and they are solely 846 
based on hydrologic predictability. 847 

 848 

  849 
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 850 

Figure 4: Monthly streamflow simulations (red) and observations (black) for the period Oct/1980 – Sep/2000. Left panels 851 
display monthly time series, with NSE and r denoting the Nash-Sutcliffe efficiency and correlation, respectively. Right 852 
panels show simulated and observed seasonal streamflow cycles. Results are displayed in kilo cubic feet per second (kcfs) 853 
for (a) Dworshak Reservoir inflow (DWRI1); (b) Howard Hanson reservoir inflow (HHDW1); (c) Hungry Horse reservoir 854 
inflow (HHWM8); (d) Libby dam inflow (LYDM8); and (e) Prineville reservoir inflows (PRVO). 855 

 856 
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 857 
Figure 5: Correlation coefficients of forecast ensemble medians versus observations obtained from all methods at 858 
different initialization dates. The error bars define 95% confidence limits obtained through bootstrapping with 859 
replacement. Results are displayed for (a) Dworshak Reservoir inflow (DWRI1); (b) Howard Hanson reservoir inflow 860 
(HHDW1); (c) Hungry Horse reservoir inflow (HHWM8); (d) Libby dam inflow (LYDM8); and (e) Prineville reservoir 861 
inflows (PRVO). 862 



31 
 

 863 

Figure 6: Same as in Figure 5, but for root mean squared error (RMSE) – in million acre feet (MAF) – of ensemble 864 
forecast medians versus observations. See text for further details. 865 

 866 
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 867 

Figure 7: Same as in Figure 5, but for percent bias (% bias) in forecast ensemble medians versus observations. See text 868 
for further details. 869 

 870 
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 871 

Figure 8: Continuous Ranked Probability Skill Score of the forecast ensembles with respect to mean observed climatology 872 
(CRPSSclim). See text for further details. 873 
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 874 
Figure 9: Time series with cross-validated hindcasts initialized on December 1, obtained with two watershed-based methods (BC-ESP and Stat-IHC) and two climate-875 
based techniques (Stat-Ind and Stat-CFSR) for the five case study locations (a-e). The verification metrics CRPSSclim and CRPSSesp denote continuous ranked 876 
probability skill scores using the mean climatology and raw ESP output as the reference, respectively. Black dashed lines represent 10%, 50% and 90% flows from the 877 
observed climatology, and boxplots show the 10th, 30th, 50th, 70th and 90th hindcast percentiles. The red line represents the observed flow volumes. 878 
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 879 

Figure 10: The α reliability index for the hindcast ensembles for five case study locations. See text for further details. 880 
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 881 
Figure 11: Time series with cross-validated hindcasts obtained with the Hierarchical Ensemble Streamflow Prediction 882 
(HESP) approach, initialized on (left) October 1, (center) January 1, and (right) April 1. Results are displayed for the five 883 
case study locations: (a) Dworshak Reservoir inflow (DWRI1); (b) Howard Hanson reservoir inflow (HHDW1); (c) 884 
Hungry Horse reservoir inflow (HHWM8); (d) Libby dam inflow (LYDM8); and (e) Prineville reservoir inflows (PRVO). 885 
Black dashed lines represent 10%, 50% and 90% flows from the observed climatology, and boxplots show the 10th, 30th, 886 
50th, 70th and 90th hindcast percentiles. The red line represents the observed flow volumes. 887 
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 890 
Figure 12: April-July water supply forecasts obtained at the Hungry Horse reservoir (HHWM8) with different methods 891 
for two wet years – (a) 1997, and (b) 2011 – and two dry years – (c) 1987, and (d) 2001. The red dashed line represents the 892 
observed flow, while black dashed lines represent 10%, 50% and 90% flows from observed climatology, and boxplots 893 
show the 10th, 30th, 50th, 70th and 90th hindcast percentiles. 894 
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