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Abstract. For much of the last century, forecasting centers
around the world have offered seasonal streamflow predic-
tions to support water management. Recent work suggests
that the two major avenues to advance seasonal predictabil-
ity are improvements in the estimation of initial hydrologic
conditions (IHCs) and the incorporation of climate informa-
tion. This study investigates the marginal benefits of a variety
of methods using IHCs and/or climate information, focusing
on seasonal water supply forecasts (WSFs) in five case study
watersheds located in the US Pacific Northwest region. We
specify two benchmark methods that mimic standard opera-
tional approaches – statistical regression against IHCs and
model-based ensemble streamflow prediction (ESP) – and
then systematically intercompare WSFs across a range of
lead times. Additional methods include (i) statistical tech-
niques using climate information either from standard in-
dices or from climate reanalysis variables and (ii) several
hybrid/hierarchical approaches harnessing both land surface
and climate predictability. In basins where atmospheric tele-
connection signals are strong, and when watershed pre-
dictability is low, climate information alone provides consid-
erable improvements. For those basins showing weak tele-
connections, custom predictors from reanalysis fields were
more effective in forecast skill than standard climate indices.
ESP predictions tended to have high correlation skill but
greater bias compared to other methods, and climate predic-

tors failed to substantially improve these deficiencies within
a trace weighting framework. Lower complexity techniques
were competitive with more complex methods, and the hier-
archical expert regression approach introduced here (hierar-
chical ensemble streamflow prediction – HESP) provided a
robust alternative for skillful and reliable water supply fore-
casts at all initialization times. Three key findings from this
effort are (1) objective approaches supporting methodologi-
cally consistent hindcasts open the door to a broad range of
beneficial forecasting strategies; (2) the use of climate pre-
dictors can add to the seasonal forecast skill available from
IHCs; and (3) sample size limitations must be handled rigor-
ously to avoid over-trained forecast solutions. Overall, the re-
sults suggest that despite a rich, long heritage of operational
use, there remain a number of compelling opportunities to
improve the skill and value of seasonal streamflow predic-
tions.

1 Introduction

The operational hydrology community has long grappled
with the challenge of producing skillful seasonal streamflow
forecasts to support water supply operations and planning.
Proactive water management has become critical for many
regions in the world that are susceptible to water stress asso-
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ciated with the intensification of the water cycle. Paradox-
ically, although we have seen important technological ad-
vances, including increased computing power, the broader
availability to climate reanalysis, forecasts and reforecasts,
and more complex process-based hydrologic models (Pagano
et al., 2016), the skill of operational seasonal runoff predic-
tions in the US, termed water supply forecasts (WSFs), has
shown little or no improvement over time (e.g., Pagano et
al., 2004; Harrison and Bales, 2016). Hence, there is both
a scientific and practical need to understand the potential of
new datasets, modeling resources, and methods to accelerate
progress towards more skillful and reliable operational sea-
sonal streamflow forecasts.

There is general consensus in the research community on
the main opportunities to improve seasonal streamflow pre-
diction skill (e.g., Maurer et al., 2004; Wood and Letten-
maier, 2008; Yossef et al., 2013). These include improving
knowledge of (i) the amount of water stored in the catch-
ment, hereinafter referred to as initial hydrologic conditions
(IHCs), and (ii) weather and climate outcomes during the
forecast period. Our ability to leverage the first predictability
source (i.e., hydrologic predictability) depends on the accu-
racy of watershed observations and models, including model
input forcings (e.g., precipitation and temperature), process
representations, and the effectiveness of hydrologic data as-
similation (DA) methods. Our ability to leverage the sec-
ond source (climate predictability) depends both on how well
we can characterize and predict the state of the climate and
on how effectively we can incorporate this information into
streamflow forecasting methods. This idea has been explored
in different frameworks using standard indices, e.g., Niño3.4,
the Pacific Decadal Oscillation (PDO), and/or custom (i.e.,
watershed-specific) climate indices derived from climate re-
analyses (e.g., Grantz et al., 2005; Bradley et al., 2015), or us-
ing seasonal climate forecasts to run hydrologic model sim-
ulations (e.g., Wood et al., 2005; Yuan et al., 2013).

Despite generally promising findings from this body of
work and from a number of agency development efforts (We-
ber et al., 2012; Demargne et al., 2014), the use of large-
scale climate information for real-time seasonal streamflow
forecasting in the US remains rare. In the western United
States, where snowmelt commonly dominates the annual
cycle of runoff, official WSFs are produced via two main
approaches: (i) statistical models leveraging in situ water-
shed moisture measurements such as snow water equivalent
(SWE), accumulated precipitation, and streamflow (Garen,
1992; Pagano et al., 2004); and (ii) outputs from the Na-
tional Weather Service (NWS) ensemble streamflow predic-
tion method (ESP; Day, 1985), which is based on watershed
modeling. For the overwhelming majority of forecast loca-
tions, these approaches rely solely on the predictability from
IHCs (measured or modeled). A small number of locations
can be found, however, where climate indices also serve as
predictors in the statistical framework, and the NWS has re-
cently implemented techniques through which climate model

forecasts may eventually be applied to ESP (Demargne et al.,
2014).

This paper presents an assessment of several seasonal
streamflow prediction approaches in harnessing both water-
shed and climate-related predictability. The methods are ap-
plied to seasonal WSFs and span a range of complexity,
from purely statistical to purely dynamical and hybrid sta-
tistical/dynamical approaches. In this paper, “increased com-
plexity” indicates a gradient from purely data-driven tech-
niques (e.g., linear regression) to the use of dynamical water-
shed models (Plummer et al., 2009), the outputs of which
may be further processed using additional statistical ap-
proaches. Although most of the techniques evaluated here
are not new, the intercomparison offers new insights for re-
searchers and developers in the operational community be-
cause (1) the experiment is broader than prior efforts and
benchmarks alternative methods against current operational
ones; and (2) the methods are chosen to be operationally fea-
sible, avoiding the use of data that cannot be obtained in real
time. In addition, the work uses a hindcast/verification frame-
work and follows more rigorous standards for cross valida-
tion than were used in some of the prior studies.

The remainder of this paper is organized as follows. Sec-
tion 2 describes prior methodological work and context for
statistical, dynamical, and hybrid approaches to seasonal
streamflow forecasting. The study domain is described in
Sect. 3. Datasets, experimental design, individual methods,
and forecast verification measures are detailed in Sect. 4. Re-
sults and discussion are presented in Sect. 5, followed by the
main conclusions of this study (Sect. 6).

2 Background

Seasonal streamflow forecasting methods can be categorized
as dynamical, statistical, or hybrid, and span different de-
grees of complexity and information requirements. Dynam-
ical methods use time-stepping simulation models to rep-
resent hydrologic processes. They describe future climate
using either historical meteorology or inputs derived from
seasonal climate forecasts (e.g., Beckers et al., 2016). On
the other hand, statistical or purely data-driven methods rely
on empirical relationships between seasonal streamflow vol-
umes, and large-scale climate variables and/or in situ wa-
tershed observations. Several statistical approaches can be
found in the literature, encompassing different degrees of
complexity (e.g., Garen, 1992; Piechota et al., 1998; Grantz
et al., 2005; Tootle et al., 2007; Pagano et al., 2009; Wang et
al., 2009; Moradkhani and Meier, 2010). Other studies have
tested multi-model combination techniques for purely statis-
tical seasonal forecasts, using objective performance criteria
(e.g., Regonda et al., 2006), both performance and predic-
tor state information (Devineni et al., 2008), and Bayesian
model averaging (e.g., Mendoza et al., 2014), among others.
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Hybrid methods strive to combine the strengths from both
dynamical and statistical techniques. For instance, uncertain-
ties in dynamical predictions indicate that dynamical fore-
casts can benefit from statistical post-processing (e.g., Wood
and Schaake, 2008). One line of research has examined the
potential benefits of using simulated watershed state vari-
ables – either from hydrologic or land surface models –
as predictors for statistical models (e.g., Rosenberg et al.,
2011; Robertson et al., 2013). Another popular technique
consists of incorporating climate information within ESP
frameworks, either deriving input sequences of mean areal
precipitation and temperature from current climate or climate
forecast considerations (e.g., Werner et al., 2004; Wood and
Lettenmaier, 2006; Luo and Wood, 2008; Gobena and Gan,
2010; Yuan et al., 2013) – referred to as pre-ESP – or ESP
weighting (also referred to as post-ESP) based on climate in-
formation (e.g., Smith et al., 1992; Werner et al., 2004; Na-
jafi et al., 2012; Bradley et al., 2015). Werner et al. (2004)
found that the post-ESP method (termed “trace weighting”)
was more effective than pre-ESP for improving forecast skill.

The combination of outputs from different models has
also been shown to benefit seasonal hydroclimatic forecast-
ing (e.g., Hagedorn et al., 2005). Although several studies
have demonstrated that statistical multi-model techniques ap-
plied on dynamical models tend to outperform the “best”
single model (e.g., Georgakakos et al., 2004; Duan et al.,
2007), fewer insights have been gained on combining statisti-
cal or dynamical models in seasonal streamflow forecasting.
Recently, Najafi and Moradkhani (2015) tested multi-model
combination techniques of different complexities from both
statistical and dynamical forecasts, concluding that model
combination generally outperforms the best individual fore-
cast model. Many sophisticated seasonal forecasting frame-
works can be found in the literature, some of which incorpo-
rate DA techniques (e.g., DeChant and Moradkhani, 2011), a
topic not discussed here. For this reason, the hydrology com-
munity may benefit from a broad assessment of the marginal
benefits of choices made in a range of seasonal streamflow
forecasting frameworks.

3 Study domain

Our test domain is the US Pacific Northwest (PNW) region
(Fig. 1), which relies heavily on winter snow accumulation
and spring snowmelt to meet water needs during spring and
summer (e.g., Mote, 2003; Maurer et al., 2004; Wood et al.,
2005). We select catchments contributing to five reservoirs:
Dworshak (DWRI1), Howard Hanson (HHDW1), Hungry
Horse (HHWM8), Libby (LYDM8), and Prineville (PRVO).
Two of them – the Hungry Horse and Prineville reservoirs –
are owned and operated by the US Bureau of Reclamation
(USBR), while the rest are operated by the US Army Corps
of Engineers (USACE).

Figure 1. Location map with the pilot basins included in this study.

The main physical and hydroclimatic characteristics of the
case study basins are summarized in Table 1. These basins
cover a wide range of runoff ratios (from 0.13 at Prineville
to 0.78 at Howard Hanson) and dryness indices (from 0.63 at
Howard Hanson to 3.83 at Prineville). Relatively high basin-
averaged elevations condition a pronounced seasonal tem-
perature pattern, with minimum values below the freezing
point between December and February, and maximum tem-
peratures during June–September (not shown). These topo-
graphic and hydroclimatic features favor snowpack develop-
ment in the months of October–April, stressing the seasonal
behavior of other water storages and fluxes. This is illustrated
in Fig. 2, including model precipitation (i.e., observed pre-
cipitation with a snow correction factor, SCF) and monthly
averages of hydrologic variables simulated with the Sacra-
mento Soil Moisture Accounting (SAC-SMA; Burnash et al.,
1973) and SNOW-17 (Anderson, 1973) watershed models
(see Sect. 4). Although seasonal precipitation patterns may
differ, water starts accumulating in October as snow water
equivalent (SWE) and/or soil moisture (SM) in all basins.
Increases in SM and runoff in most basins are driven by
snowmelt at the beginning of spring with the exception of
Howard Hanson, where the bulk of annual streamflow occurs
in November–May. Among these basins, Dworshak, Hun-
gry Horse, and Libby share similar SWE, soil moisture, and
runoff cycles, although precipitation is relatively uniform in
the last one throughout the year.
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Table 1. List of basin characteristics. Hydrologic variables correspond to the period October 1980 to September 2015. P , R, PE, RR, and DI
denote basin-averaged mean annual values of precipitation, runoff, potential evapotranspiration, runoff ratio, and dryness index, respectively.

Dworshak Howard Hungry Libby Prineville
Hanson Horse

Symbol DWRI1 HHDW1 HHWM8 LYDM8 PRVO

Area (km2) 6300 570 4200 23 270 6825
Basin average elevation (m a.s.l.) 1290 905 1773 1648 1301
Mean annual precipitation, P (mm yr−1) 1182 1890 1043 813 349
Mean annual runoff, R (mm yr−1) 761 1483 676 408 47
Mean annual PE∗ (mm yr−1) 1362 1191 1272 990 1338
Mean annual RR (R/P ) 0.64 0.78 0.65 0.50 0.13
Mean annual DI (PE /P ) 1.15 0.63 1.22 1.22 3.83

∗ Potential evapotranspiration using the Priestley–Taylor method.

The hydroclimatology of the PNW region is affected by
a number of large-scale climate teleconnections. The warm
(cold) phase of El Niño–Southern Oscillation (ENSO) is
typically associated with above (below) average tempera-
tures and below (above) average precipitation during win-
ter (e.g., Redmond and Koch, 1991) and therefore decreased
(increased) snowpack (Clark et al., 2001) and spring/summer
runoff (e.g., Piechota et al., 1997). The Pacific Decadal Oscil-
lation (PDO; Mantua et al., 1997) – which reflects the domi-
nant mode in decadal variability of sea surface temperatures
(SSTs) – has also been found a relevant driver for the hydro-
climatology of the PNW (e.g., McCabe and Dettinger, 2002).
The joint influence of ENSO and PDO on North American
climate conditions, snowpack, and spring/summer runoff has
been also well recognized and documented (e.g., Hamlet and
Lettenmaier, 1999). As a consequence, many authors have
explored the incorporation of large-scale climate information
for seasonal streamflow forecasting in the PNW – using ei-
ther standard indices (e.g., Hamlet and Lettenmaier, 1999;
Maurer et al., 2004), custom indices from reanalysis fields
(e.g., Opitz-Stapleton et al., 2007; Tootle et al., 2007), both
(e.g., Moradkhani and Meier, 2010), or downscaled climate
forecasts (e.g., Wood et al., 2005) – finding improved pre-
dictability for lead times longer than 2 months and particu-
larly in years of strong anomalies in climate oscillations such
as ENSO.

4 Approach

4.1 Experimental design

We use several decades of seasonal streamflow hindcasts to
assess a suite of methods (Fig. 3), focusing on April–July
streamflow (runoff) volume, the most common western US
water supply forecast predictand. Probabilistic (ensemble)
WSFs for this period are generated the first day of each
month from October to April, in every year of the hindcast

period 1981–2015. For the methods involving statistical pre-
diction, we use a leave-three-out cross validation at all stages
of the forecast process. This procedure is repeated for con-
secutive 3-year periods (e.g., 1981–1983, 1984–1986), ex-
cept for the last time window (2014–2015).

The techniques assessed here are categorized as fol-
lows. The first group, IHC-based methods, includes two ap-
proaches (referred to as benchmark methods) – ESP and
IHC-based statistical – currently used operationally in the
western US (both harnessing only IHC information), and
a simple ESP post-processor to reduce systematic biases.
A second group, climate-only methods, includes statistical
techniques harnessing climate information from two differ-
ent sources – standard indices (e.g., Niño3.4, PDO, AMO)
or variables extracted from the Climate Forecast System Re-
analysis (CFSR; Saha et al., 2010). A third group of hybrid or
hierarchical methods includes subgroups of techniques that
(i) combine watershed predictors (IHCs) and climate pre-
dictors (either indices or CFSR variables) within a statisti-
cal framework, (ii) use climate information to post-process
outputs from a dynamical method (i.e., ESP), or (iii) com-
bine purely climate-based ensembles with purely watershed-
based ensembles.

In operational practice, ESP produces an ensemble of
streamflow estimates, whereas statistical water supply fore-
casting yields a statistical distribution. In this study, we gen-
erate ensembles of the final predictand for all methods. An
ensemble size 500 is used – wherein the members are gen-
erated through a resampling (in some cases weighted) of
the predictive distributions – except for the ESP and bias-
corrected ESP methods, for which 32 members are gener-
ated (i.e., 35 total historical years less the three test years
left out). In the statistical approaches, seasonal flows are log-
transformed, and predictor and predictand data are normal-
ized before training statistical method parameters or weights
(i.e., z scores are computed using z= (x−µ)/σ , where x
represents the original variable, and µ and σ represent the
mean and standard deviation of x, respectively). The statis-
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Figure 2. Corrected precipitation P (i.e., observed precipita-
tion multiplied by a SCF) and simulated water balance vari-
ables – active SM, SWE, and runoff (RO) – for the five study
basins: (a) Dworshak reservoir inflow (DWRI1), (b) Howard Han-
son reservoir inflow (HHDW1), (c) Hungry Horse reservoir inflow
(HHWM8), (d) Libby dam inflow (LYDM8), and (e) Prineville
reservoir inflows (PRVO). For model SM, we subtract the lowest
mean monthly value of the year so that the plotted values show only
the active range of variation.

tical models were applied in log-standard-normal space for
forecast generation, then predictands were transformed from
z scores to log space (i.e., apply x= zσ+µ, with x= log(Q)),
and finally transformed back to streamflow space. In practice,

forecasters use a variety of transforms such as linear, square
root, cube root, log, and log-sinh (Wang et al., 2012). We did
not explore alternative transforms, using the log consistently
throughout, but recognize that the choice of transform can
affect the quality of the forecast.

4.2 Forecasting methods

4.2.1 IHC-based methods

Ensemble streamflow prediction

The traditional ensemble streamflow prediction (ESP)
method (Day, 1985) relies on deterministic hydrologic model
simulations forced with observed meteorological inputs up
to the initialization time of the forecast. The approach as-
sumes that meteorological data and model are perfect – i.e.,
there are no errors in IHCs – and that historical meteoro-
logical conditions during the simulation period can be used
to represent climate forecast conditions. For hindcast verifi-
cation purposes, the meteorological input traces associated
with forecast years must be excluded.

The hydrology models used in this study were the NWS
Snow-17, SAC-SMA, and a unit-hydrograph routing model,
all implemented in lumped fashion with 2–3 snow eleva-
tion zones per watershed. The models were calibrated via
an automated multi-objective parameter estimation to repro-
duce observed daily streamflow. Hydrologic model forcings
were drawn from a 1/16◦ real-time implementation of the en-
semble forcing generation method described in Newman et
al. (2015). Naturalized flow data were obtained from a com-
bination of sources, including the Bonneville Power Admin-
istration (BPA, 2011), the USBR Hydromet historical data
access system, and the USACE Data Query System.

Figure 4 shows simulated and observed monthly time
series of streamflow for the period October 1990–
September 2000. In this paper, results are reported in non-
metric units because of their greater familiarity to readers
from the US water management community. With the excep-
tion of Prineville, where neither meteorology nor flow are
well measured, all basins show values of the Nash–Sutcliffe
efficiency (NSE) and r higher than 0.76 and 0.87, respec-
tively. Further, the climatological seasonality of streamflow
is reproduced well in all basins.

Statistical forecasting using initial hydrologic conditions
(Stat-IHC)

This method mimics the approach of the US Natural Re-
sources Conservation Service (NRCS) but differs in using
model-simulated basin-averaged SWE and SM as surrogates
for ground-based observations of SWE, precipitation, and
streamflow used operationally by the NWS and NRCS (as
demonstrated in Rosenberg et al., 2011). A linear regression
equation is developed between normalized log-transformed
seasonal runoff and IHCs represented by the sum of simu-
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1. Dynamical: ensemble streamflow prediction (ESP).
2. Statistical: regression on in situ information, initial hydrologic 

conditions (stat. IHC).

Benchmark methods 

Hydrological 
Predictability (land)

Hydrological 
predictability (land)

Meteorological
Predictability

(climate)

Meteorological
predictability

(climate)

Water Supply ForecastsWater supply forecasts

Hybrid/hierarchical methods

Regression methods

6. Purely statistical hybrid 
(stat. ind + IHC).

7. Purely statistical hybrid 
(stat. CFSR + IHC).

8. Hierarchical ensemble 
streamflow prediction 
(HESP).

Post-processor

9. Trace weighting scheme, 
weighting ensembles based 
on climate info (TWS).

Merging methods
10. Equal weighting of best 

climate (stat. ind or stat. 
CFSR) with best hydrologic 
(BC-ESP or stat. IHC) 
ensembles (EWE).

11. Same as 9, but based on 
RMSE (RWE).

12. Same as 9, but use bayesian 
model averaging (BMA).

13. Same as 9, but use quantile 
model averaging (QMA).

Sources of predictability

3. Bias-corrected ensemble streamflow prediction (BC-ESP).

Simple post-processor 

4. Statistical with standard climate indices (stat. indices).
5. Statistical with partial least squares regression (PLSR) over 

sea surface temperature (SST) and geopotential height at 700 
mb (Z700) (stat. CFSR).

Statistical methods with climate information

Watershed + climate

information

Figure 3. Schematic figure showing all seasonal streamflow forecasting methods included in the intercomparison framework. The benchmark
methods are operationally implemented in the western United States, and they are solely based on hydrologic predictability.

lated basin-averaged SWE and SM. The training period equa-
tions are used to issue a deterministic runoff volume predic-
tion for each year left out, and ensembles are generated by
adding 500 Gaussian random numbers with zero mean and a
standard deviation equal to the standard error of the individ-
ual prediction. The predictions are then transformed from z

scores to log space and finally exponentiated.

Bias-corrected ensemble streamflow prediction

ESP predictions often exhibit a systematic bias due to in-
adequate model parameters and/or other sources or error
(e.g., input forcing selection, model structure). If the ESP ap-
proach provides a consistent hindcast, as it does here, post-
processing in the form of a simple bias-corrected ensem-
ble streamflow prediction (BC-ESP) can be applied. This is
achieved by multiplying the raw ESP forecasts by a mean
scaling factor that is obtained by computing the ratio between
the mean of observed seasonal runoff volumes (i.e., the pre-
dictand) and the mean of ESP forecast median volumes for
each initialization time. Each scaling factor calculation and
application is cross validated.

4.2.2 Statistical forecasting harnessing only climate
information

Multiple linear regression using standard climate indices
(Stat-Ind)

This method evaluates 12 standard climate indices as candi-
date predictors (Table 2). For each initialization time (e.g.,
1 November) and climate index (e.g., Niño3.4), the 3-month
time window that maximizes the correlation coefficient be-
tween a preceding seasonal (e.g., August–October) predictor
average and seasonal streamflow volume over the training pe-
riod is selected. Once this procedure is repeated for all poten-
tial predictors, the best possible time series are obtained for
the 12 climate indices, and ensemble forecasts are produced
for a given initialization through the following steps:

1. Several combinations of predictors are selected subject
to the constraint that no pairs of predictors with an inter-
correlation larger than Cthresh = 0.3 should be included.

2. Stepwise multiple linear regression (MLR) models are
fit for all combinations of predictors identified in step 1,
and the set of predictors that minimizes the Bayesian
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Figure 4. Monthly streamflow simulations (red) and observations
(black) for the period October 1980–September 2000. Left panels
display monthly time series, with NSE and r denoting the Nash–
Sutcliffe efficiency and correlation, respectively. Right panels show
simulated and observed seasonal streamflow cycles. Results are
displayed in kilo cubic feet per second (kcfs) – where 1 kcfs is
equivalent to 28.32 m3 s−1 – for (a) Dworshak Reservoir inflow
(DWRI1), (b) Howard Hanson reservoir inflow (HHDW1), (c) Hun-
gry Horse reservoir inflow (HHWM8), (d) Libby dam inflow
(LYDM8), and (e) Prineville reservoir inflows (PRVO).

information criterion (BIC) score (Akaike, 1974) over
the training period is selected.

3. An ensemble forecast is generated (as for Stat-IHC)
with the MLR model from step 2.

We choose MLR over more parameterized regression meth-
ods (e.g., local polynomial regression) since these were
found to perform poorly in cross validation, mainly due to
the limited sample sizes available in the seasonal hydrologic
prediction context.

Partial least squares regression using reanalysis fields
(Stat-CFSR)

The teleconnections captured in off-the-shelf climate indices
are not influential everywhere. Therefore, we also assess the
potential of custom climate predictor indices derived from
reanalysis data. Following Tootle et al. (2007), we use partial
least squares regression (PLSR; Wold, 1966) to extract infor-
mation from climate fields. PLSR decomposes a set of inde-
pendent variables X and dependent variables Y into a small

Table 2. List of climate indices included as potential predictors.

Index Pattern

Niño3.4 East central tropical Pacific SST
Niño1 & 2 Extreme eastern tropical Pacific SST
Niño3 Eastern tropical Pacific SST
Niño4 Central tropical Pacific SST
AMO Atlantic Multidecadal Oscillation
NAO North Atlantic Oscillation
PDO Pacific Decadal Oscillation
PNA Pacific North American index
SOI Southern Oscillation index
MEI Multivariate ENSO index
WP Western Pacific index
TNA Tropical Northern Atlantic index

number of principal components that explain as much covari-
ance as possible between the two variable sets (Abdi, 2010).
PLSR components are formed from CFSR 700 mb geopoten-
tial height (Z700) and SSTs over the domain 20◦ S–80◦ N,
130◦ E–10◦W. For dates beyond 2010, we merged the 1979–
2010 CFSR data with monthly analysis fields from the Cli-
mate Forecast System version 2 (CFSv2; Saha et al., 2014),
aggregating the latter product to 2.0◦× 2.0◦ horizontal reso-
lution. Similar to the Stat-Ind method, we use 3-month aver-
ages of these variables. The seasonal forecasts are generated
for each initialization by following these steps:

1. The principal components are computed from the com-
bined SST and Z700 gridded values for each training
sample and the left-out prediction years.

2. A regression model is fitted to the resulting PLSR com-
ponents (predictors), accepting each additional compo-
nent only when its mean partial correlation with volume
runoff is above a threshold. We used a threshold of 0.30
throughout the study after finding that nearby values –
e.g., 0.25, 0.35 – did not substantially change the results.
The small sample size and low predictability supported
at most two components.

3. A mean runoff volume forecast is computed using the
regression model obtained in step 2, and an ensemble
is generated by adding 500 Gaussian random numbers
with zero mean and a standard deviation equal to the
root mean squared error of prediction (RMSEP) ob-
tained from leave-three-out cross validation within the
training period.

4. Ensemble forecasts are transformed from z scores to log
space, and finally exponentiated for conversion to flow
space.

The main implication of developing PLSR components and
the subsequent estimation of regression coefficients in cross
validation – as conducted here – is that climate information
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from the target prediction period is not used at all, as is the
case in real-time systems. This is a key methodological dif-
ference versus past studies that used all historical available
information to define custom reanalysis predictor fields (e.g.,
Grantz et al., 2005; Regonda et al., 2006; Bracken et al.,
2010; Mendoza et al., 2014), yielding a moderate yet erro-
neous boost in predictability.

4.2.3 Hybrid/hierarchical methods combining
watershed and climate information

Stepwise MLRs using IHCs and climate predictors

We applied two statistical methods that combine climate and
dynamical watershed model predictors: Stat-Ind-IHC (which
uses climate indices and IHCs) and Stat-CFSR-IHC (which
uses CFSR-based PLSR components and IHCs). These ap-
proaches are implemented in identical fashion to Stat-Ind,
except that IHCs are added to the potential suite of climate
predictors.

Hierarchical ensemble streamflow prediction

The underlying idea of hierarchical ensemble streamflow
prediction (HESP) is that the two main sources of pre-
dictability – watershed IHCs and climate – may best be ad-
dressed sequentially to ensure that only climate uncertainty
is related to climate predictors. This may not be the case if
a climate variable enters first into a regression model that at-
tempts to explain streamflow variance from both IHCs and
climate, possibly leading to a sub-optimal predictor selec-
tion. HESP is thus a hierarchical regression approach in
which streamflow is first related to IHCs by fitting Q=

f (IHC predictors)+εclimate, given sufficient IHC predictor
strength. The residual uncertainty is then related to climate
predictors (again if possible) by fitting εclimate = g(climate
predictors) +εresidual, such that the final forecast equation
takes the form

Q= f (IHCpredictors)+g(climatepredictors)+εresidual. (1)

Here, the predictor pool used to explain εclimate may include
standard climate indices or reanalysis PLSR components, de-
pending on the performance obtained during the training pe-
riod. Without IHC predictability, HESP is equivalent to Stat-
Ind or Stat-CFSR, whereas without climate predictability,
it defaults to Stat-IHC. Lacking both IHC and climate pre-
dictability, HESP defaults to climatology – i.e., an ensemble
forecast is issued by resampling from historical observations
over the training period.

ESP trace weighting scheme

A well-known strategy for incorporating climate informa-
tion into ESP forecasts is called trace weighting (Smith et
al., 1992; Werner et al., 2004), where forecasted flow prob-
abilities are corrected by weighting each ensemble member

according to the similarity between a climate-related feature
of the current year (e.g., PDO) and the meteorological year
used to generate that member. Here, for a given basin and
forecast period, either climate indices or CFSR-based com-
ponents are selected based on their training period perfor-
mance (i.e., RMSE) and used to weight each trace obtained
from BC-ESP (see Appendix A for further details).

Equally weighted ensembles and RMSE-weighted
ensembles

An equally weighted ensemble (EWE) combines the best-
performing climate-only hindcast (i.e., Stat-Ind or Stat-
CFSR, based on RMSE over the training period) with the
best watershed-only hindcast (either Stat-IHC or BC-ESP),
resampling ensemble members equally from each source
to form a new 500-member ensemble forecast. A variation
of this combination approach, an RMSE-weighted ensem-
ble (RWE), instead performs a weighted resampling from
the two forecast sources according to their skill during the
training period. That is, two weights RMSE−1 are obtained,
where RMSE is the root mean squared error of the forecast
ensemble median. These weights are normalized to make
them sum up to 1, and finally obtain the fraction of the new
500-member ensemble coming from each forecast source.
For example, if the resulting normalized weights are 0.4 and
0.6 for the best climate-only and best watershed-only fore-
casts, respectively, the RWE will contain 200 and 300 mem-
bers from each prediction.

Bayesian model averaging and quantile model averaging

These methods combine the best-performing climate-only
hindcast with the best-performing watershed-only hindcast.
While Bayesian model averaging (BMA; Raftery et al.,
2005) attempts to provide a weighted average of fore-
cast probability densities, quantile model averaging (QMA;
Schepen and Wang, 2015) applies a weighted average to fore-
cast values (quantiles) for a given cumulative probability. A
notable difference between the two approaches is that QMA
produces smoother and consistently unimodal distributions
compared to potentially bimodal BMA outputs (Schepen and
Wang, 2015). More details on these techniques are provided
in Appendix B.

4.3 Forecast evaluation

Forecast method performance was evaluated using the met-
rics listed in Table 3. These include some standard metrics
used in hydrology, such as correlation coefficient (r), root
mean squared error (RMSE), and percent bias, and also prob-
abilistic measures to assess skill and reliability. Skill is ob-
tained using the continuous ranked probability score (CRPS;
Hersbach, 2000), which measures the temporal average er-
ror between forecast CDF and that from the observation.
Forecast reliability – i.e., adequacy of the forecast ensemble
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Table 3. Performance metrics used to assess and compare seasonal streamflow forecasting methods.

Notation Name Equation Description

r Correlation coefficient r =

∑N
i=1(qm,i−qm)(oi−o)√∑N

i=1(qm,i−qm)2
√∑N

i=1(oi−o)
2

Deterministic metric that varies [−1,1] with a
perfect score of 1. It measures the linear as-
sociation between forecasts and observations
independent of the mean and variance of the
marginal distributions.

%Bias Percent bias %Bias=
∑N
i=1(qm,i−oi )∑N

i=1oi
× 100 Deterministic metric that varies (−∞,∞) with

a perfect score of 0. It measures the difference
between the mean of the forecasts and the mean
of observations.

RMSE Root mean squared
error

RMSE=
√

1
N

∑N
i=1(qm,i − oi)2 Deterministic metric that varies [0,∞) with a

perfect score of 0.

CRPSS Continuous ranked
probability skill score

CRPSS= 1− CRPSfcst
CRPSref

CRPS=
1
N

N∑
i=1

∞∫
−∞

[
F(q)−Fo(q)

]2dq

Fo(q)=

{
0, q < o

1, q ≥ o

Probabilistic metric that varies (−∞,1], with
perfect score of 1. It measures the skill of
CRPS relative to a reference forecast (Hers-
bach, 2000). CRPS quantifies the difference be-
tween the cumulative distribution (CDF) func-
tion of a forecast (F) and the corresponding
CDF of the observations (Fo).

α α reliability index α = 1− 2
[

1
N

∑N
i=1 |Pi(oi)−U(oi)|

]
Probabilistic metric that varies [0,1]. It quanti-
fies the closeness between the empirical CDF
of sample p values with the CDF of a uniform
distribution. A value of 0 is the worst, and 1 re-
flects perfect reliability (Renard et al., 2010).

qm,i : forecast ensemble median for year i. qm: temporal average over forecast ensemble medians. oi : observation for year i. o: temporal average of observations. Pi (oi ):
non-exceedance probability of oi using ensemble forecasts at year i. Ui (oi ): non-exceedance probability of oi using the uniform distribution U [0,1].

spread to represent the uncertainty in observations – is eval-
uated using an index from the predictive quantile–quantile
(QQ) plot (Renard et al., 2010). QQ plots compare the em-
pirical CDF of forecast p values (i.e., Pi(oi), where Pi and
oi are the forecast CDF and observation at year i) with that
of a uniform distribution U [0,1] (Laio and Tamea, 2007).

Confidence intervals for the verification statistics are cre-
ated using bootstrapping with replacement. In each resam-
pling step, N pairs of ensemble forecasts and observations
were resampled from the original joint distribution (N is the
total number of events for which probabilistic forecasts are
available). This process is repeated 1000 times, and all statis-
tics are then computed for each realization and ranked in or-
der to obtain 95 % confidence limits.

5 Results and discussion

5.1 Deterministic evaluation

We first compare methods using the WSF median, a criti-
cal predictand for many water decisions (e.g., Lake Pow-
ell releases on the Colorado River in the western US). Fig-

ure 5 displays correlation coefficients (r) between forecast
median and observed April–July runoff volumes for the five
case study basins. As expected, near-zero or negative r values
were obtained for 1 October and 1 November WSFs with the
IHC-based methods. Negative correlation scores arise in very
low-skill situations as an artifact of cross validation (e.g.,
leaving a high predictand out of a training sample biases the
resulting prediction in the opposite direction). The season-
ality of SM and SWE in the basins of interest (Fig. 2) does
not yield watershed moisture accumulations with predictive
power until December or January. In contrast, r values as
high as 0.48 for Dworshak and 0.49 for Hungry Horse could
be attained on 1 October using only information from climate
indices (Stat-Ind). Generally, but not everywhere, methods
harnessing predictability from the climate (with the excep-
tion of the trace weighting scheme – TWS) enhance skill in
comparison to IHC-based methods at initializations early in
the water year. TWS is unable to shift the parent ESP distri-
bution sufficiently to impart much climate skill at this time
of year.

After January, the hydrologic model begins to capture a
useful moisture variability signal from the watershed; thus,
IHCs start to become a dominant source of predictability in
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Figure 5. Correlation coefficients of forecast ensemble medians
versus observations obtained from all methods at different initial-
ization dates. The error bars define 95 % confidence limits ob-
tained through bootstrapping with replacement. Results are dis-
played for (a) Dworshak Reservoir inflow (DWRI1), (b) Howard
Hanson reservoir inflow (HHDW1), (c) Hungry Horse reservoir in-
flow (HHWM8), (d) Libby dam inflow (LYDM8), and (e) Prineville
reservoir inflows (PRVO).

all basins. Indeed, watershed information is particularly rel-
evant at Libby and Prineville (Fig. 5d and e), where corre-
lations within the range 0.39–0.47 are achieved as early as
1 December with the three IHC-based techniques. In these
basins, standard climate indices do not provide useful long-
lead predictability, although CFSR-based predictors do sup-
port a consistent improvement. For example, the correlation
from Stat-Ind for Libby (Prineville) on 1 December is −0.23
(0.02), while the r value from Stat-CFSR is 0.19 (0.30).
These differences between Stat-Ind and Stat-CFSR remain
at these basins for subsequent monthly initializations.

Figure 5 reveals several notable outcomes that are evi-
dent in many of the results plots. First, a linear regression
against IHCs can provide similar r values than the more com-
putationally expensive ESP method, especially at late ini-
tializations (i.e., 1 March or 1 April). Likewise, straightfor-
ward ensemble combination techniques (e.g., EWE or RWE)

may outperform more complex methods such as BMA (e.g.,
1 February–1 April) at all basins. From a correlation skill per-
spective, on the other hand, ESP generally outperforms the
rest of the methods in late winter and spring. For example,
ESP provides the highest r values for Dworshak (0.82) and
Howard Hanson (0.67) on April 1. Notably, EWE was found
to be the best method on 1 April for Hungry Horse (r = 0.88)
and Prineville (r = 0.79) based on correlation. This indicates
that, although simple post-processing can provide substan-
tial forecast improvement, the small sample size available for
training during the cross-validation process results in noisy
parameter estimates that can undermine the potential correla-
tion skill achievable with techniques that are more complex.

RMSEs for ensemble forecast medians (Fig. 6) show
that despite some discrepancies between techniques, inter-
method differences are not as large as for correlation. In most
basins, errors can be reduced at earlier initializations (i.e.,
1 October and 1 November) by introducing climate informa-
tion. For instance, on 1 October, Stat-Ind and Stat-Ind-IHC
generate respective reductions in RMSE of 10 and 13 % at
Dworshak, 23 and 16 % at Howard Hanson, and 14 and 12 %
at Hungry Horse, relative to the best IHC-based method in
each basin. These benefits are seen in most initializations
and catchments except at Libby, where the best results were
mostly achieved using ESP (1 October) and Stat-IHC (1 De-
cember and 1 February–1 April). In agreement with Beckers
et al. (2016), this study was unable to find encouraging cli-
mate teleconnections at Libby despite its relative proximity
to Hungry Horse.

Figure 6 underscores that from a median error perspec-
tive, intuitive ensemble combination approaches (i.e., EWE
and RWE, shown in dark green) can be effective for reducing
forecast errors once the watershed begins to provide useful
predictability (i.e., after 1 January). For instance, EWE was
the best-performing method in Hungry Horse and Prineville
for forecasts initialized on 1 March and 1 April. Further,
Figure 6 illustrates that the best (or worst) techniques when
looking at RMSE vary with each basin, although it is clear
that TWS and climate-only methods perform poorly at early
and late initializations, respectively. The joint inspection of
Figs. 5 and 6 shows that inter-method agreement in corre-
lation does not necessarily translate into similar forecast me-
dian errors. For example, while ESP and HESP provide close
r values at Dworshak (0.74 and 0.73) on 1 March, larger dis-
crepancies are obtained in RMSE, with values of 0.58 mil-
lion acre feet – equivalent to 0.72 billion m3 (BCM) – and
0.79 MAF (0.97 BCM) for ESP and HESP, respectively.

Another interesting result is that no substantial reduc-
tions in RMSE were achieved at Howard Hanson between
1 October and 1 April, in contrast to the gradual growth of
hydrologic predictability to support forecast skill in other
basins. Indeed, the best-performing techniques for 1 October
(Stat-Ind) and 1 April (BC-ESP) forecasts provide similar
RMSE values (∼ 0.064 MAF (0.079 BCM) and 0.065 MAF
(0.08 BCM), respectively). This outcome can be attributed
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Figure 6. The same as Fig. 5 but for RMSE – in million acre feet
(MAF) – of ensemble forecast medians versus observations. See
text for further details.

to the relatively more rainfall-dominated hydrograph of
Howard Hanson in comparison to the rest of the catchments
(Table 1; Fig. 2), and sustained runoff variability generated
by seasonally high SM and fall–winter precipitation.

Figure 7 (forecast median bias) shows that raw ESP out-
puts have the largest biases through most initializations at
Howard Hanson, Libby and Prineville. In particular, abso-
lute biases at Prineville – which is the worst simulated basin
in the group – increase to 53 % on 1 October before de-
creasing to 20 % on 1 April. Further, relatively large biases
(in comparison to the rest of techniques) were obtained at
late initializations in Dworshak and Hungry Horse. Except-
ing Prineville, inter-method differences were not substantial,
and none of the methods exceeded a 16 % bias at any initial-
ization. The simple bias correction applied in this study was
able to reduce absolute biases to less than ±3 % at Prineville
and less than ±1 % at the rest of the basins. Hence, from a
bias reduction perspective, BC-ESP was the best technique
for most basins/initializations, with the exceptions of Dwor-
shak on 1 February and Prineville on 1 March and 1 April, for
which Stat-CFSR-IHC and TWS provided the best results.

Figure 7. The same as Fig. 5 but for percent bias (% bias) in forecast
ensemble medians versus observations. See text for further details.

5.2 Probabilistic verification

Figure 8 displays continuous ranked probability skill
scores computed with mean climatology as a reference
(CRPSSclim). Consistent with the correlation analysis results
(Fig. 5), better skill values are obtained for long lead times
(i.e., 1 October and 1 November) if climate predictors are in-
corporated in the forecasting framework. For example, Stat-
Ind-IHC augments skill by 56 % in HHDM1 and 7 % in Hun-
gry Horse with respect to Stat-IHC (i.e., the best benchmark
in terms of CRPSSclim) when forecasts are initialized on
1 November. The skill of IHC-based methods generally in-
creases from 1 October to 1 April. Nevertheless, at late ini-
tializations it is still possible to outperform these techniques
in some basins (e.g., Stat (CFSR+ IHC) and EWE in Hun-
gry Horse provide skill increases of 7 and 5 % in 1 April
forecasts over the best IHC-based technique). For late sea-
son initializations – when IHC predictability is strong – it is
expected that climate-only forecasts are not suitable and un-
derperform other methods. This progression of relative pre-
dictabilities from climate and watershed moisture conditions
(Figs. 5 and 8) is consistent with previous findings for the
region (e.g., Pagano and Garen, 2006).
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Figure 8. Continuous ranked probability skill score of the
forecast ensembles with respect to mean observed climatology
(CRPSSclim). See text for further details.

The results from Fig. 8 corroborate several findings al-
luded to in Sect. 5.1. Climate predictors applied to low-
skilled (BC-)ESP forecasts in a TWS framework are less ef-
fective than when applied in a separate statistical method.
Additionally, less complex multi-model schemes can per-
form better than more complex approaches (e.g., BMA), sup-
porting previous findings by Najafi and Moradkhani (2015).
Among the three hybrid regression methods (Fig. 3), Stat-
CFSR-IHC was in most cases the worst performer. This re-
sult may be determined by the relative strength of standard
(in particular ENSO) indices for the PNW region. When used
in combination with other stronger predictors, the parameter
estimation cost of the CFSR-PLSR relative to an off-the-shelf
index may be more exposed (leading to greater shrinkage of
skill after cross validation). The skill results in this study are
subject to large uncertainties due to limited sample size (i.e.,
only 35 years for forecast generation and verification).

Overall, the results presented in Figs. 5 and 8 suggest a
division of the study basins into two groups showing differ-
ent relative predictabilities – i.e., driven by watershed con-
ditions versus climate – from October to January. The first
group is formed by Dworshak, Howard Hanson, and Hun-

gry Horse, where the state of the climate is the dominant
source of predictability from 1 October to 1 December, and
IHCs start providing useful information on 1 January. The
second group is formed by Libby and Prineville, where little
or no skill can be found from any source until 1 December,
when some predictability can be harnessed from IHCs. This
is illustrated in Fig. 9, where time series with cross-validated
seasonal streamflow forecasts – initialized on 1 December
during the period 1981–2015 – are shown for two IHC-based
methods (BC-ESP and Stat-IHC), and two climate-based sta-
tistical methods (i.e., Stat-Ind and Stat-CFSR). At such ini-
tialization, there is not enough information in the watershed
(IHCs) to predict interannual variations in April–July stream-
flow at Dworshak (Fig. 9a) or Howard Hanson (Fig. 9b); nev-
ertheless, climate predictors are more successful, a result that
is also reflected in positive correlation results (Fig. 5) and
skill scores (e.g., CRPSSclim increases from 0.23 with Stat-
IHC to 0.39 with Stat-Ind at Howard Hanson). For the par-
ticular case of Hungry Horse (Fig. 9c), some predictability
is provided by watershed information alone (i.e., BC-ESP),
although with smaller correlation and skill than Stat-Ind or
Stat-CFSR. Finally, the ensemble forecast time series dis-
played for Libby (Fig. 9d) and Prineville (Fig. 9e) portray the
relative predictive power of IHCs in these basins compared
to climate predictors alone. Indeed, at the 1 December initial-
ization in these basins, watershed information alone supports
r values of 0.43 (Libby) and 0.39 (Prineville) from BC-ESP,
and r values of 0.47 from Stat-IHC.

Forecast reliability can be critical to support risk-based
decision making in which actions may be tied to the fore-
cast distribution rather than the median. The reliability index
α (Fig. 10), which measures the closeness between the em-
pirical CDF of forecast p values with a theoretical CDF of
U [0,1] (Table 3) shows that – although (BC-)ESP forecast
correlation (Fig. 5) and skill (Fig. 8) generally increase dur-
ing the year, forecast reliability from the ESP methods de-
grades (i.e., toward lower α) as the initializations approach
1 April. For such lead times, the uncertainty in ESP stream-
flow forecasts is underestimated due to reliance on a sin-
gle modeled IHC that does not account for modeling errors
(Wood and Schaake, 2008), such that forecast spread derives
only from uncertainty represented by the ensemble of future
forcings. Because TWS is constrained by ESP spread, it can-
not provide substantial enhancements to poor late-season re-
liability indices obtained with (BC-)ESP.

In general, forecasts involving statistical calibration
(which helps to improve spread and bias) are most re-
liable. Indeed, regression-based forecasting methods (e.g.,
Stat-IHC, Stat-Ind, Stat-Ind-IHC) stand out in all basins, sug-
gesting that the ensemble generation approach used in this
paper (based on the standard error of the cross-validated
hindcasts) is capable of providing statistically consistent en-
sembles. Multi-model techniques appear to inherit this char-
acteristic, with only small discrepancies apparent between
them (green lines in Fig. 10). Similar inter-method differ-
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Figure 9. Time series with cross-validated hindcasts initialized on 1 December, obtained with two watershed-based methods (BC-ESP
and Stat-IHC) and two climate-based techniques (Stat-Ind and Stat-CFSR) for the five case study locations (a–e). The verification metrics
CRPSSclim and CRPSSesp denote continuous ranked probability skill scores using the mean climatology and raw ESP output as the reference,
respectively. Black dashed lines represent 10, 50, and 90 % flows from the observed climatology, and boxplots show the 10th, 30th, 50th,
70th, and 90th hindcast percentiles. The red line represents the observed flow volumes.
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Figure 10. The α reliability index for the hindcast ensembles at the
five case study locations. See text for further details.

ences across multiple initializations were found when look-
ing at the ε reliability index (not shown) defined by Renard
et al. (2010).

Although HESP was only found to be the “most reliable”
method in a limited number of cases (e.g., α = 0.95 at Dwor-
shak on 1 October; α= 0.96 at Libby on 1 April), relatively
high α values were consistently attained in all basins and
forecast lead times. This suggests – in conjunction with the
results shown in Figs. 5–8 – that HESP has strong poten-
tial for operational streamflow forecasting at all initializa-
tion dates, since it is capable of flexibly harnessing season-
ally varying sources of predictability. Figure 11 illustrates
this idea through time series of cross-validated ensemble
forecasts obtained with HESP for three initialization times
(1 October, 1 January, and 1 April). Forecasts issued on
1 October provide positive skill with respect to climatology
in Dworshak, Howard Hanson, and Hungry Horse, and al-
though CRPSS relative to ESP does not necessarily improve,
the associated correlation coefficients (0.42, 0.37, and 0.47,
respectively) are a clear enhancement over negative r values
obtained from IHC-based methods. The lower probabilistic
skill and near-zero correlation in Libby and Prineville re-
flect the lack of predictability from either the watershed or

climate conditions at such a long lead time. Higher values
of CRPSSclim for ensemble forecasts initialized on 1 Jan-
uary and 1 April reflect the increasing power of IHCs, while
smaller (and sometimes negative) CRPSSesp values in some
basins reflect the increasing difficulty to outperform ESP as
IHCs provide more forecast signal. Overall, HESP provides
positive skill with respect to mean climatology in all cases,
relatively high r values, and statistically consistent forecast
ensembles.

5.3 Wet/dry year forecasts

Summary statistics provide an overview of forecast perfor-
mance, but additional insights can be gained from explor-
ing extreme years in the record – in which forecasts can
have disproportionate value to help water managers negoti-
ate atypical challenges – and from visualizing the behavior of
the forecasting methods as individual seasons progress. We
therefore performed a retrospective comparison of all tech-
niques for two regionally wet (1997 and 2011) and dry (1987
and 2001) water years at Hungry Horse (Fig. 12), one of the
most teleconnected basins in our study domain. Figure 12
illustrates how SWE and SM, the primary sources of pre-
dictability for IHC-based methods, progressively gain influ-
ence on ensemble forecasts (e.g., HESP and TWS outputs)
as the beginning of the snowmelt season approaches (i.e.,
1 April). These single-year forecast evolution plots high-
light the contrast for late season (i.e., 1 February onwards)
between overconfident predictions exhibiting poor reliabil-
ity (e.g., ESP, BC-ESP, TWS), and underconfident forecasts
(e.g., EWE and RWE).

Figure 12a, b show that climate information is required to
reduce forecast errors in wet years at very long lead times
(i.e., 1 October and 1 November), either alone or combined
with watershed information through hybrid approaches. For
example, the technique that provided the smallest forecast
median error on 1 October 1997 was TWS. For shorter lead
times (i.e., forecasts initialized on 1 March or 1 April) and
WY 1997, the incorporation of IHCs helps to provide a better
match with observations compared to methods that only use
climate information. Interestingly, reanalysis fields at Hun-
gry Horse provide considerable predictive power for WY
2011 (Fig. 12b) at short lead times (e.g., Stat-CFSR provides
a forecast median error of 2.7 % on 1 March).

In the two dry years, Fig. 12c illustrates that climate pre-
dictors alone had considerable predictive power at long lead
times (i.e., 1 October and 1 November) in WY 1987. How-
ever, this was not the case for WY 2001 (Fig. 12d), when the
method providing smallest forecast median volume errors at
all initialization times (i.e., either BC-ESP or TWS) always
required knowledge on watershed moisture conditions. This
was also the case for other pilot study basins (not shown).

The above results suggest that despite the value of large-
scale climate information for this study domain, enhanced
hydrologic predictability is critical for accurate streamflow
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Figure 11. Time series with cross-validated hindcasts obtained with the HESP approach, initialized on (left) 1 October, (center) 1 January,
and (right) 1 April. Results are displayed for the five case study locations: (a) Dworshak Reservoir inflow (DWRI1), (b) Howard Hanson
reservoir inflow (HHDW1), (c) Hungry Horse reservoir inflow (HHWM8), (d) Libby dam inflow (LYDM8), and (e) Prineville reservoir
inflows (PRVO). Black dashed lines represent 10, 50, and 90 % flows from the observed climatology, and boxplots show the 10th, 30th, 50th,
70th, and 90th hindcast percentiles. The red line represents the observed flow volumes.

volumes in snowmelt-dominated regions under extreme cli-
matic conditions, especially during dry years. Past and ongo-
ing efforts that aimed to improve basin-scale meteorological
forcing datasets, pursue realistic process representations in
hydrologic models, advance parameter calibration, and im-
prove DA techniques for better IHC estimates have built a
robust platform to accelerate progress in this area. However,
a long-term retrospective implementation (that is consistent
with the real-time deployment) of these various modeling de-
cisions and sources of information is critical to understand
their performance and benchmark methodological choices.

6 Conclusions

Generating accurate water supply forecasts is an ongoing
challenge for improving water resources operations and plan-

ning. Despite substantial work on seasonal streamflow fore-
casting methods applied worldwide, the marginal value of
increased complexity and combining different sources of in-
formation via different strategies has not been systematically
assessed. In this paper, we compare a range of techniques
that leverage predictability from watershed hydrologic con-
ditions and/or large-scale climate information. The forecast
intercomparison showed that hybrid techniques that lever-
age hindcasts to combine both sources of predictability could
lead to improved skill compared to current operational ap-
proaches. Additional key findings that may be relevant be-
yond the study domain – due to the inclusion of both tele-
connected and non-teleconnected basins – are as follows:

– In basins showing strong teleconnections between
large-scale climate and local meteorology, the use of
large-scale climate information can be an effective strat-
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Figure 12. April–July water supply forecasts obtained at the Hun-
gry Horse reservoir (HHWM8) with different methods for two wet
years – (a) 1997 and (b) 2011 – and two dry years – (c) 1987
and (d) 2001. The red dashed line represents the observed flow,
while black dashed lines represent 10, 50, and 90 % flows from ob-
served climatology, and boxplots show the 10th, 30th, 50th, 70th,
and 90th hindcast percentiles.

egy for improving seasonal streamflow predictability,
potentially providing skillful forecasts at times when
watershed predictability is limited.

– Standard climate indices provide useful information,
and custom climate predictors from reanalyses were
also an effective complementary strategy for extracting
the signal from climate fields (e.g., SST and geopoten-
tial height).

– The relative importance of watershed IHC versus cli-
mate information to predict streamflow was found to
vary even within a small region, depending on subdo-
main catchment hydroclimatological characteristics.

– The ESP trace weighting method only provided promis-
ing results at forecast lead times where ESP raw fore-
casts contained moderate skill, indicating that climate

information cannot adequately shift the prior ESP fore-
cast if it lacks forecast resolution or contains significant
bias.

– Increasing methodological complexity does not nec-
essarily translate into better ensemble forecast quality
(e.g., Stat-IHC versus BC-ESP; EWE versus BMA), in
part because the small sample sizes associated with sea-
sonal hindcasts preclude reliable parameter estimation
for more elaborate methods. There can be a trade-off be-
tween improving one forecast characteristic (e.g., bias)
and degrading another (e.g., correlation skill).

– Cross validation is an essential part of seasonal forecast
development and implementation, particularly where
multiple predictions may be combined based on their
purported relative strengths and predictive uncertainty
must be accurately estimated. In the small-sample con-
text of seasonal streamflow prediction, cross validation
reveals significant limitations in the supportable com-
plexity of statistical forecasting elements.

The often equivocal comparison of methods through multiple
verification metrics (e.g., correlation, reliability) for individ-
ual wet and dry years, and for different basins, starkly illus-
trated the challenge of selecting a single method that will pro-
vide optimal results for all forecast initialization dates. There
is a significant tension between optimizing forecast qualities
through a mixture of methods and data sources that vary sea-
sonally and across basins, and an oft-stated preference from
forecasters and users for a consistent forecasting methodol-
ogy. With this in mind, we developed HESP as a flexible
data-driven framework to harness skill across varying pre-
dictability regimes, although it admittedly departs from the
constraint of predictor uniformity.

A notable omission from this intercomparison study is the
derivation of climate predictors from global climate model
forecasts, a strategy that has also been pursued in this con-
text (e.g., see Crochemore et al. 2016). The experiment sum-
marized here did assess the skill of CFSv2 9-month cli-
mate forecasts at an earlier stage, but such evaluation has
been excluded from this paper because the results did not
show significantly higher skill from the CFSv2 forecasts than
the CFSR-based empirical predictions, as is consistent with
prior skill assessments (e.g., Yuan et al., 2011). Nonethe-
less, the topic of augmenting hydrologic predictability from
dynamical climate forecasts remains an appealing area for
future study and comparison, as does the potential for in-
cluding IHC data assimilation to enhance watershed model-
based predictability (e.g., DeChant and Moradkhani, 2011;
Huang et al., 2017). Future work can also explore alternative
methodological choices such as multiple hydrological mod-
els, different climate datasets, or smaller details such as alter-
native variable transformations in statistical approaches (e.g.,
Wang et al., 2012).
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Finally, this work is part of a larger project that explores
the potential of an automated (i.e., “over-the-loop”) forecast-
ing workflow as a viable strategy for operational stream-
flow prediction that can open the door to potential scientific
and technical advances in streamflow forecasting (Pagano et
al., 2016). In this context, a critical lesson is that the entire
study, in particular the assessment of approach alternatives,
depends on the automation of the forecast workflow to enable
the generation of hindcasts that are consistent with real-time
forecasts. Demonstrating that such over-the-loop methods –
all of which were implemented in real time by the authors
during the study period (2015–2017) – can yield credible pre-
dictions should be regarded as a strong argument for explor-
ing this objective paradigm in real-world operational agency
settings.

Data availability. Daily streamflow data used in this study can be
obtained from the Bonneville Power Administration (https://www.
bpa.gov/power/streamflow/default.aspx, BPA, 2011), the USBR
Hydromet historical data access system (https://www.usbr.gov/
pn/hydromet/arcread.html), and the USACE Norwestern Division
Data Query System 2.0 (http://www.nwd-wc.usace.army.mil/dd/
common/dataquery/www/). Daily precipitation and temperature
observations used for hydrologic model simulations can be ob-
tained from the Global Historical Climatology Network at http:
//doi.org/10.7289/V5D21VHZ. All climate indices are freely avail-
able from the NOAA Earth Systems Research Laboratory website
(https://www.esrl.noaa.gov/psd/data/climateindices/list/) except for
PDO, which can be obtained from the website http://research.
jisao.washington.edu/pdo/PDO.latest. Monthly Climate Forecast
System (CFS) datasets (CFSR and CFSv2) used to develop
custom predictors can be obtained from the NOAA Data Ac-
cess System (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/climate-forecast-system-version2-cfsv2).
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Appendix A: ESP trace weighting

The trace weighting scheme used here involves the following
steps (Werner et al., 2004):

1. Compute a vector D of distances between the vector
with climate predictors for the target water year (xt),
and the vectors with predictors for the training period
(xi):

D = (d1,d2, . . .,dn) (A1)
di = ‖xt− xi‖ . (A2)

2. Sort the vector D from lowest to highest:

D̃ =
(
d(1),d(2), . . .,d(n)

)
,d(1) ≤ d(2) ≤ . . .≤ d(n). (A3)

3. Compute weights using the following equation:

wi =

[
1−

d(i)

d(k)

]λ
,d(i) ≤ d(t) (A4)

wi = d(i) > d(t) (A5)

k = NINT
(n
α

)
, (A6)

where λ is a distance-sensitive weighting parameter, α
is a parameter that influences the k nearest neighbors
used, and NINT refers to the nearest integer operator.
In this paper, we set λ= 2 and α = 1 after conducting
several experiments (not shown).

4. Normalize weights and construct a cumulative distribu-
tion function (CDF) based on these values and the ESP
hindcast.

5. Resample from the CDF obtained in step 4 using 500
uniform random numbers.

Appendix B: BMA and QMA

The principle of BMA (Raftery et al., 2005) is that given an
ensemble forecast with M members, each ensemble member
fi (i = 1,2, . . .,M) is associated with a conditional probabil-
ity density function (PDF) hi(y|fi), which can be interpreted
as the PDF of the variable y given fi . Thus, the BMA pre-
dictive model is

p(y|f1, . . .,fM)=

M∑
i=1

wihi(y|fi), (B1)

where the BMA weight wi is the posterior probability of
forecast i and is obtained based on its relative performance
during the training period. Therefore, the weights wi values

are non-negative and add up to 1, i.e.,
M∑
i=1
wi = 1 (Raftery et

al., 2005).
In this paper, the weights for the two models (best

climate-based and best watershed-based models) are es-
timated by maximum likelihood, assuming that the con-
ditional PDFs of log(Q) are approximated by a nor-
mal distribution. The likelihood is maximized using
the expectation-maximization (EM) algorithm (Dempster
et al., 1977) which is implemented in the R pack-
age ensembleBMA (https://cran.r-project.org/web/packages/
ensembleBMA/ensembleBMA.pdf) at the public domain sta-
tistical software R (http://www.rproject.org/). Prior informa-
tion (i.e., initial weights) is provided by weights computed
as RMSE−1. Finally, the BMA forecast ensemble is obtained
by sampling a fraction of members from each model equal to
the weight wi .

The quantile model averaging (QMA) forecast values are
obtained from the weighted average of forecast quantiles
from all models. Schepen and Wang (2015) recently found
that nearly identical skill results can be obtained with BMA
and QMA, and that very similar performance can be achieved
either by calibrating QMA weights or by using BMA weights
within a QMA framework. Therefore, we obtain the QMA
forecast using the same weights obtained from the BMA cal-
ibration by sorting the ensemble members from the best cli-
mate and best watershed forecast approaches, and computing
the weighted average of equally ranked ensemble members
from the two sources.
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