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Replies to Referee #1 
 

“An intercomparison of approaches for improving predictability in operational seasonal 
streamflow forecasting” 

 
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart 

Nijssen, Levi D. Brekke, and Jeffrey R. Arnold 
 
We thank this reviewer for his time in commenting on our paper. We provide responses to each 
individual point below. For clarity, comments are given in italics, and our responses are given in 
plain text. 
 
This is an interesting and well written comprehensive evaluation of over a dozen statistical, 
dynamical and hybrid seasonal streamflow forecasting techniques. The evaluation is done for about 
20 years of 5 reservoirs in mostly snow-dominated climates of the Pacific Northwest US. My 
suggestions for changes are minor at best, with detailed comments below.  
 
We are very pleased that this reviewer appreciates the contributions of this study. 
 
Title: I don’t think "predictability" is the right word for the title. It implies something that’s 
immutable and intrinsic, in the sense of theoretical maximum predictability, which is not something 
that could be "improved". Predictive skill of certain techniques or a forecasting enterprise can be 
improved, however.  
 
The reviewer makes a good point. To avoid confusion on the concept of “predictability”, we have 
modified the title to “An intercomparison of approaches for improving operational seasonal 
streamflow forecasts”. 
 
Line 57 "current operational practice in the US still takes little to no advantage of largescale 
climate information for realtime seasonal streamflow forecasting" and later line 64-65 "these 
[operational] approaches rely solely on the predictability of [initial hydrologic conditions] and do 
not leverage any type of large-scale current or future climate information". From my experience as 
a forecaster, there were only very limited locations and leadtimes where the climate information 
provided substantial benefits. Things like El Nino indices were used in pacific northwest and 
southwest US for early (i.e. January) and pre-season (i.e. October-December) forecasts. I think it’s 
strong to say that there was no use at all of climate information. 
 
We have modified the text to reflect the reviewer’s experience on this topic, though in truth the vast 
majority of statistical forecasting locations in the western US do not use climate indices to our 
knowledge – even in the Pacific Northwest (PNW).  The paragraph now reads: 
 
"Despite generally promising findings from this body of work and from a number of agency 
development efforts (Weber et al. 2012; Demargne et al. 2014), the use of large-scale climate 
information for real-time seasonal streamflow forecasting in the US remains rare. In the western 
United States, where snowmelt commonly dominates the annual cycle of runoff, official WSFs are 
produced via two main approaches: (i) statistical models leveraging in situ watershed moisture 
measurements such as snow water equivalent (SWE), accumulated precipitation and streamflow 
(Garen 1992; Pagano et al. 2004); and (ii) outputs from the National Weather Service (NWS) 
Ensemble Streamflow Prediction method (ESP; Day 1985), which is based on watershed modeling.  
For the overwhelming majority of forecast locations, these approaches rely solely on the 
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predictability from IHCs (measured or modelled). A small number of locations can be found, 
however, where climate indices also serve as predictors in the statistical framework, and the NWS 
has recently implemented techniques through which climate model forecasts may eventually be 
applied to ESP (Demargne et al. 2014).” 
 
Line 89 Following the list of statistical water supply forecasting techniques. It may be useful to 
include in that list http://onlinelibrary.wiley.com/doi/10.1111/j.1752- 1688.2009.00321.x/abstract 
because it also includes z-score regression and describes operational products. 
 
Certainly!  This was an oversight as we are aware of that work, thus we have included the 
aforementioned reference, following the reviewer´s suggestion. 
 
Line 172 The universal use of the log transform on all the predictands. Operationally, forecasters 
use linear, square root, cube root and log transform statistical models, with log being the most 
extreme. The use of log everywhere wouldn’t have been my first choice, and is probably responsible 
for "forecast blowouts" like 1993 in the Apr-1 / e panel on figure 11 (far lower right corner, only 
the lower whisker is visible on the chart). But since it’s applied the same everywhere, it means that 
the intercomparison is valid in a relative rather than absolute sense. You might reassure the reader 
that you tried other transforms and the results were insensitive.  
 
We regret that we did not try other transformations as we were focused on relative outcomes, 
though this would have been a reasonable thing to do. In truth, we did place a great deal of 
importance on the transformation when the work was done, though since then our interactions with 
CSIRO has opened our eyes to the variation in the effectiveness of different transformations 
(including, for instance, the log-sinh).  We do not have the bandwidth to go back and explore this 
issue, but for now we will highlight it for the readers based of the text of the comment. Hence, we 
have added the following sentences: 
 
“In practice, forecasters use a variety of transforms such as linear, square root, cube root, log and 
log-sinh (Wang et al. 2012).  We did not explore alternative transforms, using the log consistently 
throughout, but recognize that the choice of transform can affect the quality of the forecast.” 
 
Line 261 The use of stepwise approach to model building. I think what you’re describing here is the 
case where El Nino is predicting fall precipitation, and by the time January 1 comes around the 
precipitation is "in the bank" and so continued use of El Nino as a seasonal streamflow predictor 
after January 1 is redundant, if the equation also includes IHC variables. This was a common 
operational challenge in the US and a frustration to forecasters.  
 
The reviewer correctly identifies the motivation for the technique, in the sense that HESP intends to 
handle seasonally varying sources of predictability separately, applying the climate predictors only 
to the portion of the flow variation that has not already been explained by the IHCs, if possible. If 
the signal from watershed moisture conditions becomes strong and is redundant,  eclimate = Q - 
f(IHC) (i.e., the residual from that relationship) cannot be explained robustly by climate information 
and HESP just defaults to Stat-IHC.  
 
Line 379 I think you find that El Nino provides a small amount of predictability in October-
December and by 1 January comes, initial hydrologic conditions are comparable to El Nino skill, 
but then by 1 February and later, IHC are heavily dominant. This is consistent with 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.3158&rep=rep1&type=pdf 
https://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=5hdY14AAAAAJ&ci
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tation_for_view=5hdY14AAAAAJ:YsMSGLbcyi4C For many years 1 February was the start of the 
operational forecasting season and so there is little surprise that hydrologists were underwhelmed 
with what El Nino had to offer them. It wasn’t until leadtimes were pushed back to 1 January, and 
then back to 1 October that hydrologists became more operationally interested. 
 
Indeed, our skill plots (Figures 5 and 8) align with the findings by Pagano and Garen (2006) and 
other researchers as to this point, specifically with the progression of seasonal streamflow forecast 
skill provided in their Figure 1. We thank the reviewer for this observation about the original 
initialization dates in February, which is encouraging if it indicates a trend toward even earlier start 
times where the climate information is relatively more important.  We add the following sentence: 
 
“This progression of relative predictabilities from climate and watershed moisture conditions 
(Figures 5 and 8) is consistent with previous findings for the region (e.g., Pagano and Garen 
2006).” 
 
Line 410 On explanations of why ESP is under-dispersive- The common way of explaining this is 
that NWS-style ESP does not consider parameter, data or model uncertainty, only uncertainty of 
future forcings. 
 
This is a good point. Indeed, ESPs are particularly under-dispersive at late forecast initializations, 
when uncertainty in IHCs dominates the total streamflow forecast uncertainty (Wood and Schaake 
2008). We thank the reviewer for this observation, and have modified the text accordingly: 
 
“For such lead times, the uncertainty in ESP streamflow forecasts is underestimated due to reliance 
on a single modeled IHC that does not account for modeling errors (Wood and Schaake 2008), such 
that forecast spread derives only from uncertainty represented by the ensemble of future forcings.” 
 
Line 477 Generating custom climate indices beyond El Nino, creates useful information. I feel like 
this contradicts the statements on lines 383-385 where you say that this technique was the worst 
performer. 
 
The reviewer refers to a comparison between the three hybrid regression techniques (Stat-Ind-IHC, 
Stat-CFSR-IHC, and HESP) in terms of probabilistic skill. We did find that for some basins (e.g., 
Dworshak and Hungry Horse) Stat-CFSR provides higher skill than using custom climate indices 
(Stat-Ind), outperforming also benchmark techniques at early initializations. Nevertheless, our 
results also show that when custom-indices are used in combination with stronger predictors, 
attempting to explain smaller amounts of variance, they are not as robust as using standard climate 
indices. We add a sentence to help explain this context: 
 
“When used in combination with other, stronger predictors, the parameter estimation cost of the 
CFSR-PLSR relative to an off-the-shelf index may be more exposed (leading to greater shrinkage of 
skill after cross-validation).” 
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