Articles | Volume 20, issue 7
https://doi.org/10.5194/hess-20-2611-2016
https://doi.org/10.5194/hess-20-2611-2016
Research article
 | 
04 Jul 2016
Research article |  | 04 Jul 2016

Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds

Julie E. Shortridge, Seth D. Guikema, and Benjamin F. Zaitchik

Related authors

Quantifying the influence of coastal flood hazards on building habitability following Hurricane Irma
Benjamin Nelson-Mercer, Tessa Swanson, Seth Guikema, and Jeremy Bricker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2758,https://doi.org/10.5194/egusphere-2025-2758, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022,https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022,https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021,https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021,https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Mathematical applications
Enhancing Inverse Modeling in Groundwater Systems through Machine Learning: A Comprehensive Comparative Study
Junjun Chen, Zhenxue Dai, Shangxian Yin, Mingkun Zhang, and Mohamad Reza Soltanian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-315,https://doi.org/10.5194/hess-2024-315, 2024
Revised manuscript accepted for HESS
Short summary
Synthesis of historical reservoir operations from 1980 to 2020 for the evaluation of reservoir representation in large-scale hydrologic models
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 1071–1088, https://doi.org/10.5194/hess-28-1071-2024,https://doi.org/10.5194/hess-28-1071-2024, 2024
Short summary
A Bayesian model for quantifying errors in citizen science data: application to rainfall observations from Nepal
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023,https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
A novel objective function DYNO for automatic multivariable calibration of 3D lake models
Wei Xia, Taimoor Akhtar, and Christine A. Shoemaker
Hydrol. Earth Syst. Sci., 26, 3651–3671, https://doi.org/10.5194/hess-26-3651-2022,https://doi.org/10.5194/hess-26-3651-2022, 2022
Short summary
The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022,https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary

Cited articles

Abrahart, R. J. and See, L. M.: Neural network modelling of non-linear hydrological relationships, Hydrol. Earth Syst. Sci., 11, 1563–1579, https://doi.org/10.5194/hess-11-1563-2007, 2007.
Achenef, H., Tilahun, A., and Molla, B.: Tana Sub Basin Initial Scenarios and Indicators Development Report, Tana Sub Basin Organization, Bahir Dar, Ethiopia, 8–9, 2013.
Alemayehu, T., McCartney, M., and Kebede, S.: The water resource implications of planned development in the Lake Tana catchment, Ethiopia, Ecohydrol. Hydrobiol., 10, 211–221, https://doi.org/10.2478/v10104-011-0023-6, 2010.
Antar, M. A., Elassiouti, I., and Allam, M. N.: rainfall–runoff modelling using artificial neural networks technique: a Blue Nile catchment case study, Hydrol. Process., 20, 1201–1216, https://doi.org/10.1002/hyp.5932, 2006.
Aqil, M., Kita, I., Yano, A., and Nishiyama, S.: Neural Networks for Real Time Catchment Flow Modeling and Prediction, Water Resour. Manage., 21, 1781–1796, https://doi.org/10.1007/s11269-006-9127-y, 2007.
Download
Short summary
This paper compares six methods for data-driven rainfall–runoff simulation in terms of predictive accuracy, error structure, interpretability, and uncertainty. We demonstrate that autocorrelation in model errors can result in biased estimates of important values and show how certain model structures can be more easily interpreted to yield insights on physical watershed function. Finally, we explore how model structure can impact uncertainty in climate change sensitivity estimates.
Share