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Abstract. In the past decade, machine learning methods for
empirical rainfall–runoff modeling have seen extensive de-
velopment and been proposed as a useful complement to
physical hydrologic models, particularly in basins where
data to support process-based models are limited. However,
the majority of research has focused on a small number of
methods, such as artificial neural networks, despite the de-
velopment of multiple other approaches for non-parametric
regression in recent years. Furthermore, this work has of-
ten evaluated model performance based on predictive accu-
racy alone, while not considering broader objectives, such
as model interpretability and uncertainty, that are important
if such methods are to be used for planning and manage-
ment decisions. In this paper, we use multiple regression
and machine learning approaches (including generalized ad-
ditive models, multivariate adaptive regression splines, arti-
ficial neural networks, random forests, and M5 cubist mod-
els) to simulate monthly streamflow in five highly seasonal
rivers in the highlands of Ethiopia and compare their per-
formance in terms of predictive accuracy, error structure and
bias, model interpretability, and uncertainty when faced with
extreme climate conditions. While the relative predictive per-
formance of models differed across basins, data-driven ap-
proaches were able to achieve reduced errors when com-
pared to physical models developed for the region. Meth-
ods such as random forests and generalized additive models
may have advantages in terms of visualization and interpre-
tation of model structure, which can be useful in providing
insights into physical watershed function. However, the un-

certainty associated with model predictions under extreme
climate conditions should be carefully evaluated, since cer-
tain models (especially generalized additive models and mul-
tivariate adaptive regression splines) become highly variable
when faced with high temperatures.

1 Introduction

Hydrologists and water managers have made use of ob-
served relationships between rainfall and runoff to predict
streamflow ever since the creation of the rational method in
the 19th century (Beven, 2011). However, the development
of increasingly sophisticated machine learning techniques,
combined with rapid increases in computational ability, has
prompted extensive research into advanced methods for data-
driven streamflow prediction in the past decade. Artificial
neural networks (ANNs), regression trees, and support vector
machines have been shown to be powerful tools for predic-
tive modeling and exploratory data analysis, particularly in
systems that exhibit complex, non-linear behavior (Soloma-
tine and Ostfield, 2008; Abrahard and See, 2007).

While distributed physical models that accurately repre-
sent hydrologic processes can still be considered the gold
standard for rainfall–runoff modeling, empirical models can
be a useful tool in contexts where there are limited data on
physical watershed processes but long time series of precip-
itation and streamflow (Iorgulescu and Beven, 2004). The
development of historical data centers and more recent ef-
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forts to merge satellite data with in situ observations to mon-
itor climate and hydrology has made acceptable climate and
streamflow data more widely available in data-poor regions.
Because obtaining measurement-based estimates of soil hy-
draulic parameters or details on hydrologically relevant land
management activities can be more difficult, empirical mod-
els may be particularly useful in these locations.While many
criticize these approaches as “black boxes” with no rela-
tionship to underlying physical processes (See et al., 2007),
a number of studies have demonstrated how empirical ap-
proaches can be used to gain insights about physical sys-
tem function (e.g., Han et al., 2007; Galelli and Castelletti,
2013a). Additionally, improvements in interpretation and vi-
sualization methods can make complex models more easily
interpretable (Sudheer and Jain, 2004; Jain et al., 2004). Fi-
nally, data-driven models can be useful in identifying sit-
uations where observed data disagree with what would be
predicted based on conceptual models, and thus identify as-
sumptions regarding runoff generation processes that may be
incorrect (Beven, 2011).

While there have been some applications of alternative
machine learning methods, such as support vector machines
(Asefa et al., 2006; Lin et al., 2006) and regression-tree-
based approaches (Iorgulescu and Beven, 2004; Galelli and
Castelletti, 2013a) for streamflow simulation, the vast ma-
jority of research has focused on artificial neural networks
(Solomatine and Ostfield, 2008). While they have demon-
strated impressive predictive accuracy in a number of dif-
ferent contexts, excessive parameterization of ANNs can re-
sult in overfit models that are not generalizable to unseen
data (Iorgulescu and Beven, 2004; Gaume and Gosset, 2003).
While methods exist to avoid overfitting, such as cross vali-
dation and bootstrapping, these methods are not always em-
ployed (Solomatine and Ostfield, 2008). A review by Maier
et al. (2010) found that relatively few studies evaluated model
performance based on parameters such as Akaike informa-
tion criterion that would lead to parsimonious models that
are likely to be more generalizable and interpretable. This
can lead to complex models that only result in modest im-
provements (or no improvements at all) over much simpler
approaches (Gaume and Gosset, 2003; Han et al., 2007).

Even outside of a hydrology context, it has been argued
that ANNs are better suited for problems aimed at predic-
tion without any need for model interpretation, rather than
those where understanding the process generating predic-
tions and the role of input variables is important (Hastie et
al., 2009). Given the importance that this interpretation plays
in understanding the contexts in which a hydrologic model
is appropriate and reliable, the strong opinions surrounding
the use of ANNs for water resources management are per-
haps not surprising. To address this issue, a number of studies
have focused on highlighting the structure and mechanism by
which machine learning models make predictions to confirm
their physical realism and gain insight into physical water-
shed function. For example, some studies have demonstrated

how internal ANN structure corresponds to physical hydro-
logic processes (Wilby et al., 2003; Jain et al., 2004; Sudheer
and Jain, 2004), while others have shown how variable se-
lection and importance can be used to gain insights about
model structure and runoff generating processes (Galelli and
Castelletti, 2013a, b). While these studies demonstrate that a
number of methods exist for characterizing model structure,
they generally focus on a single model type and thus provide
little insight into the comparative ease with which different
model types can be interpreted.

While a number of comparison studies exist that apply
multiple empirical models to a given problem, finding gen-
eralizable insights from these studies is hindered because of
the limited number of models and data sets evaluated. Per-
haps the most comprehensive comparison to date is that of
Elshorbagy et al. (2010a, b), who compared six methods
for data-driven modeling of daily discharge in the Ourthe
river in Belgium. This work found that linear models were
able to perform comparably to much more complex meth-
ods when the data content of the models was limited, or
when system input–output behavior was close to linear. How-
ever, other studies have demonstrated the value of using more
complex approaches when modeling more complex rainfall–
runoff behavior (e.g., Abrahart and See, 2007; Asefa et al.,
2006). The differing results obtained across these studies in-
dicate that no single method is likely to be suitable for all
basins, timescales, or applications.

However, it is important to recognize that predictive ac-
curacy alone is not necessarily sufficient justification for ap-
plying a model to a given problem. Models should not only
be accurate but also be fit for purpose (Beven, 2011; Van
Griensven et al., 2012). For instance, accurate representation
of low return period flows is more important in a flood fore-
casting model than one aimed at predicting average amounts
of water available for withdrawal and human consumption.
Similarly, the ability to provide insights into physical water-
shed function may be more important in basins where land-
use change could alter the hydrologic regime, compared to
a basin that is heavily urbanized and expected to remain
so. The use of multiple objective functions in training data-
driven models can address this to some degree by identify-
ing models that provide sufficient balance between different
performance objectives, such as accurate representation of
different portions of the flow hydrograph (De Vos and Rient-
jes, 2008). However, more refined model training procedures
will not necessarily address other aspects of model perfor-
mance that make it suitable for planning purposes, such as
interpretability (Solomatine and Ostfield, 2008). More com-
prehensive consideration of model strengths and limitations
should be standard practice in model development and selec-
tion, rather than simply evaluating global error metrics.

In this work, we compare six methods for empirical
streamflow simulation (linear models, generalized additive
models, multivariate adaptive regression splines, random
forests, M5 model trees, and ANNs) in five rivers in the Lake
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Figure 1. Map of Lake Tana and surrounding rivers.

Tana basin in Ethiopia. This study region was selected as
it provides insights into the use of data-driven models for
streamflow simulation in tropical regions of the world that
are underrepresented in existing studies. For instance, a re-
view of 210 articles on water resource applications of ANNs
found that over three-quarters of the studies evaluated were
conducted in North America, Europe, Australia, or temperate
east Asia (Maier et al., 2010). Existing studies conducted in
tropical regions generally apply a single methodology to the
basin of interest and evaluate predictive accuracy alone (see,
for instance, Machado et al., 2011; Chibanga et al., 2003; An-
tar et al., 2006; Aqil et al., 2007), making it difficult to find
generalizable insights into the relative advantages of different
modeling approaches in these regions. Better development of
data-driven models for these regions has the potential to be
particularly valuable because data limitations and complex
hydrodynamic processes often hinder the use of physical wa-
tershed models, but relatively long time series of streamflow,
precipitation, and temperature may be available at a monthly
timescale. These data, combined with information on rele-
vant landscape change (in particular, the expansion of agri-
cultural land cover), can be leveraged to create reasonably
accurate empirical models.

Models are compared not only in terms of their predic-
tive accuracy but also in terms of model error structure and
the implications that this structure may have for water re-
source applications. Additionally, we evaluate the methods
by which model structure and predictor variable influence
can be evaluated to gain insights into physical system func-
tion for each model type. Finally, we assess the suitability of
using different model types for climate change impact assess-
ment by comparing model uncertainty in projections made

for increasingly extreme climate conditions. The overall ob-
jective of this research is not to identify a single best model,
but rather to highlight some of the strengths and limitations
of different approaches, as well as demonstrate important is-
sues that should be kept in mind for model comparisons in
the future.

2 Data and methods

2.1 Study area

Lake Tana is located at an elevation of approximately
1800 m in the highlands of northwest Ethiopia (Fig. 1). The
catchment draining to the lake encompasses approximately
12 000 km2, and the four main tributaries providing water
to the lake are the Gilgel Abbay (including its tributary,
the Koga River), Ribb, Gumara, and Megech rivers. Collec-
tively, these rivers account for 93 % of the inflow to the lake
(Alemayehu et al., 2010). A total of 90 % of rainfall in the
basin occurs during the wet season from May to October,
and there is significant interannual variability in precipita-
tion with annual rainfall levels ranging from below 1000 to
over 1800 mm (Achenef et al., 2013). Population growth and
expansion of agricultural and pastoral land use in the region
has resulted in substantial deforestation and land degrada-
tion, with agricultural, pastoral, and settled land cover com-
prising over 70 % of the basin’s surface area (Rientjes et al.,
2011; Garede and Minale, 2014; Gebrehiwot et al., 2010).
There is some evidence that this has impacted the hydrology
of the rivers draining into the lake (Gebrehiwot et al., 2010).
A summary of basin characteristics for the evaluation period
of 1960–2004 is presented in Table 1.
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Table 1. Study basin characteristics over the evaluation period of 1961–2004.

Basin Drainage Average Standard Coefficient Average Average monthly
area annual deviation of variation temp rainfall (mm)

above streamflow of annual of annual (◦C) May–Oct Nov–Apr
gauge at gauge streamflow streamflow
(km2) (MCM) (MCM)

Gilgel Abbay 2664 1883 217 0.12 15.7 206 39.3
Gumara 385 236 71 0.30 17.7 186 29
Koga 200 114 31 0.27 15.7 206 39.3
Megech 424 172 66 0.31 20.6 234 41.4
Ribb 677 210 83 0.36 18.2 263 45.8

Approximately 2.6 million people live in the basin, and are
largely settled in rural areas and reliant on rainfed subsis-
tence agriculture. This makes the region quite vulnerable to
climate variability and change, and a number of water re-
sources infrastructure projects are planned to better manage
this vulnerability and support economic development (Ale-
mayehu et al., 2010). This includes the recent construction
of the Tana–Beles hydropower transfer tunnel and the Koga
River irrigation reservoir, as well as five other reservoirs
planned for construction in the next 10–20 years (Alemayehu
et al., 2010). To better understand the potential implications
of this development, extensive effort has been put towards
developing rainfall–runoff models for the Lake Tana basin,
as well as other areas of the Ethiopian highlands with similar
characteristics (Van Griensven et al., 2012). Many of these
studies rely on Soil and Water Assessment Tool (SWAT)
models, although there are some that use water balance ap-
proaches (Van Griensven et al., 2012). While these mod-
els have in some cases demonstrated reasonably high accu-
racy, previous evaluations were largely based on the Nash–
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) which
can be a flawed performance metric in highly seasonal wa-
tersheds (Schaefli and Gupta, 2007; Legates and McCabe Jr.,
1999). More importantly, the limited data available for phys-
ical parameterization of these models required a heavy re-
liance on model calibration, which sometimes resulted in
parameterization schemes that are inconsistent with physi-
cal understanding of the region’s hydrology (Steenhuis et al.,
2009; Van Griensven et al., 2012). Furthermore, a number of
studies relied on empirical relationships, such as curve num-
bers and the Hargreaves equation, that were developed for
temperate regions (e.g., Mekonnen et al., 2009; Setegn et al.,
2009). While these limitations are likely to introduce con-
siderable uncertainty into model projections, particularly in
situations where climatic or environmental conditions differ
from those experienced in the calibration period, few studies
from this region of Ethiopia include any sort of uncertainty
analysis in model predictions. Empirical models could pro-
vide a useful complement to physical models developed for
the region by providing insights into physical system func-

tion and allowing for more comprehensive uncertainty anal-
ysis.

2.2 Data and model development

Models were developed using monthly streamflow, climate,
and land cover data for the period from 1961 to 2004, re-
sulting in 528 monthly observations. In each of the five
major rivers in the basin, we developed empirical mod-
els that estimated monthly streamflow as a function of cli-
mate conditions and agricultural land cover in each basin.
Monthly streamflow data were taken from historic stream
gauge records for each basin, as reported in feasibility stud-
ies developed for proposed irrigation projects (Alemayehu
et al., 2010). Historic data for monthly average temperature
and monthly total precipitation in each river basin were de-
rived from the University of East Anglia Climate Research
Unit (CRU) TS3.10 gridded meteorological fields (Harris et
al., 2014), which are based on meteorological station obser-
vations. Finally, to account for historic increases in agricul-
tural and pastoral land cover that have occurred in the basin,
the percentage of land cover used for any crop or grazing was
estimated from historic land cover analyses described by Ri-
entjes et al. (2011), Gebrehiwot et al. (2010), and Garede
and Minale (2014). These studies used historic aerial pho-
tos and satellite images to estimate land cover changes in
the Ribb, Gilgel Abbay, and Koga basins from the periods
of 1957 to 2011. The percentage of agricultural land cover
was interpolated for years when data were not available, and
the value of agricultural land cover in the two basins without
data was assumed to be equal to average agricultural land
cover in the basins with data. Land cover was assumed to
change on an annual basis, rather than a monthly basis. While
this approach is prone to errors that could stem from differing
rates of land use change through time and between basins, it
does provide a mechanism for capturing the long-term trend
of expanding agricultural land cover that has been observed
throughout the Ethiopian highlands when detailed land-cover
data are unavailable. Including these data improved out-of-
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sample predictive accuracy of the models, further suggesting
that it was a valuable addition.

Two general formulations for the empirical models were
evaluated. The first (referred to below as the standard model
formulation) was

log
(
Qb,t

)
=f

(
Pb,t ,Pb,t−1,Pb,t−2,Tb,t ,Tb,t−1,Tb,t−2,

AgLCb,t

)
+ εb,t , (1)

where Qb,t is the monthly streamflow in river b at time
period t ; Pb,t and Tb,t are the monthly total precipitation
and average temperature in river basin b at time period t ;
AgLCb,t is the total percentage of agricultural land cover in
basin b at time t ; and εb,t is the model error. The subscripts
t − 1 and t − 2 indicate lagged measurements from 1 and 2
months prior, and were included to roughly account for stor-
age times longer than 1 month that could impact streamflow
in each river. While the exact time of concentration is not
known in each basin, the minor influence of climate condi-
tions at 2 months prior suggests that climate conditions from
beyond this time period do not contribute significantly to
flow variability. The function f represents a general func-
tion that differed between the specific models assessed and
is discussed in more detail below. The logarithm of monthly
streamflow was used as a response variable to keep model
predictions positive. The distribution of streamflow data and
log-transformed streamflow values in each basin is shown in
Fig. S1 in the Supplement.

In the second formulation, streamflow and climate anoma-
lies were used as the response and predictor variables to bet-
ter account for the highly seasonal nature of streamflow and
precipitation in the region. Streamflow anomalies were cal-
culated for each observation by subtracting the long-term av-
erage streamflow for that month (m) from the observed value
and dividing this number by the long-term standard devia-
tion of that month’s streamflow as in Eq. (2). Anomaly val-
ues thus represent how streamflow in a given month com-
pares to the long-term average flow for that month; for in-
stance, an anomaly value of 1.0 for June of 1990 would in-
dicate that streamflow in that month was 1 standard devia-
tion higher than the average June flow from 1961 to 2004.
This procedure was repeated for precipitation and tempera-
ture, and these values were then used to fit models of the
form described in Eq. (3). In each month of the time series,
the model estimates the flow relative to the long-term aver-
age flow for that month, based on whether temperature and
precipitation values were greater or less than their long-term
averages, as well as the percentage of agricultural land cover
in that month of the time series. In this sense, the anomaly
values are calculated based on climatic and land cover condi-
tions that vary through time. These anomaly values are then
converted back to raw flow values based on the long-term
average and standard deviation of flow for that month. The
distribution of streamflow anomaly values in each basin are
shown in Fig. S1.

QAN
b,t =

Qb,t −Qb,m

sd (Q− b,m)
(2)

QAN
b,t =f

(
P AN

b,t ,P AN
b,t−1,P

AN
b,t−2,T

AN
b,t ,T AN

b,t−1,T
AN
b,t−2,

AgLCb,t

)
+ εb,t (3)

Six different types of models were compared using each for-
mulation in each basin:

1. A Gaussian linear regression model (GLM) using the
basic stats package in the R statistical computing soft-
ware (R Development Core Team, 2014)

2. Gaussian generalized additive model (GAMs) are semi-
parametric regression approaches where the response
variable is estimated as the sum of smoothing functions
applied over predictor variables. These functions allow
the model to capture non-linear relationships between
the predictor and response variables without a priori as-
sumptions about the form (e.g., quadratic, logarithmic)
of these functions, and are fit using penalized likelihood
maximization to prevent model overfitting (Hastie and
Tibshirani, 1990). GAMs were fit using the mgcv pack-
age in R (Wood, 2011).

3. Multivariate adaptive regression splines (MARS) are a
non-parametric regression approach where the response
variable is estimated as the sum of basis functions fit to
recursively partitioned segments of the data (Friedman,
1991). MARS models were fit using the earth package
in R (Milborrow, 2015).

4. ANNs are a non-parametric regression approach repre-
sented by a network of nodes and links that connects
predictor variables to the response variable. Each link
in the network represents a function that maps the input
nodes into the output node (Ripley, 1996). ANN mod-
els were fit using the nnet package in R (Venables and
Ripley, 2013).

5. Random forest (RFs) are a rule-based, non-parametric
regression approach where the model prediction is cre-
ated by averaging the predicted value from multiple
regression trees which are trained on separate boot-
strapped resamples of the data. Each tree is fit using a
small, randomly selected subset of predictor variables,
resulting in reduced correlation between trees (Breiman,
2001). Random forest models were fit using the ran-
domForest package in R (Liaw and Wiener, 2002).

6. M5 models are a rule-based, non-parametric regression
approach that fits a linear regression model to each ter-
minal node of a regression tree (Quinlan, 1992). M5
models were fit using the Cubist package in R (Kuhn
et al., 2014).
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Table 2. Model parameters evaluated through cross validation.

Model R package Parameters defined in model Parameters selected through
type formulation cross validation

GLM stats family=Gaussian not applicable

GAM mgcv family=Gaussian
method= generalized cross validation
variable selection= true
basis dimension k= 3
epsilon= 10−7

maxit= 200

MARS earth nk= 21 degree={1, 2, 3}
thresh= 0.001 nprune={5, 10, 15, 20, 25}
fast.k= 20
pmethod= backward

ANN nnet weights= 1 size={1, 2, 4, 8, 20}
rang= 0.7 decay={0.0, 0.1, 0.5, 1.0, 2.0}
maxit= 100
maxNWts= 1000
abstol= 10−4

reltol= 10−8

RF randomForest ntree= 500 mtry={2, 3, 4, 5, 6, 7}
sampsize= 528
nodesize= 5
nPerm= 1

M5 Cubist rules= 100 committees={10, 50, 100}
extrapolation= 100 neighbors={0, 5, 9}
sample= 0

7. A climatology model that simply predicted each
month’s streamflow as equivalent to the long-term av-
erage streamflow for that month was included for com-
parison purposes.

2.3 Model evaluation

When using non-parametric regression approaches, it is im-
portant to avoid overfitting a model to a given data set be-
cause this can result in large errors in out-of-sample predic-
tions (Hastie et al., 2009). To avoid model overfit, the caret
package in R (Kuhn, 2015) was used to determine model pa-
rameters for the MARS, ANN, RF, and M5 models. This
package uses resampling to evaluate the effect that model
parameters have on the model’s predictive performance and
chooses the set of parameters that minimizes out-of-sample
error (Kuhn, 2015). In this evaluation, 25 bootstrap resam-
ples of the training data set were generated for each parame-
ter value to be assessed. A model was fit using each bootstrap
sample and used to predict the remaining observations and
the parameter values that minimized average RMSE across
all resamples. Details on the specific parameters evaluated
for each model are presented in Table 2. While the develop-
ment of more complex structures is possible for some mod-

els, this process can result in overparameterization and poor
model performance (Gaume and Gosset, 2003; Han et al.,
2007). Additionally, the use of a standardized parameteriza-
tion procedure allows for a more even comparison between
different model types.

The predictive ability of each model was assessed using
50 random holdout cross-validation samples. In each sam-
ple, a random selection of years were chosen, and obser-
vations from these years were removed (held out) from the
data set. The size of the held-out sample ranged from 1 to
9 years. Each model was then fit to the remaining portion of
the data, using the caret package described above to deter-
mine model parameters for the MARS, ANN, RF, and M5
models. These models were then used to predict streamflow
for the held-out portion of the data, and both the mean abso-
lute error (MAE) and NSE were calculated after transform-
ing model predictions after back to the original streamflow
units. Mean MAE and NSE were calculated for each model
across the 50 cross-validation samples and used to choose
the model with the highest predictive accuracy in each basin.
This cross-validation procedure provides a mechanism for
evaluating how well a model will generalize to an unseen set
of data while avoiding some of the problems that can arise
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from the use of a single calibration and validation data set
(Elshorbagy et al., 2010a; Han et al., 2007).

MAE was included as an error metric because it pro-
vides a simple and easily interpretable measure of error on
the same scale as observed flow volumes. While NSE val-
ues are acknowledged to be a flawed performance metric in
highly seasonal watersheds where seasonal fluctuations con-
tribute to a substantial portion of flow variability (Schaefli
and Gupta, 2007; Legates and McCabe Jr., 1999), this met-
ric was included to provide a rough comparison of how em-
pirical model performance compared to the performance of
physical models developed for the region. The use of alter-
native error metrics has been discussed extensively in the lit-
erature (for instance, Pushpalatha et al., 2012; Mathevet et
al., 2006; Criss and Winston, 2008), and could provide addi-
tional insights into what contributes to predictive capabilities
of different model formulations. However, this work exam-
ined predictive accuracy based on MAE and NSE alone to
allow for greater focus on how models differ in terms of er-
ror structure and uncertainty.

As a rough point of comparison for the statistical mod-
els developed in this research, we also evaluated discharge
estimates derived from a process-based hydrological model.
The model used in this application is the Noah Land Sur-
face Model version 3.2 (Noah LSM; Ek et al., 2003; Chen
et al., 1996). Noah LSM was implemented for offline sim-
ulations of the Lake Tana basin at a gridded spatial resolu-
tion of 5 km for the period 1979–2010 using a time step of
30 min. Meteorological forcing was drawn from the Prince-
ton 50-year reanalysis data set (Sheffield et al., 2006), down-
scaled to account for Ethiopia’s steep terrain using MicroMet
elevation correction equations (Liston and Elder, 2006). The
Princeton reanalysis was selected because it provides rel-
atively high-resolution meteorological fields, including all
variables required to run a water and energy balance LSM
like Noah, for the period 1948–present. While higher res-
olution and possibly higher quality data sets are available
for recent years, this longer data set was utilized to compare
the process-based model to statistical models developed for
a long historical period. Soil parameters for the Noah simu-
lation were drawn from the FAO global soil database, land
use was defined according to the United States Geological
Survey (USGS) global 1 km land cover product, and vege-
tation fraction was derived from MODerate Imaging Spec-
troradiometer (MODIS) imagery. Land cover was treated as
a static parameter over the full length of the simulation, as
spatially complete estimates of historical land use were not
available at the required resolution and specificity.

The highest performing model in each basin based on
MAE was retained for more detailed evaluation of model
error structure, covariate influence, and uncertainty in cli-
mate change sensitivity analysis. To generate a complete time
series of out-of-sample model predictions for error analy-
sis, the holdout cross-validation procedure was repeated for
the highest performing standard-formulation and anomaly-

formulation models for each basin, but this time holding out
a single year of observations in each iteration. The predic-
tions from this cross validation were used to evaluate how
model error structure might impact model predictions used
for water resource applications. The influence of different
predictor variables on model predictions was also assessed
for the highest performing model in each basin after being
fit to the complete data set. Each predictor variable was as-
sessed using metrics for covariate importance and influence
that are unique to that model type, demonstrating how mod-
els could be used to gain physical insights about data-scarce
regions, and the mechanisms for generating these insights for
each type of model. Partial dependence plots (Hastie et al.,
2009) were also generated for each covariate for the high-
est performing model in each basin to provide insights about
how covariate influence compared across different basins and
model types.

Finally, two evaluations were conducted to assess uncer-
tainty in model projections of streamflow under increasingly
extreme climate conditions to better understand the impli-
cations of using different model formulations for climate
change impact studies. Model projections of streamflow in
different climate conditions are likely to be accompanied by
considerable uncertainty, particularly when climate condi-
tions exceed those experienced historically. To assess this un-
certainty, the best performing model in each basin was used
to generate streamflow predictions for (1) changes in tem-
perature from 0 to 5 ◦C, (2) changes in precipitation from
−30 to +30 %, (3) an increase in temperature to 5 ◦C com-
bined with a decrease in precipitation to −30 %, and (4) an
increase in temperature to 5 ◦C combined with an increase
in precipitation to +30 %. For each of the four assessments,
the models generated predictions for the 45-year historic cli-
mate record adjusted for a given degree of climate change
using the delta-change method (Gleick, 1986), while hold-
ing agricultural land cover constant at 60 %. In this method,
monthly temperature values are simply added to the tempera-
ture change value, and monthly precipitation values are mul-
tiplied by the precipitation change percentage. Model predic-
tions for the altered climate record were then used to calcu-
late the average annual streamflow in each river. This pro-
cess was repeated 100 times for models fit on random boot-
strap resamples of the historic data set to generate uncertainty
bounds surrounding model predictions and evaluated how the
uncertainty in these predictions increased as climate condi-
tions became more extreme. It is important to recognize that
these should not be interpreted as a prediction or assessment
of actual climate change impacts, but rather a measurement
of the sensitivity of modeled streamflow in the basin to dif-
ferent climate conditions. Since one of the key motivations
for using rainfall–runoff models is to understand how climate
change may impact water resources, it is important to under-
stand how model formulation contributes to this sensitivity
and uncertainty.
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Table 3. Cross-validation errors for each assessed model.

GLM GAM MARS RF M5 ANN Climatology Noah
LSM

Standard formulation

MAE

Gilgel Abbay 30.78 18.54 16.75 14.89 15.11 17.22 10.42 28.11
Gumara 4.29 3.41 3.28 2.67 2.96 3.15 2.57 3.95
Koga 1.50 1.30 1.38 1.20 1.17 1.23 1.06 1.97
Megech 4.45 2.64 2.83 2.37 2.53 3.04 2.54 4.09
Ribb 4.69 2.98 3.50 2.97 3.27 3.17 2.81 7.01

NSE

Gilgel Abbay −0.02 0.81 0.83 0.87 0.86 0.84 0.95 0.59
Gumara 0.04 0.51 0.61 0.80 0.66 0.70 0.81 0.48
Koga 0.45 0.71 0.65 0.76 0.77 0.76 0.83 0.25
Megech −1.85 0.63 0.46 0.73 0.65 0.52 0.71 0.41
Ribb −1.14 0.71 0.39 0.71 0.31 0.67 0.73 −0.75

Anomaly formulation

MAE

Gilgel Abbay 9.73 9.82 10.10 10.12 9.94 9.79 10.42 28.11
Gumara 2.22 2.25 2.43 2.23 2.16 2.22 2.57 3.95
Koga 1.03 1.06 1.08 1.09 1.05 1.05 1.06 1.97
Megech 2.49 2.48 2.63 2.66 2.69 2.50 2.54 4.09
Ribb 2.79 2.76 2.84 2.70 2.78 2.77 2.81 7.01

NSE

Gilgel Abbay 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.59
Gumara 0.85 0.85 0.82 0.85 0.86 0.86 0.81 0.48
Koga 0.83 0.82 0.81 0.81 0.82 0.82 0.83 0.25
Megech 0.73 0.72 0.65 0.66 0.61 0.72 0.71 0.41
Ribb 0.73 0.75 0.72 0.75 0.73 0.74 0.73 −0.75

3 Results

3.1 Model accuracy and error structure

Table 3 shows the out-of-sample cross-validation errors for
each model assessed in each basin. The random forest
model had the lowest mean absolute error for the standard-
formulation model in four of the five basins, with the
M5 model performing best for the Koga basin. These mod-
els outperformed the Noah LSM simulations in all basins
assessed. The Noah LSM errors are for a single period of
analysis and thus do not present an exact corollary to the
cross validation performed for the empirical models. Nev-
ertheless, the significant increases in errors associated with
the Noah LSM model demonstrates the difficulty associated
with the use of process-based models in the region, particu-
larly when relying on global data sets that may be unreliable
at the spatial and temporal resolutions required for physical
modeling. Physical models developed for monthly stream-
flow prediction in other basins within the Ethiopian high-
lands have reported NSE values ranging from 0.53 to 0.92
(Van Griensven et al., 2012), compared to values ranging
from 0.71 to 0.87 for the random forest models developed
here. If this measure alone was used for model evaluation,
these empirical models would generally be classified as hav-
ing good performance based on the guidelines suggested by

Moraisi et al. (2007). However, the climatology model out-
performs the best standard-formulation models in all basins
except Megech, indicating that in the majority of basins the
errors from the fitted empirical models are higher than those
that result from simply using the long-term monthly average
for each month’s prediction. This is due to the fact that sea-
sonality accounts for such a large portion of the variability in
monthly flow values, and demonstrates how high NSE values
can be quite easy to obtain in seasonal basins.

Evaluation of anomaly model errors indicates that the
models using this formulation achieve better predictive accu-
racy than those using the standard formulation, and are able
to outperform the climatology model based on both NSE and
MAE in all basins. However, the highest performing mod-
els in each basin vary more when the anomaly formulation
is used, with the GLM, GAM, random forest, and M5 mod-
els all minimizing MAE in different basins. In all basins ex-
cept Koga, the highest performing model significantly out-
performed the climatology model based on paired Wilcoxon
rank-sum tests (Bonferroni-corrected p value < 0.01).

Further exploration of model residuals indicates another
important advantage of using the anomaly model formu-
lation. In the standard model formulation, model residu-
als appear to be non-random. Example autocorrelation plots
are shown for the Gilgel Abbay and Ribb rivers in Fig. 2,
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Figure 2. Autocorrelation in model residuals for the Gilgel Abbay and Ribb rivers.

Figure 3. Example observed and predicted flows from the standard-formulation RF model and anomaly-formulation M5 model for the
Gumara River from 1985 to 1991.

and demonstrate that a positive autocorrelation exists at
the 12-month time lag. For brevity, only plots for two
rivers are shown, although this autocorrelation existed in the
standard-formulation models for all basins except Megech
(Table 4). This autocorrelation occurs because the standard-
formulation models consistently underestimate wet-season
streamflow while overestimating dry-season flows, as is ap-
parent in hydrographs of observed and predicted streamflow
(Fig. 3). Because wet-season flows contribute such a large
portion of the total annual flow volume, this results in reg-
ular underestimation of aggregate values such as mean an-
nual flow (Table 4). This autocorrelation is reduced in the
anomaly-formulation models, meaning that they are better
able to capture the peak flow volumes experienced in the
wet season and do not underestimate mean annual flow to
the same degree that the standard-formulation models do.

3.2 Model structure and covariate influence

Evaluating the relationship between predictor covariates and
streamflow response can lend insight into the physical pro-
cesses underlying runoff generation in each basin. There are
two components of this relationship that can be evaluated:
how much each covariate contributes to model accuracy (co-

variate importance), and the direction and nature of the re-
lationship between covariate values and model response (co-
variate influence). In many machine learning models, com-
plete description of the all of the mathematical relationships
within the model (for instance, through description of each
tree comprising a random forest model) is infeasible, requir-
ing the use of other mechanisms for understanding covari-
ate importance and influence. However, because each model
type is structured in a different way, these mechanisms differ.
This section first describes the mechanisms available for ob-
taining insights about covariate influence in each of the high-
est performing models. To provide a mechanism for compar-
ing results across different basins, each basin model is then
assessed using the general approach of partial dependence
plots.

In the Gilgel Abbay and Koga basins, the highest perform-
ing model was a simple linear regression model. These mod-
els can be evaluated by reviewing model coefficients and as-
sociated p values, as shown in Table 5. In a standard lin-
ear regression, model coefficients can be interpreted as the
mean change in the response variable that results from a unit
change in that covariate when all others are held constant.
These coefficients are for streamflow anomalies rather than
raw values, making their immediate interpretation less intu-
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Table 4. Residual autocorrelation factors at a 12-month lag for the highest performing standard-formulation and anomaly-formulation models
in each basin (with model type in parentheses), and resulting mean annual observed and predicted flow.

Autocorrelation factors Mean annual flow (MCM)

Standard Anomaly Observed Standard Anomaly

Gilgel 0.33 (RF) 0.11 (GLM) 22 925 20 703 22 958
Gumara 0.29 (RF) 0.07 (M5) 2870 2392 2734
Koga 0.04 (M5) 0.10 (GLM) 1383 1333 1386
Megech 0.05 (RF) 0.04 (GAM) 2035 1637 2028
Ribb 0.21 (RF) −0.01 (RF) 2575 1969 2615

itive. For instance, in the Gilgel Abbay model an increase of
1 standard deviation in precipitation results in an increase
of 0.22 SDs (standard deviations) in flow. The associated
p value for each coefficient evaluates a null hypothesis that
the true coefficient value is equal to 0 given the other covari-
ates in the model, and thus has no influence on the response
variable.

Evaluating model structure based on regression coeffi-
cients is appealing due to their simplicity and familiarity.
However, it is important to keep in mind that the above inter-
pretations rely on specific assumptions regarding model er-
ror distributions. Examination of fitted model residuals from
both basins indicates that errors are autocorrelated in the
Koga basin and not normally distributed due to the presence
of outliers in both basins. Non-normality and autocorrelation
both impact the t and f statistics used to test for the signif-
icance of model coefficients, and thus the p values for these
models are likely biased (Montgomery et al., 2012).

Interpretation of variable influence in GAMs is based
on the estimated degrees of freedom (EDF) a covariate’s
smoothing function s(Xi) uses within a model (Hastie and
Tibushini, 1986). An EDF value of 1 or below indicates a lin-
ear function relating the response variable to that covariate,
while values greater than 1 represent a non-linear smooth-
ing function. An EDF value of 0 indicates that the covariate
smoothing function is penalized to 0 (meaning it has no in-
fluence on model predictions). In the model for the Megech
River, the terms for lagged temperature at 1 and 2 months, as
well as precipitation lagged at 2 months were all smoothed
to 0. Of the remaining covariates, lagged precipitation has a
linear impact on model response, while precipitation, tem-
perature, and land cover have non-linear impacts. Smoothing
functions can be plotted to gain more insight about these re-
lationships (Fig. 4). The functions for precipitation anomaly,
lagged (1 month) precipitation anomaly, and agricultural land
cover show a positive relationships with streamflow, while
the function for temperature anomaly predicts low stream-
flow at both high and low anomalies.

P values test the null hypothesis that a covariate’s smooth-
ing function is equal to 0, but rest on the assumption that
model residuals are homoscedastic and independent (Wood,
2012). Similar to the linear models, residuals in the Megech

Figure 4. Plots of the smoothing functions used in the Megech
River GAM. Hash marks along the x axis indicate observation val-
ues of each covariate.

GAM model appear to be both autocorrelated and het-
eroscedastic, meaning that a formal statistical interpreta-
tion of this value may be inappropriate and that confidence
bounds around smoothing functions might be misleading.

The M5 cubist model fit for the Gumara basin is an en-
semble of 100 small M5 regression trees. In each tree, the
model splits observations based on logical rules related to
one or more covariates, and fits a linear regression model to
each set of observations. The final model prediction is the
average across all of the individual trees. Using this sort of
ensemble approach can reduce model variance and improve
accuracy if the individual trees are unbiased, uncorrelated
predictors (Breiman, 1996). This can be useful in avoiding
models that are overfit to the data, but can reduce model in-
terpretability since direct visualization of model structure be-
comes impractical as the number of trees increases. However,
the frequency with which individual covariates are used as
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Table 5. Covariate importance measurements from each basin’s model.

Model type Linear model Generalized M5 model tree Random
additive model forest

Measure of Linear regression coefficients Estimated Covariate usage in Increase in
influence and associated p values degrees of tree rules and model MSE when

freedom (EDF) coefficients covariate is
and associated randomly

p values permuted

Basin Gilgel Abbay Koga Megech Gumara Ribb

covariate Coefficient P value Coefficient p value EDF P value Tree Model Percent
estimate estimate rules coefficients increase

in MSE

Prec 0.22 < 0.01 0.24 < 0.01 1.346 < 0.01 5 % 58 % 7.71 %
Prec (lag 1) 0.10 0.03 0.16 < 0.01 0.624 0.08 0 % 19 % 2.79 %
Prec (lag 2) 0.01 0.74 0.05 0.26 0 0.29 0 % 0 % 1.10 %
Temp −0.09 0.08 −0.07 0.17 1.023 0.07 0 % 47 % 12.74 %
Temp (lag 1) −0.04 0.49 −0.06 0.22 0 0.32 0 % 46 % 4.97 %
Temp (lag 2) −0.01 0.81 −0.09 0.08 0 0.56 0 % 0 % 8.16 %
Agr. LC 0.00 0.33 0.02 0.01 1.986 < 0.01 86 % 73 % 15.21 %

splitting points within trees and as regression coefficients can
provide some insights about covariate importance (Table 5;
note that because multiple covariates can be used for rules
and linear models, these do not necessarily add to 100 %).
Model rules were largely based on land cover, with some
rules based on precipitation. These two covariates were also
used most frequently in linear regressions at model nodes,
followed by temperature (current and 1-month lag) and 1-
month lagged precipitation. Notably, climate data from 2-
month lagged precipitation were not used at all. While this
can be useful in identifying which covariates have the largest
impact on model predictions, it does not provide any infor-
mation regarding the nature or direction of that influence.

Similarly, the random forest model developed for the Ribb
basin is an ensemble of regression trees in which the final
model prediction is the average of the predictions from each
individual tree. However, random forests use standard regres-
sion trees that do not incorporate linear regression models at
terminal nodes. Variable importance within the final model
is measured by recording the increase in out-of-sample MSE
that results when a covariate is randomly permuted for each
tree in the ensemble. This increase in error is then aver-
aged across all trees in the ensemble. In our model, the
largest increases in error resulted from permutation of land
cover and temperature, followed by 2-month lagged temper-
ature and precipitation. Covariate influence can be evaluated
through the use of partial dependence plots, which measure
the change in model predictions that result from changing
the value of one parameter while leaving all other covariates
constant (Hastie et al., 2009). Partial dependence plots indi-
cate that model predictions of streamflow are higher when
the percent of agricultural land cover is greater than approxi-

Figure 5. Partial dependence plots for the Ribb River random forest
model. Hash marks along the x axis show covariate sample decile
values.

mately 75 %, when temperature anomalies are low, and when
precipitation anomalies are high (Fig. 5). However, it appears
that the plot for lagged temperature might be sensitive to out-
liers at high temperature anomalies as evidenced by the large
increase that occurs above an anomaly of +2, in a region
where very few data points are present.

Many of the measures used to evaluate covariate impor-
tance and influence are model specific, making inter-basin
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Figure 6. Partial dependence plots for climate covariates in the
highest performing model in each basin. Model type is indicated
in parentheses.

and inter-model comparisons difficult. However, the partial
dependence plots used in the randomForest R package can be
developed for any model and provide a mechanism for com-
paring the influence that covariates have in the different mod-
els and basins (Shortridge et al., 2015). Partial dependence
plots were generated for each basin’s best performing model
and results are shown for climatic variables in Fig. 6. As ex-
pected, models generally respond positively to increases in
precipitation and negatively to increases in temperature, with
the greatest influence in the current month and decreasing
influence at 1 and 2 months prior. The influence of the cur-
rent month’s precipitation is linear in three of the five basins;
while this is constrained to be the case in the Gilgel Abbay
and Koga basins due to the use of a linear model, the lin-
ear response in Gumara is not required from the M5 model
structure. Interestingly, both Megech and Ribb demonstrate a
linear response to negative precipitation anomalies, but little
response to positive anomalies. Streamflow response to tem-

Figure 7. Partial dependence plot for agricultural land cover in the
highest performing model in each basin. Model type is listed in
parentheses for each basin. Dashed lines indicate values that exceed
historic levels of agricultural land cover experienced in that basin.

perature is strongest in the Gumara basin; interestingly, this
is the basin with the smallest response to precipitation.

The partial dependence plots for the percentage of the
basin classified as agricultural land cover indicate a positive
relationship between agricultural land cover and streamflow
in all basins except for the Gilgel Abbay (Fig. 7). This would
be expected if deforestation had contributed to a decrease in
evapotranspiration in the contributing watersheds. The exact
nature of this response differs across the different rivers, with
the relatively minor responses in Koga and Ribb, and much
stronger responses in the Gumara and Megech basins. How-
ever, this plot also demonstrates some of the limitations asso-
ciated with different model structures. The plot for Gumara
is highly erratic, indicating that the M5 model might be over-
fit to the training data set, despite the use of model averag-
ing to reduce model variance. Additionally, the GAM used in
the Megech basin was only trained on agricultural land cover
values up to 77 %; while this model may be accurately rep-
resenting the impact of land cover changes within this range,
extrapolating this relationship to higher values leads to pre-
dictions that may not be physically realistic.

3.3 Climate change sensitivity and uncertainty
assessment

Figure 8 shows the results of the climate change sensi-
tivity analysis for total flow from all five tributaries, with
dashed lines representing 95 % confidence intervals obtained
through 100 bootstrapped resamples of the data set. As would
be expected, increasing temperature independently of pre-
cipitation results in decreasing total flows while increasing
precipitation results in higher flows. However, the uncer-
tainty surrounding temperature sensitivity increases at higher
changes in temperature, while the uncertainty surrounding
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Figure 8. Projected changes in total streamflow (relative to current
long-term average) under changing climate conditions. The top two
panels show the sensitivity to changes in temperature and precipi-
tation when they are varied independently. The bottom panel shows
sensitivity to changing temperature in conjunction with decreasing
(left panel) and increasing (right panel) precipitation. Dashed lines
represent 95 % confidence bounds from bootstrap resampling.

precipitation sensitivity remains relatively constant, even at
extreme changes in annual precipitation. The bottom pan-
els of the figure show the sensitivity of total inflows to
concurrent changes in temperature and precipitation. Un-
surprisingly, decreasing precipitation combined with higher
temperatures results in greater decreases in total flow than
when temperature and precipitation are varied independently.
However, even if temperature increases are combined with
higher precipitation, total flows decline in the majority of
bootstrap resamples.

The uncertainty surrounding temperature sensitivity is a
key limitation to using data-driven approaches for climate
impact assessment. To better understand which models and
basins are contributing to this uncertainty, Fig. 9 shows how
the coefficient of variation (the standard deviation of pre-
dictions from all bootstrap samples divided by the mean of
these predictions) varies as a function of temperature change
in each basin. From this figure, it is apparent that the Megech
model is by far the largest contributor to model uncertainty;
however, it is not clear whether this contribution is due to
model structure (the GAM model used for the Megech River)
or characteristics associated with the basin itself. To investi-
gate how different model structures contributed to this uncer-
tainty, the bootstrap resampling procedure was used to assess

Figure 9. Changes in the coefficient of variation across bootstrap
resamples from the highest performing model in each basin (left
panel) and multiple models all applied to the Gumara basin (right
panel).

uncertainty in streamflow predictions in the Gumara River
from all model types. This basin was chosen because all
six models were able to outperform the climatology model,
and thus could be considered good choices for model selec-
tion based on predictive accuracy alone. The results indicate
that the increase in uncertainty is highest, and increases non-
linearly, in the GLM, GAM, and MARS models. Uncertainty
increases more slowly in the ANN and M5 models, and no
noticeable increase in uncertainty is apparent in the random
forest model.

4 Discussion

The objective of this study was not to identify the best
approach for empirical rainfall–runoff modeling, as this is
likely to be highly specific to the basin and problem to which
a model is applied. However, we hope that the compari-
son conducted here can highlight some of the strengths and
limitations of different approaches, as well as demonstrate
some important issues that should be kept in mind for model
comparisons in the future. One important finding was the
limitation with using NSE as an error metric. Our results
confirm previous studies that found that even uninformative
models able to capture basic seasonality are able to achieve
high NSE values (Legates and McCabe, 1999; Schaefli and
Gupta, 2007), and provide further evidence indicating that
high NSE values should be considered a necessary but not
sufficient requirement for model usage in planning situations.
For instance, the simple climatology model used for com-
parison purposes here is able to achieve high NSE values,
but would be unsuitable for planning since it does not ac-
count for any interannual variability nor the possibility for
non-stationary conditions caused by changing climate and
land cover. In particular, understanding error structure can
be valuable in evaluating whether model biases might un-
dermine the model’s suitability for management activities.
In our example, the autocorrelation present in the standard-
formulation models meant that these models were consis-
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tently underestimating wet-season flows, resulting in low es-
timates of the total annual flow in the rivers. Since multiple
reservoirs are planned for construction on these rivers to sup-
port irrigation activities, this bias could lead to poor estimates
of how much water is available for agricultural use in the
short term (i.e., seasonal forecasting) and long term (due to
climate change). Interestingly, difficulties in accurately cap-
turing high flows have been observed in physical hydrologic
models for Ethiopia (e.g., Setegne et al., 2011; Mekonnen et
al., 2009) and more generally (e.g., Wilby, 2005). The impli-
cations of this limitation should be carefully evaluated before
using models for water resource planning or (more impor-
tantly) flood risk evaluation.

Depending on the model type used, different mechanisms
are available to evaluate covariate importance and influence
within the model. This evaluation can be useful in confirm-
ing that the model is replicating relationships between input
and output variables in a reasonable manner. While the re-
lationships identified in this evaluation are fairly straightfor-
ward (for example, increasing runoff with higher precipita-
tion and lower temperatures), these simple relationships are
still important in highlighting the mechanisms by which the
models make predictions so that they are not “black boxes”.
For instance, Han et al. (2007) explore how ANN flood fore-
casting models respond to a double-unit input of rain, finding
that some formulations respond in a hydrologically meaning-
ful way to increased rainfall intensity, while others do not.
Similarly, Galelli and Castelletti (2013a) describe how input
variable importance can be used to highlight differences in
hydrologic processes between an urbanized and forested wa-
tershed. The easy manner in which covariate relationships
within the GAM and random forest models can be visualized
using a single command within their respective R packages
is a strong advantage to these approaches compared to meth-
ods such as M5 model trees and artificial neural networks.
Of course, partial dependence plots can be developed for any
model type (as was done in this research), but code must be
written by the user and thus requires a higher degree of effort
than is necessary for in-package functions. A downside to
most machine learning models is that they do not support the
statistical formalism in assessing variable importance that is
possible when linear models and GAMs are used. However,
this formalism often rests on assumptions regarding model
residuals that are unlikely to be met in many hydrologic mod-
els (Sorooshian and Dracup, 1980).

Within the Lake Tana basin, evaluation of covariate influ-
ence indicates that each basin’s model is performing in a
reasonable manner, with runoff increasing with higher pre-
cipitation levels and decreasing with higher temperatures.
The influence of precipitation and temperature is greatest
in the current month, and progressively declines to a very
small influence after 2 months. This suggests that long-term
(multi-month) storage does not significantly contribute to
variability in flow volumes. One interesting finding is the
non-linear relationship between concurrent month precipita-

tion and runoff that exists in the Megech and Ribb basins,
which suggests that above a certain point increasing rainfall
does not result in a commensurate increase in streamflow.
Other studies have noted the dampening effect that wetlands
and floodplains have had on river flows in the region (Dessie
et al., 2014; Gebrehiwot et al., 2010); this phenomenon could
explain the non-linear relationship identified in this work.
The clearly negative relationship between temperature and
runoff demonstrates the degree to which upstream evapotran-
spiration impacts streamflow and suggests that evapotranspi-
ration is largely energy-limited, rather than water-limited. In-
creasing agricultural land use appears to be associated with
higher runoff in all rivers except for Gilgel Abbay (where
no clear relationship between land cover and runoff was ob-
served), and suggests that agricultural expansion at the ex-
pense of forest cover has reduced the evaporative compo-
nent of the water balance in these basins. Finally, the rela-
tive performance of different model formulations themselves
can also be informative. For instance, the improved perfor-
mance of the anomaly-formulation models indicates that the
relationship between precipitation and runoff varies through-
out the year and could point towards differences in runoff-
generating mechanisms in the wet and dry seasons that have
been observed in other case studies (Wilby, 2005).

One limitation with data-driven approaches for streamflow
prediction is that the relationships they model can only gen-
erate reliable predictions for conditions that are comparable
to those experienced historically. Using these models to gen-
erate predictions for conditions that exceed historic variabil-
ity is likely to introduce considerable uncertainty into their
projections. Our results indicate that uncertainty in projec-
tions of streamflow under changing precipitation is relatively
constant, whereas uncertainty increases markedly in projec-
tions of streamflow under increasing temperature. This re-
sult is not surprising when one considers the basin’s climate,
which is characterized by highly variable rainfall but fairly
consistent temperatures (Table 6). A temperature increase of
3 ◦C equates to almost 2 standard deviations beyond the his-
toric mean, whereas a change in precipitation of 30 % is well
within the range of conditions experienced historically. One
would expect that in other climates (for example, temper-
ate watersheds with only minor changes in rainfall through-
out the year), this relationship could be reversed. Despite
the uncertainty that exists in projections of streamflow under
changing temperature, total annual flow appears to be quite
sensitive to increasing temperatures. In fact, the decreases in
streamflow due to increasing temperature appear likely to be
more than enough to counteract any increases in streamflow
resulting from higher precipitation that is projected for the
region in some global circulation models (GCMs). This is
consistent with the work of Setegne et al. (2011), who used
projections from multiple GCMs as input for a SWAT model
developed for the region and found that streamflow decreased
in the majority of emission scenarios and models, even when
precipitation increased. Unfortunately, this suggests that any
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Table 6. Mean and standard deviation values for temperature, wet-season rainfall, and dry-season rainfall in each basin.

Wet season Dry season
Temperature rainfall rainfall

(◦C) (mm month−1) (mm month−1)

Mean SD Mean SD Mean SD

Gilgel Abbay 15.7 1.54 206 145 39.3 56.5
Gumara 17.7 1.55 186 137 29.0 43.6
Koga 15.7 1.54 206 145 39.3 56.5
Megech 20.6 1.75 234 118 41.4 60.9
Ribb 18.2 1.61 263 115 45.8 57.0

hopes for a windfall of additional water to support agricul-
ture and hydropower in the region under climate change may
be unfounded.

Repeating the climate change sensitivity experiment with
multiple models fit to the Gumara watershed indicated that
the MARS, GAM, and linear models all result in the largest
increase in uncertainty at high temperatures. This indicates
that when models are fit to slightly different bootstrap resam-
ples of the historic data set, the projected changes in stream-
flow at high temperature changes can be highly erratic. This
is likely due to the fact that extrapolating the relationships
that are observed between historic temperature and stream-
flow to higher temperatures can lead to very large changes
in streamflow. Fitting the models to bootstrap resamples of
the data results in minor changes to these relationships that
can result in widely varying projections when the models
are used to predict streamflow at higher temperatures, par-
ticularly when these relationships are non-linear (as in the
GAM). At the other end of the spectrum, the random for-
est model exhibits almost no increase in uncertainty at high
temperatures, meaning that projections of streamflow at high
temperatures are consistent across the bootstrap resamples.
This is likely the result of the random forest model structure.
The predicted value for each terminal node of a regression
tree is the average of all observations that meet the condi-
tions described for that node. Thus, the model will not pre-
dict values beyond those experienced historically, even if co-
variate values exceed those contained within the historic data
set. Thus, this model is likely to underestimate the change in
streamflow that results from increasing temperatures.

5 Conclusions

In this work, we compared multiple methods for data-driven
rainfall–runoff modeling in their ability to simulate stream-
flow in five highly seasonal watersheds in the Ethiopian high-
lands. Despite the popularity of ANNs in research on stream-
flow prediction to date, ANNs were not found to be the most
accurate model in any of the five basins evaluated. Other
methods, in particular GAMs and random forests, are able to
capture non-linear relationships effectively and lend them-

selves to simpler visualization of model structure and co-
variate influence, making it easier to gain insights on phys-
ical watershed functions and confirm that the model is op-
erating in a reasonable manner. However, it is important to
carefully evaluate model structure and residuals, as these can
contribute to biased estimates of water availability and un-
certainty in estimating sensitivity to potential future changes
in climate. In particular, autocorrelation in model residuals
can result in underestimation of aggregate metrics such as
annual flow volumes, even in models with high NSE perfor-
mance. Uncertainty in GAM projections was found to rapidly
increase at high temperatures, whereas random forest projec-
tions may be underestimating the impact of high tempera-
tures on river flows. Thorough consideration of this uncer-
tainty and bias is important any time that models are used for
water planning and management, but especially crucial when
using such models to generate insights about future stream-
flow levels. By considering multiple model formulations and
carefully assessing their predictive accuracy, error structure,
and uncertainties, these methods can provide an empirical
assessment of watershed behavior and generate useful in-
sights for water management and planning. This makes them
a valuable complement to physical models, particularly in
data-scarce regions with little data available for model pa-
rameterization, and warrants additional research into their
development and application.

The Supplement related to this article is available online
at doi:10.5194/hess-20-2611-2016-supplement.
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