Articles | Volume 20, issue 7
https://doi.org/10.5194/hess-20-2611-2016
https://doi.org/10.5194/hess-20-2611-2016
Research article
 | 
04 Jul 2016
Research article |  | 04 Jul 2016

Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds

Julie E. Shortridge, Seth D. Guikema, and Benjamin F. Zaitchik

Viewed

Total article views: 6,109 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
3,010 2,906 193 6,109 306 138 138
  • HTML: 3,010
  • PDF: 2,906
  • XML: 193
  • Total: 6,109
  • Supplement: 306
  • BibTeX: 138
  • EndNote: 138
Views and downloads (calculated since 28 Oct 2015)
Created with Highstock 2.0.473546495657375922355364641404361701216171852242712228210213203HTML viewsPDF downloadsXML downloadsAug 2024Sep 2024Oct 2024Nov 2024Dec 2024Jan 2025Feb 2025Mar 2025Apr 20250100255075
Cumulative views and downloads (calculated since 28 Oct 2015)
Created with Highstock 2.0.45,5685,6225,6865,7815,8465,9195,9946,0866,1092,6612,6972,7432,7842,8242,8672,9282,9983,0102,7262,7432,7612,8132,8372,8642,8762,8982,906181182182184185188190190193HTML viewsPDF downloadsXML downloadsAug 2024Sep 2024Oct 2024Nov 2024Dec 2024Jan 2025Feb 2025Mar 2025Apr 20250k2k4k6k8k

Cited

Saved (preprint)

Latest update: 06 Apr 2025
Download
Short summary
This paper compares six methods for data-driven rainfall–runoff simulation in terms of...
Share