Articles | Volume 20, issue 6
https://doi.org/10.5194/hess-20-2267-2016
https://doi.org/10.5194/hess-20-2267-2016
Research article
 | 
14 Jun 2016
Research article |  | 14 Jun 2016

Dissolved oxygen prediction using a possibility theory based fuzzy neural network

Usman T. Khan and Caterina Valeo

Related authors

A diversity centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-169,https://doi.org/10.5194/hess-2024-169, 2024
Revised manuscript under review for HESS
Short summary
Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy
Everett Snieder, Karen Abogadil, and Usman T. Khan
Hydrol. Earth Syst. Sci., 25, 2543–2566, https://doi.org/10.5194/hess-25-2543-2021,https://doi.org/10.5194/hess-25-2543-2021, 2021
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Uncertainty analysis
Actionable human–water system modelling under uncertainty
Laura Gil-García, Nazaret M. Montilla-López, Carlos Gutiérrez-Martín, Ángel Sánchez-Daniel, Pablo Saiz-Santiago, Josué M. Polanco-Martínez, Julio Pindado, and Carlos Dionisio Pérez-Blanco
Hydrol. Earth Syst. Sci., 28, 4501–4520, https://doi.org/10.5194/hess-28-4501-2024,https://doi.org/10.5194/hess-28-4501-2024, 2024
Short summary
Robust multi-objective optimization under multiple uncertainties using the CM-ROPAR approach: case study of water resources allocation in the Huaihe River basin
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024,https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022,https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022,https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Disentangling sources of future uncertainties for water management in sub-Saharan river basins
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022,https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary

Cited articles

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Asaad Y. Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby, R. L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geogr., 36, 480–513, https://doi.org/10.1177/0309133312444943, 2012.
Adams, K. A., Barth, J. A., and Chan, F.: Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon, J. Geophys. Res.-Oceans, 118, 4839–4854, https://doi.org/10.1002/jgrc.20361, 2013.
AENV – Alberta Environment: Alberta water quality guideline for the protection of freshwater aquatic life: Dissolved oxygen, Catalogue #: ENV-0.94-OP, Standards and Guidelines Branch, Alberta Environment, Edmonton, Alberta, Canada, 42–56, 1997.
Alvisi, S. and Franchini, M.: Fuzzy neural networks for water level and discharge forecasting with uncertainty, Environ. Model. Softw., 26, 523–537, https://doi.org/10.1016/j.envsoft.2010.10.016, 2011.
Alvisi, S. and Franchini, M.: Grey neural networks for river stage forecasting with uncertainty, Phys. Chem. Earth, 42, 108–118, https://doi.org/10.1016/j.pce.2011.04.002, 2012.
Download
Short summary
This paper contains a new two-step method to construct fuzzy numbers using observational data. In addition an existing fuzzy neural network is modified to account for fuzzy number inputs. This is combined with possibility-theory based intervals to train the network. Furthermore, model output and a defuzzification technique is used to estimate the risk of low Dissolved Oxygen so that water resource managers can implement strategies to prevent the occurrence of low Dissolved Oxygen.