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Abstract. A new fuzzy neural network method to predict
minimum dissolved oxygen (DO) concentration in a highly
urbanised riverine environment (in Calgary, Canada) is pro-
posed. The method uses abiotic factors (non-living, physi-
cal and chemical attributes) as inputs to the model, since the
physical mechanisms governing DO in the river are largely
unknown. A new two-step method to construct fuzzy num-
bers using observations is proposed. Then an existing fuzzy
neural network is modified to account for fuzzy number in-
puts and also uses possibility theory based intervals to train
the network. Results demonstrate that the method is partic-
ularly well suited to predicting low DO events in the Bow
River. Model performance is compared with a fuzzy neural
network with crisp inputs, as well as with a traditional neural
network. Model output and a defuzzification technique are
used to estimate the risk of low DO so that water resource
managers can implement strategies to prevent the occurrence
of low DO.

1 Introduction

The City of Calgary is a major economic hub in western
Canada. With a rapidly growing population, currently esti-
mated in excess of 1 million, the city is undergoing expan-
sion and urbanisation to accommodate the changes. The Bow
River is a relatively small river that flows through the city and
provides approximately 60 % of the residents with potable
water (Khan and Valeo, 2015, 2016). In addition to this, wa-
ter is diverted from within the city for irrigation, is used as
a source for commercial and recreational fisheries, and is
the source of drinking water for communities downstream
of Calgary (Robinson et al., 2009; Bow River Basin Coun-

cil, 2015). This highlights the importance of the Bow River,
not just as a source of potable water, but also as a major eco-
nomic resource.

However, urbanisation has the potential to reduce the
health of the Bow River, which is fast approaching its as-
similative capacity and is one of the most regulated rivers in
Alberta (Bow River Basin Council, 2015). Three wastewater
treatment plants (shown in Fig. 1) and numerous stormwater
outfalls discharge their effluent into the river and are consid-
ered to be a major cause of water quality degradation in the
river (He et al., 2015). This highlights some of the major im-
pacts on the Bow River from the surrounding urban area. A
number of municipal and provincial programmes are in place
to reduce the loading of nutrients and sediments into the river
such as the Total Loadings Management Plan and the Bow
River Phosphorus Management Plan (Neupane et al., 2014)
as well as modelling efforts – namely the Bow River Water
Quality Model (Neupane et al., 2014; Golder Associates Ltd.,
2004) – to predict the impact of different water management
programmes on the water quality.

One of the major concerns is that low dissolved oxy-
gen (DO) concentration has occurred on a number of occa-
sions over the last decade in the Bow River within the city
limits. DO is an indicator of overall health of the aquatic
ecosystem (Dorfman and Jacoby, 1972; Hall, 1984; Cana-
dian Council of Ministers of the Environment, 1999; Kannel
et al., 2007; Khan and Valeo, 2014a, 2015), and low DO –
which can be caused by a number of different factors (Pogue
and Anderson, 1995; Hauer and Hill, 2007; He et al., 2011;
Wen et al., 2013) – can impact various organisms in the water
body. While the impact of long-term effects of low DO are
largely unknown, acute events can have devastating effects
on aquatic ecosystems (Adams et al., 2013). Thus, main-
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Figure 1. An aerial view of the City of Calgary, Canada, showing
the locations of (a) flow monitoring site Bow River at Calgary (Wa-
ter Survey of Canada ID: 05BH004), three wastewater treatment
plants at (b) Bonnybrook, (c) Fish Creek, and (d) Pine Creek, and
two water quality sampling sites, (e) Stier’s Ranch and (f) High-
wood.

taining a suitably high DO concentration, and water quality
in general, is of utmost importance to the City of Calgary
and downstream stakeholders, particularly as the city is be-
ing challenged to meet its water quality targets (Robinson et
al., 2009).

A number of recent studies have examined the DO in
the Bow River and the factors that impact its concentra-
tion. Iwanyshyn et al. (2008) found the diurnal variation
in DO and nutrient (nitrate and phosphate) concentration
were highly correlated, suggesting that biogeochemical pro-
cesses (photosynthesis and respiration of aquatic vegeta-
tion) had a dominant impact on nutrient concentration rather
than wastewater treatment effluent. Further, Robinson et
al. (2009) found that the DO fluctuations in the river were
primarily due to periphyton rather than macrophyte biogeo-
chemical processes. In both studies, the seasonality of DO,
nutrients, and biological concentration, and external factors
(e.g. flood events) were demonstrative of the complexity in
understanding river processes in an urban area, and that con-
sideration of various inputs, outputs and their interaction is
important to fully understand the system. He et al. (2011)
found that seasonal variations in DO in the Bow River could
be explained by a combination of abiotic factors (such as cli-
matic and hydrometric conditions), as well as by biotic fac-
tors. The study found that while photosynthesis and respi-
ration of biota are the main drivers of DO fluctuation, the

role of nutrients was ambiguous. Neupane et al. (2014) found
that organic materials and nutrients from point and non-point
sources influence DO concentration in the river. The like-
lihood of low DO was highest downstream of wastewater
treatment plants and that non-point sources have a significant
impact in the open-water season. Using a physically based
model, Neupane et al. (2014) predicted low DO concentra-
tion more frequently in the future in the Bow River owing
to higher phosphorus concentration in the water, as well as
climate change impacts.

A major issue of modelling DO in the Bow River is that
rapid urbanisation within the watershed has resulted in sub-
stantial changes to land-use characteristics, sediment and nu-
trient loads, and to other factors that govern DO. Major flood
events (like those in 2005 and 2013) completely alter the
aquatic ecosystem, while new wastewater treatment plants
(e.g. the Pine Creek wastewater treatment plant) added in re-
sponse to the growing population further increases the stress
downstream. These types of changes in a watershed increase
the complexity of the system: the interaction of numerous
factors over a relatively small area and across different tem-
poral scales means that DO trends and variability in urban
areas are more difficult to model and evaluating water qual-
ity in urban riverine environments is a difficult task (Hall,
1984; Niemczynowicz, 1999).

The implication of this is that the simplistic representation
described in conceptual, physically based models is not suit-
able for complex systems, i.e. where the underlying physical
mechanisms behind the factors that govern DO are still not
clearly understood, in a rapidly changing urban environment.
Physically based models require the parameterisation of sev-
eral different variables which may be unavailable, expensive
and time consuming (Antanasijević et al., 2014; Wen et al.,
2013; Khan et al., 2013). In addition to this, the increase in
complexity in an urban system proportionally increases the
uncertainty in the system. This uncertainty can arise as a re-
sult of vaguely known relationships among all the factors
that influence DO, in addition to the inherent randomness
in the system (Deng et al., 2011). The rapid changes in an
urban area render the system dynamic as opposed to station-
ary, which is what is typically assumed for many probability
based uncertainty quantification methods. Thus, not only is
DO prediction difficult, but it is also beset with uncertainty,
hindering water resource managers from making objective
decisions.

In this research, we propose a new method to predict
DO concentration in the Bow River using a data-driven ap-
proach, as opposed to a physically based method that uses
possibility theory and fuzzy numbers to represent the un-
certainty rather than the more commonly used probability
theory. Data-driven models are a class of numerical models
based on generalised relationships, links or connections be-
tween input and output data sets (Solomatine and Ostfeld,
2008). These models can characterise a system with limited
assumptions and are useful in solving practical problems, es-
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pecially when there is lack of understanding of the underly-
ing physical process, the time series are of insufficient length,
or when existing models are inadequate (Solomatine et al.,
2008; Napolitano et al., 2011).

1.1 Fuzzy numbers and data-driven modelling

Possibility theory is an information theory that is an exten-
sion of fuzzy set theory for representing uncertain, vague or
imprecise information (Zadeh, 1978). Fuzzy numbers are an
extension of fuzzy set theory, and express an uncertain or
imprecise quantity. These types of numbers are particularly
useful for dealing with uncertainties when data are limited
or imprecise (Bárdossy et al., 1990; Guyonnet et al., 2003;
Huang et al., 2010; Zhang and Achari, 2010) – in other words
when epistemic uncertainty exists. This type of uncertainty
is in contrast to aleatory uncertainty that is typically han-
dled using probability theory. Possibility theory and fuzzy
numbers are thus useful when a probabilistic representation
of parameters may not be possible, since the exact values
of parameters may be unknown or only partial information
available (Zhang, 2009). Thus, the choice of using a data-
driven approach in combination with possibility theory lends
itself well to the constraints posed by the problem in the Bow
River: the difficulty in correctly defining a physically based
model for a complex urban system and the use of possibility
theory to model the uncertainty in the system when probabil-
ity theory based methods may be inadequate.

Data-driven models, such as neural networks, regression
based techniques, fuzzy rule based systems, and genetic pro-
gramming, have seen widespread use in hydrology, includ-
ing DO prediction in rivers (Shrestha and Solomatine, 2008;
Solomatine et al., 2008; Elshorbagy et al., 2010). Wen et
al. (2013) used artificial neural networks (ANNs) to predict
DO in a river in China using ion concentration as the predic-
tors. Antanasijević et al. (2014) used ANNs to predict DO
in a river in Serbia using a Monte Carlo approach to quan-
tify the uncertainty in model predictions and temperature as
a predictor. Chang et al. (2015) also used ANNs coupled with
hydrological factors (such as precipitation and discharge) to
predict DO in a river in Taiwan. Singh et al. (2009) used wa-
ter quality parameters to predict DO and BOD in a river in
India. Other studies (e.g. Heddam, 2014; Ay and Kisi, 2011)
have used regression to predict DO in rivers using water tem-
perature or electrical conductivity, amongst others, as inputs.
In general, these studies have demonstrated that there is a
need and demand for less complex DO models, have led
to an increase in the popularity of data-driven models (An-
tanasijević et al., 2014), and shown that the performance of
these types of models is suitable. Recent research into pre-
dicting DO concentration in the Bow River in Calgary using
abiotic factors (these are non-living, physical and chemical
attributes) as inputs have shown promising results (He et al.,
2011; Khan et al., 2013; Khan and Valeo, 2015). The advan-
tage of using readily available data (i.e. the abiotic inputs) in

these studies is that if a suitable relationship between these
factors and DO can be found, changing the factors (e.g. in-
creasing the discharge rate downstream of a treatment plant)
can potentially reduce the risk of low DO.

While fuzzy set theory based applications, particularly ap-
plications using fuzzy logic in neural networks, have been
widely used in many fields including hydrology (Bárdossy
et al., 2006; Abrahart et al., 2012), the use of fuzzy num-
bers and possibility theory based applications has been lim-
ited in comparison (Bárdossy et al., 2006; Jacquin, 2010).
Some examples include maps of soil hydrological properties
(Martin-Clouaire et al., 2000), remotely sensed soil moisture
data (Verhoest et al., 2007), climate modelling (Mujumdar
and Ghosh, 2008), subsurface contaminant transport (Zhang
et al., 2009), and streamflow forecasting (Alvisi and Fran-
chini, 2011). Khan et al. (2013) and Khan and Valeo (2015)
have introduced a fuzzy number based regression technique
to model daily DO in the Bow River using abiotic factors
with promising results. Similarly, Khan and Valeo (2014a)
used an autoregressive time series based approach combined
with fuzzy numbers to predict DO in the Bow River. In
these studies, the use of fuzzy numbers meant that the un-
certainty in the system could be quantified and propagated
through the model. However, due to the highly non-linear
nature of DO modelling, the use of an ANN based method
is of interest since these types of models are effective for
modelling complex, non-linear relationships without the ex-
plicit understanding of the physical phenomenon governing
the system (Alvisi and Franchini, 2011; Antanasijević et al.,
2014). A fuzzy neural network method proposed by Alvisi
and Franchini (2011) for streamflow prediction that uses
fuzzy weights and biases in the network is further refined
in this research for predicting DO concentration.

1.2 Objectives

Given the importance of DO concentration as an indicator
of overall aquatic ecosystem health, there is a need to accu-
rately model and predict DO in urban riverine environments,
like that in Calgary, Canada. In this research a new data-
driven method is proposed that attempts to address the issues
that plague numerical modelling of DO concentration in the
Bow River. The FNN method proposed by Alvisi and Fran-
chini (2011) is adapted and extended in two critical ways.
The existing method uses crisp (i.e. non-fuzzy) inputs and
outputs to train the network, producing a set of fuzzy number
weights and biases, and fuzzy outputs. The method is adapted
to be able to handle fuzzy number inputs to produce fuzzy
weights and biases, and fuzzy outputs. The advantage is that
the uncertainties in the input observations are also captured
within the model structure. To do this, a new method of cre-
ating fuzzy numbers from observations is presented based on
a probability–possibility transformation. Second, the exist-
ing training algorithm is based on capturing a predetermined
set of observations (e.g. 100, 95 or 90 %) within the fuzzy
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outputs. The selection of the predetermined set of observa-
tions in the original study was an arbitrary selection. A new
method that exploits the relationship between possibility the-
ory and probability theory is defined to create a more objec-
tive method of training the FNN. A consequence of this is
that the resulting fuzzy number outputs from the model can
then be directly used for risk analysis, specifically to quan-
tify the risk of low DO concentration. This information is
extremely valuable for managing water resources in the face
of uncertainty. The impact of using fuzzy inputs and the new
training criteria is evaluated by comparing results to the ex-
isting FNN method (by Alvisi and Franchini, 2011) as well
as with a traditional, crisp ANN.

Following previous research for this river, two abiotic in-
puts (daily mean water temperature, T , and daily mean flow
rate, Q) will be used to predict daily minimum DO. An ad-
vantage of using these factors is that they are routinely col-
lected by the City of Calgary, and thus a large data set is
available. Also, their use in previous studies has shown that
they are good predictors of daily DO concentration in this
river basin (He et al., 2011; Khan et al., 2013; Khan and Va-
leo, 2015). The following sections outline the background
of fuzzy numbers and existing probability–possibility trans-
formations. This is followed by the development of the new
method to create fuzzy numbers from observations. Then, the
new FNN method using fuzzy inputs is developed mathemat-
ically using new criteria for training, also based on possibil-
ity theory. Lastly, a method to measure the risk of low DO is
described.

2 Methods

2.1 Data collection

The Bow River is 645 km long and averages a 0.4 % slope
over its length (Bow River Basin Council, 2015) from its
headwaters at Bow Lake in the Rocky Mountains to its con-
fluence with the Oldman River in southern Alberta, Canada
(Robinson et al., 2009; Environment Canada, 2015). The
river is supplied by snowmelt from the Rocky Mountains,
rainfall and discharge from groundwater. The City of Cal-
gary is located within the Bow River Basin and the river has
an average annual discharge of 90 m3 s−1, and an average
width and depth of 100 and 1.5 m, respectively (Khan and
Valeo, 2014b, 2016).

The City of Calgary routinely samples a variety of wa-
ter quality parameters along the Bow River to measure the
impacts of urbanisation, particularly from three wastewater
treatment plants and numerous stormwater runoff outfalls
that discharge into the river. DO concentration measured up-
stream of the city is generally high throughout the year, with
little diurnal variation (He et al., 2011; Khan et al., 2013;
Khan and Valeo, 2015). The DO concentration downstream
of the city is lower and experiences much higher diurnal fluc-

Table 1. A summary of low DO events in the Bow River be-
tween 2004 and 2012 and the corresponding minimum acceptable
DO concentration guidelines.

Year DO< 5 DO< 6.5 DO< 9.5 Total
mg L-1,a mg L-1,b mg L-1,c number of

samples

2004 25 41 107 135
2005 1 26 133 208
2006 25 70 164 209
2007 0 27 182 211
2008 0 5 130 163
2009 0 15 85 96
2010 0 0 180 207
2011 0 0 122 204
2012 0 0 76 206

Total 51 184 1179 1639

a For the protection of aquatic life for 1 day (AENV, 1997); b for the
protection of aquatic life in cold freshwater for other life (i.e. not early)
stages (CCME, 1999); c for the protection of aquatic life in cold freshwater
for early life stages (CCME, 1999).

tuation. The three wastewater treatment plants are located
upstream of this monitoring site, and are thought to be re-
sponsible, along with other impacts of urbanisation, for the
degradation of water quality (He et al., 2015).

For this research, 9 years of DO concentration data were
collected from one of the downstream stations from 2004
to 2012. The monitoring station was located at Pine Creek
and sampled water quality data every 30 min (from 2004
to 2005) and every 15 min (from 2006 to 2007). The sta-
tion was then moved to Stier’s Ranch and sampled data every
hour (in 2008) and every 15 min (2009 to 2011). The moni-
toring site was moved further downstream to its current loca-
tion (at Highwood) in 2012 where it samples every 15 min.
During this period a number of low DO events have been
observed in the river and are summarised below in Table 1
corresponding to different water quality guidelines.

Note that even though daily minimum DO was observed
to be below 5 mg L−1 on several occasions in 2004 and 2006
(in Table 1), the minimum DO was below 9.5 mg L−1 only
107 and 164 days, respectively, for those 2 years. In con-
trast, in 2007 and 2010, no observations below 5 mg L−1

were seen, yet 182 and 180 days, respectively, below the
9.5 mg L−1 guideline were seen for those years. The total
number of days below 9.5 mg L−1 constitute approximately
90 % of all observations for those years. This shows that de-
spite no DO events below 5 mg L−1, generally speaking min-
imum DO on a daily basis was quite low in these 2 years. The
implication of this is that only using one guideline for DO
might not be a good indicator of overall aquatic ecosystem
health.

A YSI sonde is used to monitor DO and T , and the sonde is
not accurate in freezing water; thus, only data from the ice-
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free period were considered, which is approximately from
April to October for most years (YSI Inc., 2015). Since low
DO events usually occur in the summer (corresponding to
high water temperature and lower discharge), the ice-free pe-
riod data set contains the dates that are of interest for low DO
modelling.

Daily mean flow rate,Q, was collected from Water Survey
of Canada site “Bow River at Calgary” (ID: 05BH004) for
the same period. These data are collected hourly throughout
the year; thus, data where considerable shift corrections were
applied (usually due to ice conditions) were removed from
the analysis. The mean annual water temperature ranged be-
tween 9.23 and 13.2 ◦C, the annual mean flow rate was be-
tween 75 and 146 m3 s−1, and the mean annual minimum
daily DO was between 6.89 and 9.54 mg L−1, for the selected
period.

2.2 Probability–possibility transformations

Fuzzy sets were proposed by Zadeh (1965) in order to ex-
press imprecision in complex systems, and can be described
as a generalisation of classical set theory (Khan and Valeo,
2015). In classical set theory, an element x either belongs or
does not belong to a setA. In contrast, using fuzzy set theory,
the elements x have a degree of membership, µ, between 0
and 1 in the fuzzy setA. If µ equals 0, then x does not belong
in A, and µ= 1 means that it completely belongs in A, while
a value µ= 0.5 means that it is only a partial member of A.

Fuzzy numbers express uncertain or imprecise quantities,
and represent the set of all possible values that define a quan-
tity rather than a single value. A fuzzy number is defined as
a specific type of fuzzy set: a normal and convex fuzzy set.
Normal implies that there is at least one element in the fuzzy
set with a membership level equal to 1, while convex means
that the membership function increases monotonically from
the lower support (i.e. µ= 0L) to the modal element (i.e. the
element(s) with µ= 1) and then monotonically decreases to
the upper support (i.e. µ= 0R) (Kaufmann and Gupta, 1985).

Traditional representation of a fuzzy numbers has been us-
ing symmetrical, linear membership functions, typically de-
noted as triangular fuzzy numbers. The reason for selecting
this type of membership function has to do with its simplic-
ity: given that a fuzzy number must, by definition, be convex
and normal, a minimum of three elements are needed to de-
fine a fuzzy number (two elements at µ= 0 and one element
at µ= 1). For example, if the most credible value for DO
concentration is 10 mg L−1 (µ= 1), with a support about the
modal value between (µ= 0L) and 12 mg L−1 (µ= 0R). This
implies that the simplest membership function is triangular,
though not necessarily symmetrical. Also, as we demonstrate
below, in some probability–possibility frameworks, a trian-
gular membership function corresponds to a uniform proba-
bility distribution – the least specific distribution in that any
value is equally probable, and hence represents the most un-
certainty (Dubois and Prade, 2015; Dubois et al., 2004).

However, recent research (Khan et al., 2013; Khan and
Valeo, 2014a, b, 2015, 2016) has shown that such a sim-
plistic representation may not be appropriate for hydrolog-
ical data, which are often skewed and non-linear. This is-
sue is further highlighted if the probability–possibility frame-
work mentioned above is used: it implies that for a trian-
gular membership function, the fuzzy number bounded by
the support [8 12] mg L−1 has a uniform probability distri-
bution bounded between 8 and 12 mg L−1 with a mean value
of 10 mg L−1, suggesting that values between the support are
equally likely to occur. It not difficult to see that this an over-
simplification of hydrological data. In many cases enough
information (i.e. from observations) is available to define the
membership function with more specificity, and this infor-
mation should be used to define the membership function.

Multiple frameworks exist to transform a probability dis-
tribution to a possibility distribution and vice versa; a com-
parison of different conceptual approaches is provided in Klir
and Parvais (1992), Oussalah (2000), Jaquin (2010), Mau-
ris (2013) and Dubois and Prade (2015). However, a major
issue of implementing fuzzy number based methods in hy-
drology is that there is no consistent, transparent and objec-
tive method to convert observations (e.g. time series data)
into fuzzy numbers, or generally speaking to construct the
membership function associated with fuzzy values (Abrahart
et al., 2012; Dubois and Prade, 1993; Civanlar and Trussel,
1986).

A popular method (Dubois et al., 1993, 2004) converts a
probability distribution to a possibility distribution by relat-
ing the area under a probability density function to the mem-
bership level (Zhang, 2009). In this framework, the possibil-
ity is viewed as the upper envelope of the family of probabil-
ity measures (Jacquin, 2010; Ferrero et al., 2013; Betrie et al.,
2014). There are two important considerations for this trans-
formation, first it guarantees that something must be possible
before it is probable; hence, the degree of possibility cannot
be less than the degree or probability – this is known as the
consistency principle (Zadeh, 1965). Second is order preser-
vation, which means if the possibility of xi is greater than
the possibility of xj then the probability of xi must be greater
than the probability of xj (Dubois et al., 2004). For a discrete
system, this can be represented as follows:

if p(x1) > p(x2) > . . . > p(xn) ,

then the possibility distribution of x(π(x)) follows the same
order, that is,

π (x1) > π (x2) > . . . > π (xn) .

The transformation is given by
For p(x1)>p(x2)> . . . >p(xn):
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π (x1)= 1

f (x)=


n∑
j=i

pj , if pi−1 > pi

π (xi−1) , else
(1)

where the xi are elements of a fuzzy number A, π(xi) is the
possibility of element xi , and p(xi) is the probability of el-
ement xi . The concept of this transformation may be more
illustrative when viewed in the continuous case: for any inter-
val [a, b], the membership level µ (where π(a)=π(b)=µ)
is equal to the sum of the areas under the probability density
function curve between (−∞, a) and (b, ∞) (Zhang et al.,
2009). It is important to highlight that this particular transfor-
mation has an inverse transformation associated with, where
a probability distribution can be estimated from the possibil-
ity distribution.

However, a major drawback of this transformation is that
it theoretically requires a full description of the probability
density function, or in the finite case, the probability associ-
ated with each element of the fuzzy number, the probability
mass function. For many hydrological applications this might
not be possible because the hourly time series data may not
adequately fit the mould of a known class of probability den-
sity functions, or one distribution amongst many alternatives
may have to be selected based on best-fit. This best-fit func-
tion may not be universal, e.g. data from one 24 h period may
be best described by one class or family of probability den-
sity function, while the next day by a completely different
class of density function. This means working with multiple
classes of distribution functions for one application, which
can be cumbersome. Also, given that each day may only have
24 data points (or fewer on days with missed samples), it is
difficult to select one particular function.

In previous research by Khan and Valeo (2015), a new ap-
proach to create a fuzzy number based on observations was
developed. This process used a histogram based approach to
estimate the probability mass function of the observations,
and then Eq. (1) was used to estimate the membership func-
tion of the fuzzy number. To create the histogram, the bin
size was selected based on the extrema observations for a
given day and the number of the observations. A linear inter-
polation scheme was then used to calculate the fuzzy num-
ber at five predefined membership levels. This method has
a few shortcomings, namely that the bin-size selection was
arbitrarily selected based on the magnitude and number of
observations, which does not necessarily result in the opti-
mum bin size. This lack of optimality means that the result-
ing histogram may either be too smooth so as not to capture
the variability between membership levels, or too rough and
uneven so that the underlying shape of the membership func-
tion is difficult to discern. This is a common issue with his-
togram selection in many applications (Shimazaki and Shi-
nomoto, 2007). Secondly, the aforementioned transformation
used by Khan and Valeo (2015) only allows one element to

have µ= 1 when p(x) is maximum. However, there are a
number of cases (e.g. bimodal distributions, or arrays when
all elements are equal) where multiple elements have joint-
equal maximum p(x), and hence multiple elements with
µ= 1. This means that all elements within the α-cut inter-
val [a b]µ=1 (where a and b are the minimum and maximum
elements with µ= 1) must by definition also have a mem-
bership level equal to 1. Thus, a method is necessary to be
flexible enough to accommodate these types of issues.

In this research, a two-step procedure is proposed to cre-
ate fuzzy numbers on the inputs (i.e. Q and T ) using hourly
(or sub-hourly) observations. First, a bin-size optimisation
method is used (an extension of an algorithm proposed by
Shimazaki and Shinomoto, 2007) to create histograms to rep-
resent the estimate of discretised probability density func-
tions of the observations. This estimate of the probability dis-
tribution is then transformed to the membership function of
the fuzzy number using a new numerical procedure and the
transformation principles described in Eq. (1). This updated
method requires no assumptions regarding the distribution
of the underlying data or selection of an arbitrary bin size,
has the flexibility to create different shapes of fuzzy numbers
depending on the distribution of the underlying data, and al-
lows multiple elements to have equal µ= 1. The proposed
algorithm is described in the proceeding section.

A new algorithm to create fuzzy numbers

Shimazaki and Shinomoto (2007) proposed a method to find
the optimum bin size of a histogram when the underlying
distribution of the data is unknown. The basic premise of the
method is that the optimum bin size (Dopt) is one that min-
imises the error between the theoretical (but unknown) prob-
ability density and the histogram generated using the Dopt.
The error metric used by Shimazaki and Shinomoto (2007)
is the mean integrated squared error (EMISE) which is fre-
quently used for density estimation problems. It is defined
as

EMISE =
1
P

P∫
0

E
[
fn(t)− f (t)

]2dt, (2)

where f (t) is the unknown density function, fn(t) is the his-
togram estimate of the density function, t denotes time and
P is the observation period, and E[ q] is the expectation. In
practice, EMISE cannot be directly calculated since the un-
derlying distribution is unknown, and thus an estimate of the
EMISE is used in its place (see CD below). Thus, fn(t) can
be found without any assumptions of the type of distribu-
tion (e.g. class, unimodality); the only assumption is that the
number of events (i.e. the counts ki) in the ith bin of the his-
togram follow a Poisson point process. This means that the
events in two disjoint bins (e.g. the ith and i+ 1th bins) are
independent, and that mean (k) and variance (v) of the ki in
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each bin are equal, due to the assumption of a Poisson pro-
cess (Shimazaki and Shinomoto, 2007).

Using this property, the optimum bin size can be found as
follows. Let X be the input data vector for the observation
period (P ), e.g. a [24× 1] vector corresponding to hourly
samples for a given day. The elements in X are binned into
N bins of equal bin size D. The number of events ki in each
ith bin are then counted and the mean (k) and variance (v) of
the ki are calculated as follows:

k =
1
N

N∑
i=1

ki, (3)

v =
1
N

N∑
i=1

(ki − k)
2. (4)

The k and v are then used to compute the cost function CD,
which is defined as

CD =
2k− v
D2 . (5)

This cost function is a variant of the original EMISE listed
in Eq. (2) and is derived by removing the terms from EMISE
that are independent of the bin size D, and by replacing the
unobservable quantities (i.e. E[f (t)]) with their unbiased es-
timators (details of this derivation can be found in the origi-
nal paper by Shimazaki and Shinomoto, 2007). The objective
then is to search for Dopt: the value of D that minimises CD.
To do this two systematic modification are made: first, CD
is recalculated at different partitioning positions, and sec-
ondly, the entire process is repeated for different values of N
and D, until a “reliable” estimate of minimum CD and thus
Dopt is found. Using different partitioning positions means
that the variability in ki resulting from the position of the bin
(rather than the size of the bin) can be quantified. Repeating
the analysis at different N and D accounts for the variability
due to different bin sizes. Both these techniques are ways of
accounting for the uncertainty associated with estimating the
histogram.

Partitioning positions are defined as the first and last points
that define a bin. The most common way of defining a par-
titioning position is to centre it on some value a; for exam-
ple, the bin defined at [a−D/2, a+D/2] is centred on a and
has a bin size D. Variations of this partitioning position can
be found by using a moving-window technique, where the
bin size D is kept constant, but the first and last points are
perturbed by a small value δ: [a−D/2+ δ, a+D/2+ δ],
where δ ranges incrementally between 0 and D. Using these
different values of δ whilst keeping D constant will result in
different values of ki and hence unique values of CD. Thus,
for a single value of D, multiple values of CD are possible.

For this research this bin-size optimisation algorithm is
implemented to determine the optimum histogram for the
two input variables, Q and T . The array of daily data X (at
hourly or higher frequency; see Sect. 2.1 for details regarding

the sampling frequency of both inputs) for each variable was
collected for the 9-year period. The bin size was calculated
for each day as follows:

D =
xmax− xmin

N
, (6)

where xmax and xmin are the maximum and minimum sam-
pled values for X, respectively, and N is the number of bins.
As described above, a number of differentD were considered
to find the optimum CD. This was done by selecting a num-
ber of different values of N , ranging from Nmin to Nmax. The
minimum value Nmin was set equal to 3 for all days; this is
the necessary number of bins to define a fuzzy number (two
elements for µ= 0, and one element for µ= 1). The highest
value, Nmax, was calculated as

N =
xmax− xmin

2r
, (7)

where 2r is the measurement resolution of the device used
to measure either Q or T , set at twice the accuracy (r) of
the device. The rationale for this decision is that as N in-
creases, D necessarily decreases (as per Eq. 6). However,
D cannot be less than the measurement resolution; this con-
straint (i.e. N ≤Nmax) ensures that the optimum bin size is
never less than what the measurement devices can physically
measure. For this research, the accuracy for T is listed as
±0.1 ◦C, and thus, the resolution (2r) is 0.2 ◦C (YSI Inc.,
2015). For Q all measurements below 99 m3 s−1 have an ac-
curacy of ±0.1 m3 s−1 and thus, a resolution of 0.2 m3 s−1,
while measurements above 99 m3 s−1 have an accuracy of
±1 m3 s−1, and thus a resolution of 2 m3 s−1. This is based
on the fact that all data provided by the Water Survey of
Canada is accurate to three significant figures (Lane, 1999).
Note that for the case where xmin equals xmax (i.e. no vari-
ance in the daily observed data) then D= 2r , which means
that the only uncertainty considered is due to the measure-
ment.

Once the Nmax is determined, the bin size D was calcu-
lated for each N between Nmin and Nmax. Then, starting at
the largest D (i.e. D= (xmax− xmin)/Nmin), the cost func-
tion CD is calculated at the first partitioning positing, where
the first bin is centred at xmin, [(xmin−D/2) (xmin+D/2)],
and the N th bin is centred on xmax, [(xmax−D/2),
(xmax+D/2)]. Then, CD is calculated at the next parti-
tioning positing, where the first bin is [(xmin−D/2+ δ)
(xmin+D/2+ δ)], and the N th bin is [(xmax−D/2+ δ),
(xmax+D/2+ δ)]. The value of δ ranged between 0 and D
at (D/100) intervals. Thus, for this value ofD, 100 values of
CD were calculated since 100 different partitioning positions
were used. The mean value of these CD was used to define
the final cost-function value for the given D.

This process is then repeated for the next N between Nmin
and Nmax, using the corresponding D at 100 different parti-
tioning positions, and so on until the smallest D (at Nmax).
This results in [Nmax−Nmin] values of mean CD: the value
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of D corresponding to the minimum value of CD is consid-
ered to be the optimum bin size Dopt. This Dopt is then used
to construct the optimum histogram of each daily observa-
tion. This histogram can be used to calculate a discretised
probability density function (p(x)), where for each x (an el-
ement of X), the p(x) is calculated by dividing the number
of events in each bin by the total number of elements in X. x
and p(x) can then be used to calculate the possibility distri-
bution using the transformation described in Eq. (1).

First, the p(x) are ranked from highest to lowest, and the
x corresponding to the highest p(x) has a membership level
of 1. Then the π(x) values for the remaining x are calcu-
lated using Eq. (1). For cases where multiple elements have
equal p(x), the highest π(x) is assigned to each x. For exam-
ple, if p(xi)=p(xj ), and xi >xj , then π(xj )=π(xi). This
means that in some cases, for each calculated membership
level, π(x), there exists an α-cut interval [a, b]µ=π(x) where
all the elements between a and b have equal p(x) and hence
equal π(x). By definition of α-cut intervals, all values of x
within the interval [a, b] have at least a possibility of π(x).
A special case of this occurs when multiple x have joint-
equal maximum p(x), meaning that multiple elements have
a membership level of µ= 1. Thus, an α-cut interval is cre-
ated for the µ= 1 case, creating a trapezoidal membership
function, where the modal value of the fuzzy number is de-
fined by an interval rather than a single element.

Once all the π(x) are calculated for each element x in X, a
discretised empirical membership function of the fuzzy num-
ber X can be constructed using the calculated α-cut intervals.
That is, the fuzzy number is defined by a number of intervals
at different membership levels. The upper and lower limits
of the intervals at higher membership levels define the ex-
tent of the limits of the intervals at lower membership levels.
This way the constructed fuzzy numbers maintain convexity
(similar to a procedure used by Alvisi and Franchini, 2011),
where the widest intervals have the lowest membership level.
For example, the interval at µ= 0.2 will contain the interval
µ= 0.4, and this interval will contain the interval at µ= 0.8.

In creating this discretised empirical membership func-
tion this way (rather than assuming a shape of the function)
means that this function best reflects the possibility distri-
bution of the observed data. However, it also means that all
fuzzy numbers created using this method are not guaranteed
to be defined at the same π(x), nor have an equal number
of π(x) intervals used to define the fuzzy number. Thus, di-
rect fuzzy arithmetic between multiple fuzzy numbers using
the extension principle is not possible since it requires each
fuzzy number to be defined at the same α-cut intervals (Kauf-
mann and Gupta, 1985). Thus, linear interpolation is used to
define each fuzzy number at a pre-set α-cut interval using the
empirical π(x) calculated using the transformation. To select
the pre-set α-cut intervals it is illustrative to see the impact
of selecting two extreme cases: (i) if only two levels are se-
lected (specifically µ= 0 and 1) the constructed fuzzy num-
ber will reduce to a triangular fuzzy number. As discussed

above there are important implications of using triangular
membership functions that make it undesirable for hydrolog-
ical data; (ii) if a large number of intervals (e.g. 100 inter-
vals between µ= 0 and 1) are selected, there is a risk that
the number of pre-set intervals is much larger than the em-
pirical π(x), which means not enough data (empirical α-cut
levels intervals) to conduct interpolation, leading to equal in-
terpolated values at multiple α-cut levels. For this research,
results (discussed in the following section) of the bin-size op-
timisation showed that most daily observations for T and Q
resulted in 2 to 10 unique p(x) values. Based on this, six pre-
set α-cut intervals were selected: 0, 0.2, 0.4, 0.6, 0.8 and 1.
The empirical π(x) can then be converted to a standardised
function at pre-defined membership levels using linear inter-
polation.

2.3 Fuzzy neural networks

2.3.1 Background on artificial neural networks

Artificial neural networks (ANNs) are a type of data-driven
model that are defined as a massively parallel distributed in-
formation processing system (Elshorbagy et al., 2010; Wen
et al., 2013). ANN models have been widely used in hydrol-
ogy when the complexity of the physical systems is high ow-
ing partially to an incomplete understanding of the underly-
ing process and the lack of availability of necessary data (He
et al., 2011; Kasiviswanathan et al., 2013). Further, ANNs
arguably require fewer data and do not require an explicit
mathematical description of the underlying physical process
(Antanasijević et al., 2014), making them a simpler and prac-
tical alternative to traditional modelling techniques.

A multilayer perceptron (MLP) is a type of feedforward
ANN and is one of the most commonly used in hydrology
(Maier et al., 2010). A trained MLP network can be used as
a universal approximator with only one hidden layer (Hornik
et al., 1989). This means that models are relatively simple
to develop and theoretically have the capacity to approxi-
mate any linear or non-linear mapping (ASCE Task Com-
mittee on Application of Artificial Neural Networks in Hy-
drology, 2000; Elshorbagy et al., 2010; Napolitano et al.,
2011; Kasiviswanathan et al., 2013). Further, the popularity
of MLPs has meant that subsequent research has continued
to use MLPs (He and Valeo, 2009; Napolitano et al., 2011)
and thus form a reference for the basis of comparing ANN
performance (Alvisi and Franchini, 2011).

In the simplest case, an MLP consists of an input layer, a
hidden layer, and an output layer as shown in Fig. 2. Each
layer consists of a number of neurons (or nodes) that each
receive a signal, and on the basis of the strength of the signal,
emit an output. Thus, the final output layer is the synthesis
and transformation of all the input signals from both the input
and the hidden layer (He and Valeo, 2009).

The number of neurons in the input (nI) and output (nO)
layers corresponds to the number of variables used as the
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Figure 2. An example of a three-layer multilayer perceptron feed-
forward ANN, with two input neurons, the hidden-layer neurons,
and one output neuron. WIH are the weights between the input and
hidden layers, WHO are the weights between the hidden and output
layers, BH are the biases in the hidden layer, and BO is the bias in
the output layer.

input and the output, respectively, and the number of neurons
in the hidden layer (nH) are selected based on the relative
complexity of the system (Elshorbagy et al., 2010). A typical
MLP is expressed mathematically as follows:

yi = fHID (WIHxi +BH) , (8)

zi = fOUT
(
WHOyi +BO

)
, (9)

where xi is the ith observation (an nI× 1 vector) from a to-
tal of n observations, WIH is an nH× nI matrix of weights
between the input and hidden layers, BH is a vector (nH× 1)
of biases in the hidden layer, and yi is the ith output (an
nH× 1 vector) of the input signal through the hidden-layer
transfer function, fHID. Similarly, WHO is an nO× nH ma-
trix of weights between the hidden and output layers, BO is
an nO× 1 vector of biases in the output layer, and fOUT the
final transfer function to generate the ith modelled output zi
(an nO× 1 vector).

The values of all the weights and biases in the MLP are
calculated by training the network by minimising the error –
typically mean squared error (EMSE) (He and Valeo, 2009)
– between the modelled output and the target data (i.e. ob-
servations). The Levenberg–Marquardt algorithm (LMA) is
one of the most common training algorithms (Alvisi et al.,
2006). In LMA, the error between the output and target is
back-propagated through the model using a gradient method
where the weights and biases are adjusted in the direction of
maximum error reduction. The LMA is well suited for prob-
lems that have a relatively small number of neurons. To coun-
teract potential over-fitting issues, an early-stopping proce-
dure is used (Alvisi et al., 2006; Maier et al., 2010), which
is a form of regularisation where the data are split into three
subsets (for training, validation and testing). The training is
terminated when the error on the validation subset increases
from the previous iteration.

Most ANNs have a deterministic structure without a quan-
tification of the uncertainty corresponding to the predictions
(Alvisi and Franchini, 2012; Kasiviswanathan and Sudheer,
2013). This means that users of these models may have ex-
cessive confidence in the forecasted values and misinter-
pret the applicability of the results (Alvisi and Franchini,
2011). This lack of uncertainty quantification is one reason
for the limited appeal of ANN among water resource man-
agers (Abrahart et al., 2012; Maier et al., 2010). Without this
characterisation, the results produced by these models have
limited value (Kasiviswanathan and Sudheer, 2013).

In this research, two methods are proposed to quantify the
uncertainty in MLP modelling to predict DO in the Bow
River. First, the uncertainty in the input data (daily mean
water temperature and daily mean flow rate) is represented
through the use of fuzzy numbers. These fuzzy numbers are
created using the probability–possibility transformation dis-
cussed in the previous section. Second, the total uncertainty
(as defined by Alvisi and Franchini, 2011) in the weights and
biases of an MLP are quantified using a new possibility the-
ory based FNN. The total uncertainty represents the overall
uncertainty in the modelling process, and not of the individ-
ual components (e.g. randomness in observed data). The fol-
lowing section describes the proposed FNN method.

2.3.2 FNN with fuzzy inputs and possibility based
intervals

Alvisi and Franchini (2011) proposed a method to create a
FNN, where the weights and biases, and by extension the out-
put, of the neural network are fuzzy numbers rather than crisp
(non-fuzzy) numbers. These fuzzy numbers quantify the total
uncertainty of the calibrated parameters. Most fuzzy set the-
ory based applications of ANN in hydrology have used fuzzy
logic, e.g. the widely used Adaptive Neuro-Fuzzy Inference
System, where automated IF-THEN rules are used to create
crisp outputs (Abrahart et al., 2010; Alvisi and Franchini,
2011). Thus, the advantage of fuzzy outputs (as developed
by Alvisi and Franchini, 2011) is that it provides the uncer-
tainty of the predictions in addition to the uncertainty of the
parameters. This uncertainty quantification can be used to by
end users to assess the value of the model output.

In their FNN, the MLP model presented in Eqs. (5) and (6)
is modified to predict an interval rather than a single value for
the weights, biases and output, corresponding to an α-cut in-
terval (at a defined membership level µ). This is repeated for
several α-cut levels, thus building a discretised fuzzy num-
ber at a number of membership levels. This is done by using
a stepwise, constrained optimisation approach:[
yL
i y

U
i

]
= fHID

([
WL

IHWU
IH
]
xi +

[
BL

HBU
H
])
, (10)[

zL
i z

U
i

]
= fOUT

([
WL

HOWU
HO
]
×
[
yL
i y

U
i

]
+
[
BL

OBU
O
])
. (11)

where all the variables are as described as before, and the
superscripts U and L represent the upper and lower limits of
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the α-cut interval, respectively. The constraints are defined
so that the upper and lower limits of each weight and bias (in
both layers) minimise the width of the predicted interval:

min

(
n∑
i=1

(
zL
i − zU

i

))
,

1
n

n∑
i=1

(δi)≥ PCI, (12)

δi =

{
1, if zL

i < ti < zU
i

0, otherwise,

where t is that target (observed data) and PCI is a predefined
percentage of data. Alvisi and Franchini (2011) defined PCI
to be 100 % at µ= 0, 99 % at µ= 0.25, 95 % at µ= 0.5 and
90 % at µ= 0.75. This algorithm was built starting at µ= 0
and moving to higher membership levels to maintain con-
vex membership functions of the generated fuzzy numbers
by using the results of the previous optimisation as the upper
and lower limit constraints for the proceeding optimisation.
Lastly, at µ= 1, the interval collapses to a singleton, repre-
sent the crisp results from non-fuzzy ANN. Therefore, these
α-cut intervals of the FNN output quantify the uncertainty
around the crisp prediction, within which is expected to con-
tain PCI percentage of data.

In this research, this method is modified in two ways.
First, the inputs x are also fuzzy numbers, which means that
Eqs. (10) and (11) are revised as follows:[
yL
i y

U
i

]
= fHID

([
WL

IHWU
IH
]
×
[
xL
i x

U
i

]
+
[
BL

HBU
H
])
, (13)[

zL
i z

U
i

]
= fOUT

([
WL

HOWU
HO
]
×
[
yL
i y

U
i

]
+
[
BL

OBU
O
])
. (14)

Note that now the input vector is represented by its upper
and lower limits. The major impact on this is that the train-
ing algorithm for the FNN needs to accommodate this fuzzy
α-cut interval, which requires the implementation of fuzzy
arithmetic principles (Kaufmann and Gupta, 1985). The cost
function for the optimisation remains unchanged.

The second modification of the original algorithm is re-
lated to the selection of the percent of data included in the
predicted interval (PCI). In the original, the selection is arbi-
trary and end-users of this method may be interested in the
events that are not included in the selected PCI. Thus, a full
spectrum of possible values for a given prediction is required.
Thus, the Alvisi and Franchini (2011) approach is further re-
fined by utilising the same relationship between probability
and possibility that was used to define the input fuzzy num-
bers, giving a more objective means of designing FNNs with
fuzzy weights, biases and output.

In the adopted possibility–probability framework, the in-
terval [a b]α created by the α-cut at µ=α implies that

[p(x < a)+p(x > b)] = α. (15)

This can be used to calculate the probability

[p(a < x < b)] = (1−α). (16)

Table 2. Selected values for PCI for the FNN optimisation.

µ PCI (%)

1.00 0.00
0.80 20.00
0.60 40.00
0.40 60.00
0.20 80.00
0.00 99.50

This means that there is a probability of (1−α) that the ran-
dom variable x will fall within the interval [a b]α . In other
words, the α-cuts of a possibility distribution (at any µ) cor-
respond to the (1−α) confidence interval of the probability
distribution of the same variable (Serrurier and Prade, 2013).
This principle is used to select the different PCI for the op-
timisation constraints rather than the predetermined PCI se-
lected by Alvisi and Franchini (2011). These are shown in
Table 2.

Note that for practical purposes, PCI was selected as
99.50 % at µ= 0 to prevent over-fitting. The implication of
this selection is that at µ= 0, nearly all the observed data
should fall within this predicted FNN interval, reflecting the
highest uncertainty in the prediction. The uncertainty de-
creases as µ increases. For the µ= 1 case the values of the
weights and biases were determined to be the mid-point of
the interval at µ= 0.8 to maintain convexity of the produced
fuzzy numbers, and the difficulty in finding an interval con-
taining 0 % of the data.

2.3.3 Network architecture and implementation

For this research a three layer, feedforward MLP architec-
ture was selected to model minimum daily DO (the output)
using fuzzified daily flowrate (Q) and fuzzified daily water
temperature (T ) as the inputs. The three layers consist of an
input layer, an output layer, and a hidden layer (with 5 neu-
rons based on a trial-and-error search procedure). This archi-
tecture was selected for three reasons: it is one of the most
commonly used in hydrology (Maier et al., 2010), it can be
used as a universal approximator (Hornik et al., 1989), and as
reference for comparing performance with previous research
(He and Valeo, 2009; Napolitano et al., 2011). In particular,
a previous study modelling minimum DO in the Bow River
used a three-layer MLP feedforward network (see He et al.,
2011). Two transfer functions are required for FNN imple-
mentation: the hyperbolic tangent sigmoid function was se-
lected for fHID, and a pure linear function for fOUT. Both
function selections follow Alvisi and Franchini (2011), Wen
et al. (2013) and Elshorbagy et al. (2010), and are described
as follows:

fHID =
ex − e−x

ex + e−x
(17)
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fOUT = x. (18)

The LMA method was used to train the network, minimising
EMSE. The input and output data were pre-processed before
training, validating and testing: the data were normalised so
that all input and output data fell within the interval [−1 1].
Furthermore, the data were randomly divided into training,
validation and testing subsets, following a 50–25–25 % split.

This FNN optimisation algorithm was implemented in
MATLAB (version 2015a). First, the built-in MATLAB Neu-
ral Network Toolbox was used to estimate the value of
weights and biases using the midpoint of the interval at
µ= 1. The results from this were used as the constraints to
solve the FNN optimisation (Eqs. 12 to 14) at subsequent
lower membership levels. The Shuffled Complex Evolution
algorithm (commonly known as SCE-UA, Duan et al., 1992)
was used to find the optimisation solution. The optimisa-
tion is run such that the intervals at higher membership lev-
els govern the upper and lower bounds of the predicted in-
terval in order to preserve the convexity of fuzzy numbers.
The same process and network architecture was used to run
the original FNN method (proposed by Alvisi and Franchini,
2011) using crisp inputs for comparison purposes. For this
case, further refinement of the optimised solution was con-
ducted using the built-in MATLAB minimisation function,
fmincon. Note that for the crisp inputs, values of fuzzified
daily flowrate (Q) and fuzzified daily water temperature (T )
at µ= 1 were used to enable direct comparison. This op-
tion allows for the closest comparison between the two ap-
proaches that have completely distinct applications. Other
options for the crisp inputs (e.g. mean daily value, or maxi-
mum daily value) may also be selected for the existing FNN
case.

2.4 Risk analysis using defuzzification

Risk analyses for complex systems is challenging for a num-
ber of reasons, including an insufficient understanding of the
failure mechanisms (Deng et al., 2011). The use of impre-
cise information (e.g. fuzzy numbers) is an effective method
of conducting a risk analysis (Deng et al., 2011). However,
communicating uncertainty is an important, yet difficult task,
and many different frameworks exist to do so; water quality
indices (Sadiq et al., 2007; Van Steenbergen et al., 2012) are
one example. Since water resource managers often prefer to
use probabilistic measures (rather than possibilistic ones), it
is important to convert the possibility of low DO to a com-
parable probability for effective communication of risk anal-
ysis. Note that the linguistic parameters (e.g. “most likely”)
that are often used to convey risk or uncertainty (Van Steen-
bergen et al., 2012) have a probability based meaning – in
this case “most likely” is a measure of likelihood.

In this research, a defuzzification procedure is used to con-
vert the possibility of low DO to a probability measure, to
represent the risk of observing low DO (below a given thresh-
old) in the Bow River. This method uses the inverse of the

transformation described in Eq. (1); however, instead of cal-
culating the probability of one element, p(x), which is of
limited value in most applications, it is generalised to calcu-
lated P({X<x}), as follows (from Khan and Valeo, 2014a,
2016): for any x in the support (defined as the α-cut interval
at µ= 0) of a fuzzy number [a b], we have the corresponding
µ and the paired value x′ which shares the same membership
level. The value µ is the sum of the cumulative probability
between [a, x] and [x′, b], labelled PL and PR, respectively:

µ(x)= PL+PR, (19)

where PL represents the cumulative probability between a
and x which is assumed to equal the probability P({X<x}),
since the fuzzy number defines any values to less than a to be
impossible (i.e. µ= 0). Given the fact that the fuzzy number
is not symmetrical, the lengths of the two intervals [a, x] and
[x′, b] can be used to establish a relationship between PL and
PR. Then, PL can be estimated as

P {X < x} = PL =
µ

1+ (b−x′)
(x−a)

. (20)

Thus, Eq. (20) gives the probability that the predicted min-
imum DO for a given day is below the threshold value x.
For example, if the lowest acceptable DO concentration
for the protection of aquatic life for cold water ecosystems
(6.5 mg L−1, Canadian Council of Ministers of the Environ-
ment, 1999) is selected, then this transformation can be used
to calculate the probability that the predicted fuzzy DO will
be below 6.5 mg L−1.

3 Results and discussion

3.1 Probability–possibility transformation using
bin-size optimisation

The bin-size optimisation and the probability–possibility
transformation algorithms were applied to the collected Q
and T data for the 9-year period. The constructed fuzzy num-
bers were then used to calibrate the FNN model. This section
compares the results of constructing a discretised probability
distribution with and without the bin-size optimisation algo-
rithm and its impact on the resulting membership function
of the fuzzy number. The comparison is illustrated through
five examples each forQ and T as a means of illustrating the
advantages of using the proposed approach.

Figure 3 shows sample results of converting hourly Q ob-
servations to fuzzy numbers for five cases. The left-most col-
umn in the figure shows the raw data, i.e. the observations
sampled over the course of 24 h. The resulting histogram
based probability functions are shown for both the optimised
(Dopt, illustrated with circles) and original (Dorig= 2r; see
Sect. “A new algorithm to create fuzzy numbers” for the def-
inition, illustrated with squares) bin sizes in the second col-
umn. The third and fourth columns in Fig. 3 show the result-
ing discretised empirical membership function using each of
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Figure 3. Sample results of probability–possibility transformation for flow rate, Q.

the histograms. The five examples selected here represent a
full spectrum of results for the bin-size optimisation. The first
row shows an example of when the optimum result was equal
to the measurement resolution (Dorig=Dopt= 2), followed
by cases where the Dopt was 4, 4.5, 10 and 20 times greater
than the initial bin size.

The example in the first row illustrates cases where the
bin-size optimisation algorithm calculates an optimum bin
size, corresponding to the minimum cost function CD, which
is equal to the instrument measurement resolution. Thus, the
resulting probability distributions for both cases are equiv-
alent, as are the membership functions. In most cases, this

occurred when the calculated minimum CD would result in a
Dopt smaller than Dorig= 2r , and since this is not physically
feasible (measurable), the algorithm did not consider any bin
sizes below 2r . Of note in this example is that the transfor-
mation of the probability distribution results in five empirical
membership levels. Only one element was found to have a
membership level equal to 1 (at Q= 161 m3 s−1). Thus, the
α-level cut at this level is a simple singleton: [161]µ=1. The
next membership level was calculated as 0.58; again the re-
sulting α-cut level only has one element at Q= 149 (which
is less than the modal value). However, at this level the up-
per and lower limits of α-cuts at higher membership levels
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define the upper and lower limits of α-cuts at lower levels.
Thus, using the information from the α-level cut at µ= 1, the
level at µ= 0.58 was defined as [149 161]µ=0.58. The next
membership level calculated was 0.46, and four elements had
equal membership levels, ranging between 147 and 165. The
α-cut interval at this level was defined as [147 165]µ=0.46.
Note that in this case, this interval captures both the intervals
at higher membership levels within its limits, i.e. the lower
limit is less than the lower limits of higher intervals, and the
upper limit is greater than then upper limits at higher lev-
els. The next membership level was calculated to be 0.125,
and three elements between 157 and 171 were assigned this
value. However, the lower limit at µ= 0.46 (the next higher
membership level) was 147, which is less than 157, and thus,
for the α-cut level at this membership, the interval is then
revised to [147 171]µ=0.125 rather than [157 171]µ=0.125 to
maintain convexity. Again, the reason here is that if some-
thing is possible at µ= 0.46, it must be possible (by defini-
tion) at µ= 0.125. The last membership level found for this
particular example was µ= 0, with six elements sharing this
value, ranging from 145 to 173, resulting in an α-cut level of
[145 173]µ=0. Together, these five membership levels define
a discretised membership function of the fuzzy number for
Q on 27 July 2008. Following this, linear interpolation was
conducted to find the elements corresponding to the six pre-
defined membership levels of µ= 0, 0.2, 0.4, 0.6, 0.8 and 1.
The results are not explicitly shown in the figure for clarity,
but can are essentially located on the dashed line in the last
column on the corresponding membership levels.

The second row in Fig. 3 shows the results for 20 Au-
gust 2009, where the optimum bin size was found to
be 4 times higher than the original bin size (Dopt= 0.8
vs. Dorig= 0.2). The impact of this change is clearly ev-
ident in the distribution functions in the second column.
The original histogram is multi-modal, and with multiple
candidates as the modal value (where µ= 1), whereas the
post-optimisation histogram is considerably smoother, with a
definitive modal value atQ= 91.4 m3 s−1. The impact of this
increase in bin size is that the resulting membership function
is defined at four membership levels (0, 0.25, 0.54 and 1),
whereas the original function was defined at six levels, in-
cluding an interval (rather than singleton) at µ= 1. This de-
crease in membership levels in this case has a consequence
of smoothing out the membership function, as can be seen
by comparing the shapes of the functions in columns 3 and
4. The overall impact of this smoothing out of both the distri-
bution and the membership functions is that the heightened
specificity of the original function at µ= 0.54 and above is
reduced to a more generalised shape.

Since the objective of the bin-size algorithm was to reduce
the error between the histogram created using Dopt and the
unknown theoretical distribution, the density function plotted
in Fig. 3 represents the closest distribution to the unknown
distribution. Hence, the membership function generated us-
ing this optimum distribution better reflects the underlying

phenomenon than the membership function generated using
Dorig. Thus, in comparing columns 3 and 4 for the second
row, the smoother membership function representing Dopt
is preferred. Linear interpolation is then performed on this
membership function to get values ofQ at the six predefined
membership levels.

Similar results can be seen in the third row in Fig. 3, where
the optimised bin size is 4.5 times greater than the origi-
nal bin size (Dopt= 9 vs. Dorig= 2). Again, the original his-
togram is extremely uneven, whereas the post-optimisation
histogram is considerably smoother, with a definitive modal
value at Q= 277 m3 s−1. The overall impact of this smooth-
ing is that the specificity of the function atµ= 0.6 and higher
of the original function is reduced to a more general shape in
the optimised function.

The fourth row shows a different phenomenon, where in-
stead of smoothing out the original membership function,
the combined bin-size optimisation and transformation algo-
rithm creates a membership function with more specificity.
In this case Dopt is 10 times higher than Dorig, and the con-
sequence of this increase is the smoother probability density
function with one clear modal value (at Q= 70 m3 s−1). In
contrast, the original histogram had six elements with joint-
equal p(x), resulting in a membership function that is shaped
similarly to a uniform distribution (column 3) and defined
with only three membership levels. This means that all val-
ues are considered equally possible and represents maximum
vagueness. However, using the optimised value, this is no
longer the case and the modal value is assigned a member-
ship level of 1, and the remaining elements are defined at
three other membership levels. This suggests that this modal
value is more possible (since it has a higher possibility), and
this is reflected in the observations. This example illustrates
that the method can not only generalise the data to smoother
functions (as shown in the first three examples), but can also
be more specific when the underlying data demonstrate this;
however, this is not captured by the non-optimised bin-width
distribution function.

The last example for Q in Fig. 3 is an example of a case
where the number of membership levels for both the origi-
nal and optimised membership functions are equal (four in
this case); however, the bin size is 20 times greater for the
optimised case. In this case, an optimum bin size was found
that did not change the specificity of the membership func-
tion, i.e. it is still defined with the same number of intervals
but at different membership levels. In this case, the proba-
bility for Dorig is extremely uneven but smoothed out to a
unimodal function with theDopt. The final membership func-
tion forDopt is defined more generally (smoothly), especially
at higher membership levels compared to the one defined
by Dorig. This example again demonstrates the utility of the
new coupled optimisation–transformation method to create
fuzzy numbers for data where the underlying distribution is
unknown.
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Figure 4. Sample results of probability–possibility transformation for water temperature, T .

Figure 4 shows similar results for the five water temper-
ature examples, where the Dopt was equal to the Dorig (the
first example in the top row) or increased by a factor of 1.5,
2.5, 3 or 5. The first example shows a case with very little
T variation over a given day and the water temperature falls
between 5.2 and 6.2 ◦C for the entire day. This lack of vari-
ability is responsible for the minimal bin-size selectionDopt:
a unimodal distribution is best constructed using smaller bin
sizes for these cases. The second example shows another case
whereDopt is only slightly greater than the original, resulting

in a somewhat smoother probability function and a slightly
smoother membership function.

A major difference between the T and Q data is that
the former is strongly diurnal, increasing after sunrise in
the morning, peaking in late afternoon, and then decreasing
through the night. This temporal trend is seen for all exam-
ples in Fig. 4, but most significantly in the bottom three ex-
amples. A major implication for this in developing a prob-
ability density function for these data is that the resulting
shape will have a tendency to be bimodal. This means that
the resulting membership functions might be trapezoidal or
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Table 3. The EMSE and ENSE for each subset of the fuzzy neural
network using the method proposed (using fuzzy inputs) and using
the original method (using crisp inputs).

EMSE (mg L−1)2 ENSE

Proposed Original Proposed Original

Train 1.52 1.55 0.52 0.51
Validation 1.19 1.18 0.49 0.49
Test 1.09 1.10 0.54 0.54

near-trapezoidal (and hence most vague) in shape, which is
clearly demonstrated in the functions created using Dorig in
the bottom three examples. However, in each case the op-
timised bin size creates a smoother probability distribution
with a clearer modal value, resulting in membership func-
tions that are no longer trapezoidal.

Thus, without using the bin-size optimisation algorithm,
there is a risk that the resulting membership functions will
be too vague and will not represent the information that can
be gained from the observations. It is worth nothing that
for these three examples, if linear interpolation is used on
the original membership function, the resulting interpolated
fuzzy numbers will all have equal intervals (due to the trape-
zoidal shape), transferring no useful information to the final
fuzzy number.

Overall, the above examples illustrate the advantages of
using the coupled methods of bin-size optimisation and
probability–possibility transformation to create fuzzy num-
bers for the FNN application. The applicability of this
method is not necessarily restricted to this application and
can be applied whenever there is a need to construct fuzzy
numbers from observed data. The utility of the first compo-
nent, bin-size optimisation to estimate the density function
is that in cases where either not enough information is avail-
able to define a probability distribution, or if the data do not
follow the mould of a known density function, or if assump-
tions about the class of distribution cannot be made, the opti-
mum bin size can be calculated to define an empirical distri-
bution for the probability–possibility transformation. The ad-
vantage of the second component, the algorithm to construct
the possibility distribution (i.e. the membership function of
the fuzzy number) is that it provides a consistent, transparent
and objective method to convert observations (e.g. time series
data) into fuzzy numbers – which has been cited as a ma-
jor hurdle in implementing fuzzy number based applications
in the literature (Abrahart et al., 2010; Dubois and Prade,
1993; Civanlar and Trussel, 1986). A noteworthy component
of this algorithm is that the fuzzy numbers do not reduce to
the simple, triangular shaped functions that are widely used,
but rather the functions better represent the information from
the observations.

3.2 Training the fuzzy neural network

Once the observations of the abiotic input parameters (Q and
T ) were converted to fuzzy numbers, the FNN training algo-
rithm was run using five neurons in the hidden layer, to pre-
dict daily minimum DO in the Bow River. First, the values of
the fuzzy numbers at µ= 1 were used to train the crisp net-
work. This was done in order to have initial estimates of the
10 WIH (5 for each input), 5 BIH, 5 WHO, and 1 BO. These
initial estimates were used to provide the upper and lower
limits of the constraints for the proceeding optimisation al-
gorithm. Once these estimates were calculated, the optimisa-
tion algorithm was used to calculate the fuzzy weights and
biases using fuzzy inputs, and was started from µ= 0, mov-
ing sequentially to higher membership levels until µ= 0.8.
The final level (at µ= 1) was calculated using the midpoint
of the intervals estimated at µ= 0.8. The total optimisation
time for the proposed method was 13 h, whereas the existing
method with crisp inputs was 8 h, using a 2.40 GHz Intel®

Xeon microprocessor (with 4 GB RAM).
The EMSE and the Nash–Sutcliffe model efficiency coeffi-

cient (ENSE; Nash and Sutcliffe, 1970) for the training, val-
idation and testing scenarios for µ= 1 for both methods are
shown in Table 3. The EMSE for each data set are low, be-
tween 11 and 16 % of the mean annual minimum DO seen
in the Bow River for the study period. The ENSE values are
approximately equal to 0.5 for each subset, which is higher
than ENSE values in the literature for water quality param-
eters when modelled daily (see Moriasi et al. (2007) for
a survey of results) and is considered to be “satisfactory”
by their standards. In comparing the two methods, it is ob-
vious that including additional information (in the form of
fuzzy inputs) does not decrease performance, as the metrics
are nearly identical for both methods. This shows that the
proposed method has successfully incorporated input data
uncertainty in the model architecture. These model perfor-
mance metrics highlight that in general, predicting minimum
DO using abiotic inputs and a data-driven approach is an ef-
fective technique.

The results of the optimisation component of the algorithm
are summarised in Table 4, which shows the percentage of
data (PCI) captured within the resulting α-cut intervals for
each of the three data subsets. The performance for each of
the data sets (i.e. train, validation and test) for both methods
is nearly identical (on an interval-by-interval basis): the ex-
act amount of data captured within the intervals, as required
by the constraints, except for the µ= 0.8 interval. At this in-
terval, the amount of coverage decreases (i.e. lower perfor-
mance) as the membership level increases, which is unavoid-
able when the width of the uncertainty bands decrease. As
required by Eq. (12), the amount of data within the interval
has to be greater-than or equal-to the limit defined by PCI (as
per Alvisi and Franchini, 2011) which is true for all train-
ing data. This means that a solution to satisfy the constraints
with a lower amount of data (e.g. reducing the 29.91 % for
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Table 4. Percentage of data captured within each α-cut interval for
the three subsets of data.

Percent captured, PCI (%)

Proposed method Existing method

µ Train Validation Test Train Validation Test

1.00 – – – – – –
0.80 29.91 28.54 28.78 20.02 14.39 18.05
0.60 39.93 40.98 40.24 40.05 35.85 40.49
0.40 59.95 66.10 64.15 60.07 60.73 61.95
0.20 79.98 80.49 82.93 80.10 79.51 82.44
0.00 99.39 98.78 99.02 99.51 98.54 99.02

the µ= 0.8 interval for the proposed method) would either
result in non-minimal intervals (though this is unlikely) or
that the constraints on the values of the intervals could not be
maintained. This latter issue will be discussed in detail with
Fig. 5 below. Lastly, as mentioned above, the performance of
non-training data sets for both methods decrease as the inter-
val get narrow: this can be seen best by the inability for both
methods to capture the exact amount of data required at the
µ= 0.8 interval for the validation and testing data sets. These
results are similar to the testing data set in Alvisi and Fran-
chini (2011). This comparison again demonstrates the ability
of the proposed method with fuzzy inputs to function in sim-
ilar manner to the original algorithm that used crisp inputs.

A sample of the fuzzy weights and biases produced
through the optimisation are shown in Fig. 5. Note that the
membership functions are assumed to be piecewise linear
(following similar assumptions made in Alvisi and Franchini,
2011; Khan et al., 2013; Khan and Valeo, 2015), i.e. that
the intervals at each membership levels can be joined to cre-
ate a fuzzy number. This can be confirmed by the fact that
each of the weights and biases are convex where intervals
at lower levels are wider than intervals at higher levels, and
are normal with at least one element with µ= 1. Note that
each weight and bias has a non-linear membership function,
i.e. none of the functions produced follow the typical trian-
gular functions and are not necessarily symmetric about the
modal value. The shapes of the fuzzy weights and biases for
the proposed and existing methods are generally the same
for the input-hidden layer; however, differences can be seen
for the hidden-output layer plots. Since the existing method
uses crisp inputs, it requires the produced weights and biases
to represent the uncertainty in the data, to produce output
intervals wide enough to capture the set amount of obser-
vations. This is reflected in hidden-output layer plots where
the lower limit of the membership function for Weight #5 is
highly skewed, which enables this method to capture the low
DO events. Similarly, Bias #1 in the hidden-output layer has
been translated to a lower value, to produce fuzzy DO out-
puts that capture the low DO observations.

The figure demonstrates that enough α-cut levels (i.e. six
levels equally spaced between 0 and 1) have been selected

Weight no. 1 : between input and hidden layer
0 0.2 0.4 0.6 0.8

M
em

be
rs

hi
p 

le
ve

l, 
μ

0

0.2

0.4

0.6

0.8

1

Bias no. 4 : between input and hidden layer
2 2.2 2.4 2.6 2.8

M
em

be
rs

hi
p 

le
ve

l, 
μ

0

0.2

0.4

0.6

0.8

1

Weight no. 5 : between hidden and output layer
-0.05 0 0.05 0.1 0.15

M
em

be
rs

hi
p 

le
ve

l, 
μ

0

0.2

0.4

0.6

0.8

1

Bias no. 1 : between hidden and output layer
-0.3 -0.25 -0.2 -0.15 -0.1 -0.05

M
em

be
rs

hi
p 

le
ve

l, 
μ

0

0.2

0.4

0.6

0.8

1

Proposed method Existing method

Figure 5. Sample plots of the produced membership functions for
the weights and biases of the fuzzy neural network for both the pro-
posed and existing methods.

to completely define the shape of the membership functions.
At a smaller number of levels, e.g. two levels, one at µ= 0
and one at µ= 1, the fuzzy number collapses to a triangu-
lar fuzzy number, which is not desirable for this research,
as discussed in previous sections. When only two levels are
selected, the figures demonstrate that significant differences
exist between those simple functions and the ones generated
using six membership levels: the decrease in the width of the
intervals with an increase in membership level is not linear
as is in triangular shaped function. Similarly, a higher num-
ber of intervals e.g. 100 intervals, equally spaced between 0
and 1, could be selected. The risk in selecting many intervals
is that as the membership level increases (closer to 1) the
intervals become narrower as a consequence of convexity.
This will result in numerous closely spaced intervals, with
essentially equal upper and lower bounds, making the extra
information redundant. This is demonstrated in the sample
membership functions in Fig. 5 for WIH number 5 and BO
(for the proposed method) where the intervals at the higher
membership levels collapse to a singleton, or are extremely
narrow. Thus, defining more uncertainty bands between the
existing levels would not add more detail but would merely
replicate the information already calculated.

Connecting this back to the results in Table 4, these two
particular weights and biases show why the percentage of
data calculated at µ= 0.8 (for training) cannot be improved
by further optimisation. At some point, if the intervals at
µ= 0.8 for the various weights and biases collapse to a single
element, no further refinement in the model is possible (since
all the constraints are met) and the minimum interval width
of the predicted DO whilst capturing at least the PCI amount
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Figure 6. A comparison of the predicted and observed minimum DO at the µ= 0 interval (grey line) and at µ= 1 (black dots) for the
proposed (top row panels) and existing (bottom row panels) methods.

of data has been reached. It is worth emphasizing here that
the uncertainty represented by these fuzzy number weights
and biases is not the uncertainty of the particular weight or
bias, but is the total forecasting uncertainty defined by the
quantifying bands around the crisp predicted value.

Tables 3 and 4 and Fig. 5 demonstrate the overall success
of the proposed approach to calibrate an FNN model as com-
pared to a crisp ANN, as well as an FNN that uses crisp
inputs. The optimisation algorithm is defined based on the
principles of possibility theory (i.e. defining the amount of
data to include in each interval) and is a transparent, repeat-
able and objective (not arbitrary) method to create the fuzzy
numbers for the FNN model.

The observed versus crisp predictions (black dots) and
fuzzy predictions at µ= 0 (grey lines) for daily minimum
DO for the three different data subsets (training, validation
and testing) are shown in Fig. 6. The figure shows that nearly
all (specifically, 99.4, 98.8 and 99.0 % of the training, val-
idation, and testing subsets, respectively, for the proposed
method, with similar results for the crisp input FNN method)
of the observations fall within the µ= 0 interval, since the
observed values (black dots) tend to fall inside the grey lines.
This figure also highlights one of the major advantages of the
FNN over a simple non-fuzzy ANN: almost all of the fuzzy
results intersect the 1 : 1: line, whereas many of the crisp re-
sults are quite far from that line, especially at low DO values
(which is marked at 6.5 mg L−1 in the figure). In other words,
while the fuzzy number prediction may not predict the ob-
served value exactly, it provides at least some possibility of
the observed value within its various α-cut intervals, but the
crisp results do not provide this additional information. This
figure illustrates that ENSE (listed in Table 2 for the µ= 1

case only) is not representative of the entire fuzzy number
predictions, since it does not capture the performance at dif-
ferent membership levels. Thus, there is a need to develop an
equivalent performance metric when comparing crisp obser-
vations to fuzzy number predictions.

Figure 6 also demonstrates the benefit of the FNN ap-
proach as compared to the crisp ANN approach with respect
to predicting low DO (i.e. when DO is less than 6.5 mg L−1).
Both the FNN methods predict more of the low DO events
within its intervals as compared to the crisp method. The fig-
ure demonstrates that both the crisp (µ= 1) and fuzzy pre-
dictions tend to overpredict the low DO events (since they
fall above the 1 : 1: line), but the fuzzy intervals are closer
to the observations (i.e. they intersect the 1 : 1 line for the
majority of low DO events), and therefore predict some pos-
sibility (even if it is a low probability) of the low DO events
occurring. Thus, generally speaking, the ability of the FNN
to capture nearly all of the data within its predicted inter-
vals guarantees that most of the low DO events will be suc-
cessfully predicted. This is a major improvement over con-
ventional methods used to predict low DO. In comparing the
two FNN methods, both methods give similar results: the av-
erage width of predicted low DO intervals for the 9-year pe-
riod (at µ= 0) is 8.84 mg L−1 for the proposed method, and
8.60 mg L−1 for the existing method. The impact of the width
of the predicted intervals is discussed later.

Trend plots of observed minimum DO and predicted fuzzy
minimum DO for the years 2004, 2006, 2007 and 2010 are il-
lustrated in Figs. 7 and 8. These results are shown only for the
proposed method for clarity; the difference between the ex-
isting method (using crisp inputs) and the proposed method
(using fuzzy inputs) is discussed later. These years were se-
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Figure 7. A comparison of the observed and predicted minimum DO trends for 2004 (top panel) and 2006 (bottom panel).

Figure 8. A comparison of the observed and predicted minimum DO trends for 3 sample years: 2007 (top panel) and 2010 (bottom panel).

lected due to the high number of low DO occurrences in each
year (as listed in Table 1), and highlight the utility of the pro-
posed method to predict minimum DO using abiotic factors
in the absence of a complete understanding of the physical
mechanisms that govern DO in the Bow River. Note that for
each year, 50 % of the data are training data, 25 % are valida-
tion data and 25 % are testing data. However, for clarity this
difference is not individually highlighted for each data point
in these figures.

In Figs. 7 and 8, the predicted minimum DO at equiva-
lent membership levels (e.g. 0L or 0R) at different time steps
are joined together, creating bands representative of the pre-
dicted fuzzy numbers calculated at each time step. In doing
so, it is apparent that all the observed values fall within the
µ= 0 interval for the years 2006, 2007 and 2010, and all but
one observation in 2004. The width of each band represents
the amount of uncertainty associated with each membership
level. For example, the bands are the widest at µ= 0, mean-
ing the results have the most vagueness associated with it.
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Figure 9. Zoomed-in views of the trend plots for 4 sample years corresponding to important periods with low DO occurrences.

Narrower bands are seen as the membership level increases
until µ= 1. This reflects a decrease in vagueness, increase
in credibility, or less uncertainty of the predicted value, as
the membership level increases. Note that the majority of
the predictions at µ= 1 are single elements but some pre-
dictions are α-cut intervals (e.g. [a b]µ=1). This means that
when not enough information is available, the fuzzy predic-
tion collapse to trapezoidal membership functions.

In each of the years shown, the majority of the observa-
tions tend to fall within the µ= 0.2 interval or higher, with
only the low DO (i.e. < 5 mg L−1) falling within the µ= 0
and µ= 0.2 bands. This suggests that the low DO events
are predicted with less certainty compared to the occasions
when DO concentration is high. Also note that the interval
at µ= 0 is highly skewed towards the lower limit (µ= 0L),
i.e. the modal value is not at the centre of the interval. This
shows that the FNN has been trained to capture these low
DO events, but predicts them with lower credibility. Com-
pared to the crisp results (i.e. those at µ= 1), for these low
DO events, the proposed method provides some possibility
of low DO, whereas the crisp results do not predict a possi-
bility of low DO. Thus, the ability to capture the full array of
DO observations within different intervals is an advantage of
the proposed method over existing methods.

The trend plot for 2004 shows that observed DO decreases
rapidly from late June to late July, followed by a few days
of missing data and near-zero observations, before increas-
ing to higher concentrations. Details of this trend are shown
in Fig. 9 which shows magnified versions of important peri-
ods for each year. The reason for this rapid decrease in 2004
is unclear and may be related to problems with the real-time
monitoring device which was in its first year of operation
that year. However, it demonstrates that the efficacy of data-

driven methods is dependent on the quality of the data. Since
the proposed method was calibrated to capture nearly all
the observations (including outliers like those seen in 2004)
within the least certain band at µ= 0, the resulting network
predicts results to include these outliers, but at low credibility
levels. As the data length increases (i.e. more data are added
and the FNN is subsequently updated), the number of these
types of outliers included within theµ= 0 band will decrease
because the optimisation algorithm (Eqs. 12 to 14) searches
for the smallest width of the interval whilst including 99.5 %
of the data. Thus, with more data, it is expected that these
extreme events (i.e. the outliers seen in 2004) will no longer
be captured within the µ= 0 band.

The time series plot for 2006 shows that all the observa-
tions fall within the predicted intervals, and that the predicted
trend generally follows the observed trend. The majority of
the 25 low DO events (< 5 mg L−1) occur from mid-July and
continue occasionally until mid-September. Details of some
of these low DO events are plotted in Fig. 9. Figure 7 demon-
strates these low DO events are captured between µ= 0
and 0.2 intervals, similar to the 2004 case, meaning that the
credibility of these predictions is the lowest. However, unlike
the 2004 case, Fig. 9 demonstrates that in 2006 the predicted
intervals tend to follow the same trend as the observations
for these low DO events, even if it is predicting them at a low
credibility.

In contrast to the results from 2004 and 2006, the major-
ity of observations are captured at higher membership levels
(i.e. greater than µ= 0.2) in 2007 as shown in Fig. 8. That
is, only a limited number of observations are captured within
the lowest credibility band. More importantly, 26 out of the
27 low DO (< 6.5 mg L−1) events are captured at a member-
ship level greater than 0.2L, meaning that the low DO predic-
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tions in 2007 for the 6.5 mg L−1 guideline are predicted with
higher credibility than the 2004 and 2006 cases. Another dif-
ference for the results from this year is that many of the low
DO observations for 2007 are more evenly scattered around
the µ= 1 predictions (as seen in Fig. 9), in contrast to the
2004 and 2006 cases, where the low DO events were always
predicted to be closer to lower bounds of the intervals.

The trend plot for 2010 is shown in Fig. 8, and it is clear
that all observations fall within the µ= 0.2 interval or at
higher α-level intervals, meaning that the predictions cap-
ture the observations with higher certainty. This is likely due
to the lack of DO events below 5 or 6.5 mg L−1 in 2010.
Also of note for this year is that all observations are less
than 10 mg L−1, and about 90 % of all observations are be-
low the 9.5 mg L−1 guideline (as listed in Table 1). The trend
plot again illustrates that the FNN generally reproduces the
overall trend of observed minimum DO. This can be seen in a
period in early May where DO falls from a high of 10 mg L−1

to a low of 7 mg L−1, and all the predicted intervals replicate
the trend. This is an indication that the two abiotic input pa-
rameters are suitable parameters for predicting minimum DO
in this urbanised watershed.

Figure 9 shows details of a low DO (< 9.5 mg L−1) event
in 2010 in late July through to late August. The bulk of
low DO events are captured between the µ= 0.6R and 0.2R

intervals – demonstrating that these values are predicted
with higher credibility than the other low DO cases in 2004
and 2006, and are predicted closer to the upper end of the
interval. All of the low DO (< 9.5 mg L−1) observations in
this plot are underpredicted by the crisp method (though not
with the FNN method, since they are captured within a fuzzy
interval). This shows that the crisp ANN results tend to over-
predict extremely low DO events (i.e.< 5 mg L−1) while un-
derpredicting the DO< 9.5 mg L−1 events.

The analysis of the trend plots for these four sample years
shows that the proposed FNN method is extremely versatile
in capturing the observed daily minimum DO in the Bow
River using Q and T as inputs. The crisp case (at µ= 1)
cannot capture the low DO events (as shown in Figs. 7
and 8); however, the FNN is able to capture these low DO
events. Generally speaking, the training method selected for
the FNN has been successful in creating nested intervals to
represent the predicted fuzzy numbers. The widths of the pre-
dicted intervals correspond to the certainty of the predictions
(i.e. larger intervals for more uncertainty). The utility of this
method is further demonstrated in Sect. 3.3, where the risk of
low DO is estimated using a possibility–probability (i.e. de-
fuzzification) technique.

Figure 10 shows a comparison of the predicted minimum
DO trends from both the proposed FNN method (solid black
line) and the existing FNN method (dashed black line), along
with the observed data (circles) for each membership level
for the 2009 data. These figures show that despite the use
of more data for the inputs (i.e. fuzzy numbers versus crisp
numbers), both methods are optimised to show similar re-

sults (due to the optimisation algorithm requiring a specific
amount of data being captured at each level). This shows that
the optimisation algorithm developed in this manuscript for
fuzzy inputs successfully mimics the original algorithm de-
veloped by Alvisi and Franchini (2011) that only used crisp
inputs. Thus, when modelling a complex system, such as
the minimum daily DO in the Bow River, the uncertainty in
the inputs can also be quantified and propagated through the
data-driven model, by using the proposed method. This is a
major advantage over the original model (Alvisi and Fran-
chini, 2011) that only allowed crisp inputs to be used. Note
that as per Table 4, both methods approximately capture the
same amount of data at each interval, however as Fig. 10 in-
dicates this does not necessarily mean that the predicted in-
tervals are exactly the same for both methods. Both methods
predict unique intervals, with the overall result being that PCI
amount of data is captured within each interval. Note that at
the interval µ= 1, the existing method using crisp inputs by
design predicts this interval as a singleton (thus the interval
width will always be zero), whereas the proposed method has
an additional feature of predicting an interval for the µ= 1
level. An instance of this can be seen near the end of Septem-
ber where an interval is predicted rather than a singleton.

Figure 11 compares with width of predicted intervals at
four selected membership levels for both methods, gener-
ally showing mixed results. As discussed above the existing
method does not predict an interval forµ= 1, thus, a compar-
ison cannot be made and is not included. At theµ= 0.8 level,
the average width of the intervals for the existing method is
close to 0, whereas for the proposed method is 0.36 mg L−1.
This is consistent with the results shown in Table 4 and Fig. 5,
which demonstrate the narrow interval at higher membership
levels. Annual comparisons of the remaining intervals show
that the intervals at µ= 0 are larger for the proposed method
compared to the existing method for all but one year (2009).
However, at µ= 0.2, 0.4 and 0.6, the width of the intervals
is smaller for the proposed method for a majority of years,
however the overall differences are not statistically signifi-
cant (p> 0.05 using the two-sample Kolmogorov–Smirnov
test). The results demonstrate that while both method can
achieve the optimisation objectives whilst respecting the con-
straints (i.e. PCI), it is reflected differently in the predicted
fuzzy intervals. Generally, the predicted fuzzy numbers using
the proposed method have a larger support (at µ= 0) signify-
ing that the increased uncertainty due to fuzzy inputs into the
model are propagated through the model. Whereas, the lack
of inclusion of uncertain input data in the existing method
results in a slightly narrower average support. In essence, the
proposed FNN model is modelling a more complex system
(because of the inclusion of input uncertainty) whereas the
existing method models the system by assuming lower com-
plexity (by ignoring the input uncertainty).
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Figure 10. Comparison of predicted trends of the proposed (solid black line) and existing (dashed black line) methods shown for 2009 for
each membership level. Observations are shown as black circles.
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Figure 11. A comparison of average annual interval widths of pre-
dicted fuzzy numbers using the proposed and existing FNN methods
for four selected membership levels.

3.3 Risk analysis for low DO events

The utility of the FNN method is illustrated through an anal-
ysis of the ability of the proposed model to predict low DO
events, and then a possibility–probability transformation is
used to assess the risk of these low DO events. The num-
ber of occasions when observed DO was below any of the
three guidelines used for this research are summarised in Ta-
ble 1. The FNN model was cable to capture 100 % of all low
DO events (i.e. below 5, or 6.5 or 9.5 mg L−1) within the
predicted intervals. In comparison, the crisp ANN network
(i.e. at µ= 1) did not predict DO to be less than 5 mg L−1

on any of the 51 occasions. Similarly, it predicted DO to be
less than the more conservative limit of 6.5 mg L−1 in only
53 % of the 184 occurrences. For the last case, the 9.5 mg L−1

limit, the ANN method still trailed the FNN method, by pre-
dicting 96 % of these low DO events. This illustrates that
not only can the FNN method capture more low DO events
within its predicted intervals, it also performs exceptionally
better for the highest risk case (DO< 5 mg L−1). In general,
more days were correctly identified when there was a risk of
low DO using FNN rather than the typical ANN approach.
This is one of the major advantages of using a fuzzy number
based uncertainty analysis component for low DO prediction.
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Figure 12. Sample plots of low DO events and the corresponding risk of low DO calculated using a possibility–probability transformation
for the 5 mg L−1 (top panels), 6.5 mg L−1 (middle panels), and 9.5 mg L−1 (bottom panels) guidelines.

Once all the low DO events were identified, the inverse
transformation (defuzzification) described in Sect. 2.4 was
used to estimate the probability of low DO. The primary rea-
son for converting from possibility to probability is to im-
prove the communication of the risk of low DO. For each
low DO event (i.e. at 5, or 6 or 9.5 mg L−1), the predicted
membership function was used to determine the possibil-
ity of low DO, i.e. identify the membership level where
the membership function intersects either of the low DO
guidelines (some examples of low DO events are shown in
Fig. 12). Once these were identified, the defuzzification tech-
nique was used to predict the probability of low DO (e.g.
P({DO< 5 mg L−1

})).
For the first case, P {(DO< 5 mg L−1

}), the probability
ranged between 11.5 and 16.6 % for the 51 events, with a
median value of 14 %. This means that on days when DO
was observed to be below 5 mg L−1, the FNN results identi-
fied the possibility of low DO and the probability of DO to
be below the 5 mg L−1 guideline of ∼ 14 %. Thus, the FNN
method predicts a probability of low DO (even if it is rela-
tively small) on days when the crisp ANN does not predict a
low DO event. This value can be used as a threshold by water
resource managers for estimating the risk of low DO. For ex-

ample, if forecast water temperature and flow rate are used to
predict minimum fuzzy DO using the calibrated model, and
if the risk of low DO reaches 14 %, the event can be flagged.
Appropriate defence mechanisms can then be implemented
to prevent the occurrence of low DO.

For the 184 cases where DO was observed to be less than
6.5 mg L−1, the probability–possibility transformation esti-
mated the risk of low DO to be between 13.7 and 92.9 %,
with a median value of 73.4 %. Compared to the first case,
the probability of low DO for this threshold is higher and
more variable. The low probabilities are associated with pre-
dictions of low DO at lower credibility levels at the lower
limit of the intervals (i.e. L), whereas the higher probabili-
ties are associated with predictions corresponding to the up-
per limits of the intervals (R). For 43 out of the 184 low DO
events, the probability of low DO was less than 21 % – these
events correspond to predictions of low DO at low credibility
levels at the lower limits. For the majority of events (107 out
of 184), the risk was high, more than 65 %. It is worth noting
that the crisp network only predicted 53 % of these low DO
events, and of those correctly identified, the majority were
over-predicted.
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For the last, most conservative case, the probability of pre-
dicting DO to be less than 9.5 mg L−1 (1179 events) varied
between 21.9 and 100 %, with a median value of 98.1 %.
Only 46 out of the 1179 events had a probability of less than
70 %; the majority of events had a high risk of low DO: more
than 80 % of the events had a risk of low DO of more than
90 %. This shows that the FNN can predict, with high proba-
bility, the events where minimum daily DO is observed to be
below the 9.5 mg L−1 limit.

It is worth noting here that the proposed FNN model was
designed to only include data from the April to October
each year, corresponding to the ice-free period (as defined
in Sect. 2.1). This implies that the analysis has been con-
ducted on the time period that is most critical or susceptible
to low DO. Thus, as the proposed FNN model predicts, there
is possibility of low DO on most days (as shown in the trend
plots in Figs. 7 and 8). However, the consistency principle
(Zadeh, 1978) implies that an event must be possible before
it is probable. Thus, a possibility to predict low DO does not
imply that it will occur with a high probability. In fact, nearly
all the possibility of low DO events occurs at low member-
ship levels (i.e. µ< 0.2) implying a low possibility – and the
skewed nature of the results deem the probability to be low
as well. For example, for the DO< 5 mg L−1 case, the pro-
posed FNN model predicted 1367 days where low DO was
predicted but not observed, however, on average the prob-
ability of low DO for 98 % of these events was below the
threshold criteria (14 %) mentioned above. Thus, the number
of “false alarms” predicted by the proposed method is very
low. Similarly, for the DO< 6.5 and 9.5 mg L−1 cases, each
had ∼ 94 % of the low DO cases to fall below their respec-
tive threshold criteria. This shows that while FNN model cor-
rectly predicts a possibility of low DO for the majority of the
days (corresponding to the typical low DO conditions), the
risk of predicting a “false alarm” is low. Lastly, it should be
noted that the wide intervals predicted at µ= 0 are a func-
tion of the rapidly decreasing low DO value seen in 2004
(discussed in Sect. 3.2) that are likely due to instrument er-
ror. With the inclusion of new data as it becomes available,
and as the model parameters are updated, it is expected that
these outliers will be part of the 0.5 % of PCI not included in
the predicted intervals, resulting in narrower bands of predic-
tions.

The predicted membership functions of minimum DO for
nine examples are shown Fig. 12, along with the observed
minimum DO (the vertical dashed line). Three samples are
shown for each low DO guideline: 5, 6.5, or 9.5 mg L−1;
along with the associated risk of low DO calculated us-
ing the defuzzification technique. Note that the membership
functions of the predicted fuzzy numbers show that each is
uniquely shaped, convex and normal, highlighting the fact
that the proposed optimisation algorithm successfully pro-
duces nested intervals at each membership levels (as it does
for the weights and biases shown in Fig. 5). For the predicted
fuzzy DO, the intervals are largest at µ= 0, which decrease

in size as the membership level increases. The shape of the
membership functions are not triangular shaped as assumed
in many fuzzy number based applications. This is of signif-
icance because it shows that the amount of uncertainty (or
credibility) of the model output does not change linearly with
the magnitude of DO, which has important implications re-
garding the risk of low DO.

For the 5 mg L−1 guideline, the intersection of the mem-
bership function and the guideline occurs at low possibility
levels (between µ= 0L and 0.2L), meaning that the corre-
sponding probability will be low as well, as illustrated by the
probability values shown in the figure. This again highlights
that the risk of low DO (< 5 mg L−1) is predicted to be low
by the FNN mostly due to the fact that the observations are
captured at low membership levels. Note that the crisp ANN
results (at µ= 1) always overpredict low DO, as shown in
these three examples. The observed value falls within the pre-
dicted interval for each case, also at low membership levels.

The examples for the 6.5 mg L−1 guideline (second row in
Fig. 12) show that the intersection between the membership
function and the guidelines occurs between µ= 0.4 and 0.6
on 26 July 2006, between µ= 0.6 and 0.8 on 8 August 2007,
and at about µ= 0.6 on 29 September 2004. This illustrates
the broader trend with the 6.5 mg L−1 guideline (which was
discussed earlier and had a large range of risk predictions),
which is that for the full data set, the possibility of low DO
(< 6.5 mg L−1) occurs at every interval, with the majority oc-
curring at higher intervals. This is in contrast to the 5 mg L−1

guideline where the possibility of low DO only occurs be-
tween µ= 0 and 0.2.

The last row in Fig. 12 show sample low DO results for the
9.5 mg L−1 guideline. As discussed above, more than 80 % of
these events had a high (more than 90 %) risk of low DO. In
the first example, on 23 September 2004, the guideline in-
tersects the membership function at µ=∼ 0.2R, correspond-
ing to a ∼ 97 % risk of low DO. The 6 August 2008 has a
low DO prediction of 100 % – this is because the predicted
fuzzy number is entirely below the guideline limit. A simi-
lar result can be seen for the last example. These examples
also illustrate that had only a triangular membership function
been used (i.e. the fuzzy numbers defined at two membership
levels), the probability of low DO could not be quantified as
specifically as it has been here. The slight changes in mem-
bership function shapes between intervals impact the final
probability, and a linear function would have not captured
these changes.

These examples are meant to illustrate the potential util-
ity of the data-driven and abiotic input parameter DO model,
which can be used to assess the risk of low DO. Given that
it is a data-driven approach, the model can be continually
updated as more data are available, further refining the pre-
dictions. Various combinations of input values can be used
to predict fuzzy minimum DO and defuzzification technique
can be used to quantify the risk of low DO given the input
values. The utility of this method is that a water-resource
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manager can use forecasted water temperature data and ex-
pected flow rates to quantify the risk of low DO events in the
Bow River, and can plan accordingly. For example, if the risk
of low DO reaches a specific numerical threshold or trigger,
different actions or strategies (e.g. increasing flow rate in the
river by controlled release from the upstream dams) can be
implemented. The quantification of the risk to specific prob-
abilities means that the severity of the response can be tuned
to the severity of the calculated risk.

4 Conclusions

A new method to predict DO concentration in an urbanised
watershed is proposed. Given the lack of understanding of
the physical system that governs DO concentration in the
Bow River (in Calgary, Canada), a data-driven approach us-
ing fuzzy numbers is proposed to account for the uncertainty.
Further, the model uses abiotic (non-living, physical and
chemical attributes) factors as inputs to the model. Specifi-
cally, water temperature and flow rate were selected, which
are routinely monitored, and thus a large data set is available.

The data-driven approach proposed is a modification of an
existing fuzzy neural network method that quantifies the to-
tal uncertainty in the model by using fuzzy number weights
and biases. The proposed model refines the exiting model
by (i) using possibility theory based intervals to calibrate
the neural network (rather than arbitrarily selecting confi-
dence intervals), and (ii) using fuzzy number inputs rather
than crisp inputs. This research also proposes a new two-
step method to construct these fuzzy number inputs using
observations. First a bin-size optimising algorithm is used to
find the optimum histogram (as an estimate of the underlying
but unknown probably density function of the observations).
Then a probability–possibility transformation is used to de-
termine the shape of the fuzzy number membership function.

The results demonstrate that the network training algo-
rithm proposed can be successfully implemented. Model re-
sults demonstrate that low DO events are better captured by
the fuzzy network as compared to a non-fuzzy network. A
defuzzification technique is then used to calculate the risk
of low DO events. Generally speaking, the method demon-
strates that a data-driven approach using abiotic inputs is a
feasible method for predicting minimum daily DO. Results
from this research can be implemented by water resource
managers to assess conditions that lead to and quantify the
risk of low DO.

5 Data availability
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