Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-4913-2014
https://doi.org/10.5194/hess-18-4913-2014
Research article
 | 
08 Dec 2014
Research article |  | 08 Dec 2014

Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach

D. J. Peres and A. Cancelliere

Related authors

Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022,https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022,https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment
David J. Peres, Alfonso Senatore, Paola Nanni, Antonino Cancelliere, Giuseppe Mendicino, and Brunella Bonaccorso
Nat. Hazards Earth Syst. Sci., 20, 3057–3082, https://doi.org/10.5194/nhess-20-3057-2020,https://doi.org/10.5194/nhess-20-3057-2020, 2020
Short summary
Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds
David J. Peres, Antonino Cancelliere, Roberto Greco, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-633-2018,https://doi.org/10.5194/nhess-18-633-2018, 2018
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024,https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023,https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023,https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary
Recession discharge from compartmentalized bedrock hillslopes
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022,https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary

Cited articles

Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, 2004.
Balistrocchi, M. and Bacchi, B.: Modelling the statistical dependence of rainfall event variables through copula functions, Hydrol. Earth Syst. Sci., 15, 1959–1977, https://doi.org/10.5194/hess-15-1959-2011, 2011.
Balistrocchi, M., Grossi, G., and Bacchi, B.: An analytical probabilistic model of the quality efficiency of a sewer tank, Water Resour. Res., 45, W12420, https://doi.org/10.1029/2009WR007822, 2009.
Barnes, L., Gruntfest, E., Hayden, M., Schultz, D., and Benight, C.: False alarms and close calls: A conceptual model of warning accuracy, Weather Forecast., 22, 1140–1147, 2007.
Download
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.