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Abstract. Assessment of landslide-triggering rainfall thresh-

olds is useful for early warning in prone areas.

In this paper, it is shown how stochastic rainfall mod-

els and hydrological and slope stability physically based

models can be advantageously combined in a Monte Carlo

simulation framework to generate virtually unlimited-length

synthetic rainfall and related slope stability factor of safety

data, exploiting the information contained in observed

rainfall records and field-measurements of soil hydraulic

and geotechnical parameters. The synthetic data set, di-

chotomized in triggering and non-triggering rainfall events,

is analyzed by receiver operating characteristics (ROC) anal-

ysis to derive stochastic-input physically based thresholds

that optimize the trade-off between correct and wrong pre-

dictions. Moreover, the specific modeling framework imple-

mented in this work, based on hourly analysis, enables one to

analyze the uncertainty related to variability of rainfall inten-

sity within events and to past rainfall (antecedent rainfall).

A specific focus is dedicated to the widely used power-law

rainfall intensity–duration (I–D) thresholds.

Results indicate that variability of intensity during rain-

fall events influences significantly rainfall intensity and dura-

tion associated with landslide triggering. Remarkably, when

a time-variable rainfall-rate event is considered, the simu-

lated triggering points may be separated with a very good ap-

proximation from the non-triggering ones by a I–D power-

law equation, while a representation of rainfall as constant–

intensity hyetographs globally leads to non-conservative re-

sults. This indicates that the I–D power-law equation is ad-

equate to represent the triggering part due to transient infil-

tration produced by rainfall events of variable intensity and

thus gives a physically based justification for this widely used

threshold form, which provides results that are valid when

landslide occurrence is mostly due to that part. These con-

ditions are more likely to occur in hillslopes of low spe-

cific upslope contributing area, relatively high hydraulic con-

ductivity and high critical wetness ratio. Otherwise, rainfall

time history occurring before single rainfall events influences

landslide triggering, determining whether a threshold based

only on rainfall intensity and duration may be sufficient or

it needs to be improved by the introduction of antecedent

rainfall variables. Further analyses show that predictability

of landslides decreases with soil depth, critical wetness ra-

tio and the increase of vertical basal drainage (leakage) that

occurs in the presence of a fractured bedrock.

1 Introduction

Rainfall thresholds indicating landslide triggering are useful

for the development of early warning systems in prone ar-

eas (cf., e.g., Keefer et al., 1987; Fathani et al., 2009; Takara

and Apip Bagiawan, 2009; Baum and Godt, 2010; Cappar-

elli and Versace, 2011). Commonly, such thresholds are de-

rived by the analysis of historical rainfall and landslide data,

and identified by drawing a lower-bound envelope curve of

the triggering event characteristics (e.g., Campbell, 1975;

Caine, 1980; Cancelli and Nova, 1985; Cannon and Ellen,

1985; Aleotti, 2004; Wieczorek et al., 2000; Guzzetti et al.,

2007) or by enhanced methods which consider curves associ-

ated with a given frequency of non-exceedance by triggering

events (cf. Brunetti et al., 2010; Peruccacci et al., 2012).

A review by Guzzetti et al. (2007) indicated the prevailing

use in literature of so-called power-law rainfall intensity–

duration (I–D) thresholds, which are of the form I = a1D
a2 ,

where D is rain duration to triggering and I is rain intensity
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I =W/D, W being rainfall accumulated over duration D.

The a1 and a2 parameters have been derived by different re-

searchers, for specific sites, regions or the whole globe.

Many factors of uncertainty affect the reliability of empir-

ical thresholds, such as rainfall temporal and spatial variabil-

ity, uncertain knowledge of the triggering instants, simplicity

of threshold equation that does not include all control vari-

ables and statistical issues as well (Peruccacci et al., 2012).

Nonetheless, it can be argued that most of the uncertainty

stems from the availability and quality of the data used to

derive the thresholds (Glade et al., 2000; Berti et al., 2012).

In fact, adequate historical data on landslides and simul-

taneous rainfall are in most cases available for a relatively

short period, which may not be sufficiently significant from

a statistical point of view. Moreover, the identification of

the triggering instant is in many cases significantly uncertain

and landslide archives are seldom complete (i.e., all landslide

events occurred in the historical period are not known). This

has a direct consequence on threshold derivation, because

critical (where critical here means corresponding to landslide

triggering) duration D, assumed as the time interval from

rainfall event start and the triggering instant, cannot be com-

puted accurately. Another key factor is the criterion used for

rainfall identification, and in particular how the beginning of

a rainfall event is identified. Many authors either do not spec-

ify the criteria used for rainfall identification or apply qualita-

tive criteria, and indeed only few works in literature (Aleotti,

2004; Brunetti et al., 2010; Tiranti and Rabuffetti, 2010; Berti

et al., 2012) explicitly addressed this problem. This makes

thresholds subjective and impairs comparisons of results ob-

tained by different researchers, as in analyzing the data the

criterion may have been modified from one rainfall event to

another. Another point is that in many countries automatic

rain gauge networks have been installed only quite recently,

and one has to rely on analysis based on rainfall records at the

daily aggregation timescale (cf. Guzzetti et al., 2007, and ref-

erences therein). Since many landslides, especially the most

devastating shallow rapidly moving ones, may be triggered

by rainfall events of a few hours (cf., e.g., Highland and Bo-

browsky, 2008), use of daily rainfall for threshold derivation

in these cases is quite questionable.

Apart from data quality issues, it can be pointed out that

use of characteristic variables for the representation of rain-

fall events, and in particular of their intensity and duration,

introduces an intrinsic uncertainty factor, because these vari-

ables may not be adequate to represent all the rainfall char-

acteristics that affect landslide triggering. In fact, rainfall

events represented by the same values of duration and in-

tensity may correspond to totally different event time histo-

ries (hyetographs) that thus may or may not result in trig-

gering. Sirangelo and Versace (1996) proposed an empiri-

cal method based on the use of convolution between rainfall

time series and a filter function, which attempts to overcome

this uncertainty. Also, use of solely the duration and intensity

pair (D,I) in threshold formulation implies that the effect of

initial wetness on triggering rainfall is neglected. Regarding

this issue, several authors have added to D and I antecedent

rainfall as a control parameter, though the empirical analy-

ses have not yet provided unequivocal indications on the role

of antecedent rainfall and different researchers used diverse

temporal horizons for its computation (Guzzetti et al., 2007).

Another important point is that many thresholds have been

derived by analyzing triggering events only and thus neglect-

ing the non-triggering ones. This may lead to an underesti-

mation of the triggering conditions, i.e., to thresholds that im-

plemented in a early warning system tend to produce an un-

acceptable degree of false alarms, causing populations to no

longer rely on early warnings (so-called cry-wolf effect; cf.,

e.g., Barnes et al., 2007). In fact, thresholds always should

be provided with a measure of their reliability. To this end,

Berti et al. (2012) proposed Bayesian probabilistic analysis

to evaluate landslide-triggering thresholds in the presence of

uncertainty. Receiver operating characteristics (ROC) analy-

sis (cf., e.g., Wilks, 2011), based on the analysis of correct

and wrong predictions, may be advantageously applied as

well (cf., e.g., Staley et al., 2013).

Alternatively to empirical models, physically based mod-

els that couple hydrological and slope stability analysis

(Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Iver-

son, 2000; Baum et al., 2002; D’Odorico et al., 2005; Rosso

et al., 2006; Baum et al., 2008) have been proposed to assess

landslide triggering by rainfall, with the advantage that they

take explicitly into account the meteorological, hydrological

and geomechanical processes and variables that determine

landslide triggering. From such models physically based

thresholds may be derived (cf., e.g., Rosso et al., 2006; Sal-

ciarini et al., 2008). Such thresholds generally deviate from

a straight line in the log(D)–log(I ) plane; this casts some

doubts on the use of the power-law as a proper functional

form for deriving rainfall thresholds. In other words, be-

cause such thresholds were derived from a physically based

model, this may be interpreted as an evidence that the use

of the power-law form is not supported from a physically

based standpoint. Nevertheless, in such studies the meteoro-

logical aspects were analyzed in a simplistic way, because

the thresholds do not consider variability of rainfall intensity

during events and the initial conditions are not computed as a

function of rainfall time history preceding the current event.

In spite of the limitations that we have put into evidence

above, I–D rainfall thresholds are widely applied for land-

slide early warning systems. Perhaps their success is due to

the fact that simple forms of the threshold are more easily un-

derstood by stakeholders and decision makers than the more

complex, albeit more accurate, physically based models.

In this paper, a Monte Carlo-based methodology to de-

rive and evaluate rainfall landslide-triggering thresholds is

proposed, which makes use of an existing body of stochas-

tic and physically based models. The approach combines

research findings in the fields of rainfall and landslide hy-

drological modeling to provide an output that can be eas-
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ily implemented in a early warning system, i.e., a landslide-

triggering threshold, based on rainfall monitoring, of the

same type that is commonly derived by direct empirical

analysis of observed rainfall and landslide data. In particu-

lar, from the Monte Carlo simulations synthetic rainfall se-

ries are generated by a stochastic model and corresponding

triggering/non-triggering conditions are identified by an hy-

drological and slope stability model. The generated data set is

then analyzed to derive and evaluate I–D thresholds that take

into account the variability of both rainfall intensity within

events and initial conditions determined by past rainfall, as

well as triggering/non-triggering events to measure uncer-

tainty by ROC analysis. Furthermore, the derived stochastic-

input physically based thresholds are compared with the

constant-intensity physically based thresholds, which result

from the simplistic assumption mentioned above (uniform

hyetographs and prefixed initial conditions) in order to assess

the effect on landslide triggering of rain intensity variability

during events and variable initial conditions, computed as de-

pendent by past rainfall time history. This analysis is related

to the one by D’Odorico et al. (2005), in which the effect of

rain intensity variability within events is studied by consider-

ing beta-shaped hyetographs inputs to the model of Iverson

(2000) for derivation of hillslope response. Nevertheless, in

their work, the variability of initial conditions as dependent

from antecedent rainfall has not been considered because the

steady-state asymptotic solution of Montgomery and Diet-

rich (1994) is utilized for computation of initial conditions.

From their study they conclude that beta-shaped non-uniform

hyetographs have a stronger destabilizing effect than uni-

form hyetographs of the same volume, since the associated

return period of slope instability resulted higher in this last

case. In this study we instead use hyetographs generated by

a Neyman–Scott rectangular pulses (NSRP) stochastic model

(Neyman and Scott, 1958; Kavvas and Delleur, 1975; Cox

and Isham, 1980; Rodriguez-Iturbe et al., 1987a) and account

for variability of initial conditions using a water table reces-

sion model to derive the initial water table height from the

response to rainfall events preceding the current one, based

on a linear reservoir mass-conservation equation with simi-

lar assumptions adopted by Rosso et al. (2006). The transient

response to rainfall events is computed by a model based

on the transient rainfall infiltration and grid-based regional

slope-stability (TRIGRS) program (Baum et al., 2008). An

application of the proposed methodology is carried out to

the highly landslide-prone area of the Peloritani mountains,

north-eastern Sicily, Italy. A sensitivity analysis on some of

the most important control variables is carried out to analyze

their effect on landslide-triggering thresholds and the associ-

ated uncertainty.

2 Monte Carlo synthetic data generation

The Monte Carlo simulation procedure for synthetic rainfall–

landslide data generation consists of the following steps:

1. A stochastic rainfall model, calibrated on observations

at a selected site, is used to generate a 1000-year long

hourly rainfall time series. In particular we use a NSRP

model (see Appendix A)

2. The synthetic rainfall time series is pre-processed in or-

der to identify rainfall events and their inter-arrival du-

rations. In particular, when two wet spells are separated

by a dry time interval less than 1tmin, these are con-

sidered to belong to the same rainfall event; otherwise

two separate rainfall events are considered. Details on

the choice of the 1tmin simulation parameter are given

at the end of this section

3. Some of the generated rainfall events are removed

from the analysis because, according to the hydrolog-

ical model, they will produce no significant variation

of pressure head distribution, as their instantaneous

(hourly) intensity is too low. In particular the events

having maximum intensity less than imin are removed

from the analysis. We assume imin equal to the leakage

flux limit, given by cdKS(1− cos2δ), cd being the verti-

cal leakage ratio, KS the saturated hydraulic conductiv-

ity and δ the slope of the hillslope (see Appendix B)

4. Application of previous steps leads to the generation of

NRE individual rainfall events

5. An initial value of the water table height is fixed to start

simulations of the hydrological response for the whole

rainfall time series. For the analyzed case-study area and

many similar cases, it may be assumed that at the be-

ginning of each hydrological year the water table is at

the basal boundary, because an almost totally dry season

had come prior to it (this may be a slightly conservative

assumption, since pressure head at the soil–bedrock in-

terface may assume negative values after a long dry sea-

son). As this is valid also for the first year, simulation

for first event is conducted considering the water table

at the soil–bedrock interface

6. The response to the generated rainfall events is simu-

lated by the models described in Appendix B and the

following procedure to be applied for i = 1,2, . . .,NRE:

a. Response in terms of pressure head ψ within rain-

fall events is computed using the TRIGRS model

(Baum et al., 2008, 2010) (see Sect. B2). As pres-

sure head rise may continue after the end of rainfall,

the TRIGRS transient response simulation interval

is prolonged1ta =1tmin−1 h after the ending time

tend,i of rainfall events.
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b. The instant tf,i =max(tend,i, tmax,i) is looked for,

where tmax being the time instant at which maxi-

mum transient pressure head occurs. It follows that

the final response to rainfall event i, in terms of wa-

ter table height, is ψ(dLZ, tf,i)/β, where β = cos2δ

(slope parallel flow is assumed), and dLZ is the soil

depth. Moreover, the time interval 1ti+1 = t
(in)
i+1−

tf,i is computed, with t
(in)
i+1 being the instant at which

rainfall event i+ 1 begins.

c. The water table height at the beginning of rainfall

event i+1 is computed by a sub-horizontal drainage

model (see Sect. B1) which uses ψ(dLZ, tf,i)/β and

1ti+1.

7. The result is a series of maximum pressure head, or

minimum factor of safety FS responses (computed by

infinite-slope stability analysis; see Sect. B3), corre-

sponding to the NRE rainfall events. The rainfall and

the FS series are together analyzed to derive and evalu-

ate landslide-triggering thresholds via a ROC-based ap-

proach (see Sect. 3).

Regarding the choice of the inter-event time 1tmin – an

issue that is the focus of some works in literature (e.g.,

Restrepo-Posada and Eagleson, 1982; Bonta and Rao, 1988)

– we have followed an approach analogous to that used by

Balistrocchi et al. (2009) and Balistrocchi and Bacchi (2011)

– for which the inter-event time may be assumed as the min-

imum time needed to avoid overlapping of the response pro-

duced by two subsequent rainfall events. To this end we con-

sidered that the temporal peak of pressure head due to an in-

dividual rainfall event may be reached, as mentioned above,

at an instant significantly after rainfall ceases. Hence, a crite-

rion for selecting the inter-event time has been that of choos-

ing a value that approximates the dry time interval that con-

tains the peak pressure head response relatively to all theNRE

simulated rainfall events. In our case, from preliminary sim-

ulations a 1tmin = 24 h appeared suitable for the hydraulic

and geotechnical soil properties which are considered in this

work (see Sect. 3).

Figure 1 summarizes the main steps of the described

Monte Carlo methodology.

3 Threshold derivation and evaluation

3.1 Triggering and non-triggering rainfall identification

For a hillslope of given properties, Monte Carlo simulations

lead to a series of time instants at which the factor of safety

drops below the value of 1 (a FS= 1 down crossing).

A triggering rainfall may be associated with each down

crossing, though it is noteworthy to point out that some un-

certainty is present in the link between the actual failure of

the slope and its theoretical instability. Nevertheless, follow-

ing several works in literature (e.g., Iverson, 2000; Rosso

et al., 2006; Baum et al., 2010) this uncertainty has been not

taken into account here, though it may affect at a certain de-

gree the way that rainfall events are classified as triggering

and non-triggering and the subsequent ROC-based analysis

(Sect. 3.2).

We investigate thresholds that are based on rainfall inten-

sity I and duration D. Various procedures have been used

to identify and compute I and D, as discussed in the “In-

troduction” section of this paper and by Berti et al. (2012).

From a general standpoint, this procedure may be discon-

nected from the way event separation has been performed to

compute the triggering instants with the methods described

in Sect. 2. Nevertheless, for consistency with the event sep-

aration criterion that is considered in the Monte Carlo sim-

ulation methodology, it is preferable to base the procedure

for identification of triggering and non-triggering events on

the same inter-event time1tmin used in Monte Carlo simula-

tions.

Based on the considerations above, we adopt the follow-

ing procedure for triggering and non-triggering rainfall iden-

tification. First, rainfall events are separated when their dry

inter-arrival is longer than 1tmin. Rainfall events then have

a total duration Dtot and mean intensity Itot =Wtot/Dtot,

where Wtot is the total event cumulative rainfall. For a trig-

gering event, triggering may occur before or after the end of

the rainfall event. In the first case, the critical duration DCR

is the time interval that starts at the beginning of the rainfall

event and finishes at the triggering instant, and critical inten-

sity is given by ICR =WCR/DCR, where WCR is rainfall ac-

cumulated over durationDCR. In the second case it is instead

characterized withDtot and Itot. Moreover, the P0 events that

have at their beginning a water table height hi ≥ dLZζCR, ζCR
being the critical wetness ratio (corresponding to FS≤ 1; see

Eq. B6), are removed from the analysis, as the triggering

is due to the preceding events, which have already been in-

cluded in the set of triggering points. Non-triggering events

are represented by Dtot and Itot.

In our case (see Sect. 2) 1tmin = 24h. It is worthwhile to

write that with this choice the procedure of triggering rain-

fall identification happens to be equal to the one that was

applied by Brunetti et al. (2010) in analyzing empirical data

(observed landslides instead of simulated).

3.2 Uncertainty and ROC-based evaluation and

optimization of thresholds

The analysis of the Monte Carlo simulations produces two

sets: the set of positives P , i.e., of triggering events, and the

set of negatives N , i.e., of non-triggering events. These sets

may be represented as scatterplots in a double-logarithmic

(D,I) plot, and in general there is a region where both sets

are present – lets say, an intersection region P ∩N . In our

framework this is due to two separate factors:

– To a given (D,I) pair there may be corresponding di-

verse variable NSRP-simulated hyetographs, because I
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Figure 1. Scheme of the Monte Carlo methodology for derivation of landslide-triggering thresholds. Text in red indicates briefly the input

required, while text in black indicates models or modeling phases.

is the mean intensity I =W/D (rain-intensity variabil-

ity within events)

– To a given (D,I) pair there may be corresponding di-

verse initial conditions (variability of initial conditions,

due to variability of rainfall before the current event).

The first uncertainty factor is analyzed by letting the ini-

tial water table height hi = 0 for i = 1, . . .NRE in performing

the Monte Carlo experiments (indicated in the ensuing text

as ψ0 = 0 case; see also Appendix B). To investigate the sec-

ond uncertainty factor, those experiments are compared with

the complete ones, where the effect of initial conditions de-

pending on past rainfall time history is taken into account

by Eq. (B2), and considering different levels of memory, by

varying the parameters that appear in the water table reces-

sion constant τM (again see Eq. B2).

Moreover, we compare the results with thresholds derived

from the model by assuming uniform hyetographs as input

and a prefixed initial condition (constant-intensity physically

based thresholds) (cf., e.g., Rosso et al., 2006; Salciarini

et al., 2008; Tarolli et al., 2011). In this case a univocal trig-

gering threshold exists I = f (D), for given hillslope proper-

ties, and the two factors of uncertainty illustrated above are

not taken into account. Due to the analytical complexity of

the TRIGRS (see Sect. B2) unsaturated model it is possible

to determine these thresholds only numerically (not in closed

form). Hence, we have derived these thresholds by simula-

tion of infiltration and slope stability using constant-intensity

hyetographs in the (D,I) domain discretized at a sufficient

level, and searching the triggering curve by interpolation of

the results. In doing this we have assumed an initial water

table height at the soil–bedrock interface in order to properly

compare results with the stochastic-input physically based

thresholds of the ψ0 = 0 case.

As a consequence of the presence of the region P ∩N ,

when a triggering rainfall threshold is fixed – e.g., a power-

law one I = a1D
a2 – the four cases of true positives, true

negatives (correct predictions), false positives and false neg-

atives (wrong predictions) can occur, as illustrated in Table 1.

In general, to each pair of parameters a1 and a2 corresponds

a prediction performance that may be measured by indices

based on the number of occurrences in the four cases, de-

noted respectively as TP (true positive), FN (false negative),

TN (true negative) and FP (false positive) (or ROC-based in-

dices). In order to derive optimal thresholds one may maxi-

mize an objective function based on these quantities. Several

www.hydrol-earth-syst-sci.net/18/4913/2014/ Hydrol. Earth Syst. Sci., 18, 4913–4931, 2014
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Table 1. Confusion matrix for the possible success and failure cases of a warning process based on a landslide-triggering threshold I = f (D).

Actual

Landslide (P ) No landslide (N )

Predicted
Landslide: I ≥ f (D) true positive, TP false positive, FP

No landslide: I < f (D) false negative, FN true negative, TN

indexes do exist and their advantages and drawbacks have

been discussed by different researchers (cf. Murphy, 1996;

Stephenson, 2000; Frattini et al., 2010).

Among the various possibilities, we consider for threshold

evaluation the use of the true skill statistic (TSS) (also known

as Hanssen–Kuipers discriminant; Hanssen and Kuipers,

1965), which was introduced by Peirce (1884), and is given

by the difference between the true positive rate TPR= TP
P
=

TP
TP+FN

(also known as sensitivity or hit rate, or recall or prob-

ability of detection) and the false positive rate FPR= FP
N
=

FP
TN+FP

(also known as probability of false detection or 1 –

specificity):

TSS= TPR−FPR. (1)

It is TSS= 0 for TPR= FPR (random guess) and TSS= 1

for a perfect prediction (TPR= 1 and FPR= 0). In fact this

index TSS is bounded in the interval [−1,1], but negative

values are fictitious as an inversion of the triggering thresh-

old use brings TSS to its absolute value, which is always in

the interval [0,1] (i.e., saying that values below the threshold

trigger landslides and, vice versa, values above the threshold

do not trigger landslides). Different weights may be given to

the TP, TN, FP and FN, as pointed out by Peirce (1884), in

order to account for the fact that a FN is more harmful than a

FP (see also Peres and Cancelliere, 2012, 2013). Since data

on the possible weights to assume are usually scarce, in this

paper we prefer to proceed in a more simple and standard

manner, where this different weighting is not considered.

We estimate the best performing power-law threshold I =

a1D
a2 as the one that gives the maximum value of TSS=

TSS(a1,a2).

At the same time the simulation-optimization methodol-

ogy enables one to evaluate the use of I–D power-law thresh-

olds, as the value of the objective function is a measure of

the maximum performances that can be expected from the

adopted functional form for the threshold, and thus a mea-

sure of its validity.

It is noteworthy to highlight that the real uncertainty asso-

ciated with this threshold generally yields different – likely

worse – performances of that assessed here, since uncertainty

factors are more than the ones related to the stochastic nature

of rainfall listed at the beginning of this section.

Figure 2. Map showing the location of landslide-prone study area of

Peloritani mountains, Italy. The area may be subdivided into seven

catchments as highlighted in the map. Relief is shown by a 5 m×5 m

resolution digital terrain model based on lidar measurements in the

year 2007. Location of Fiumedinisi raingauge is shown as well. The

inner box contains the area surrounding the Giampilieri municipal-

ity, where a widespread rapidly moving landslide event killed 37

people on 1 October 2009 (see Fig. 3).

4 Investigated area and data

4.1 Geological setting and soil properties

An application of the described methodology is carried out

to the Peloritani mountains near the Ionian coastal area, in

north-eastern Sicily, Italy (Fig. 2). The mountain ridge ex-

tends longitudinally for about 50 km, with a SW–NE orienta-

tion, resulting in peaks higher than 1200 m. This area can be

subdivided into seven basins: (1) minor basins between Al-
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cantara and Agrò (70.0 km2), (2) Agrò basin (81.8 km2), (3)

Savoca basin (44.2 km2), (4) Pagliara basin (27.1 km2), (5)

minor basins between Pagliara and Fiumedinisi (27.1 km2),

(6) Fiumedinisi basin (49 km2) and (7) minor basins between

Fiumedinisi and Cape Peloro (172.9 km2).

The study area belongs geologically to the Calabrian arc

and represents the inner chain of the Apennin–Maghrebian

mountain belt; moreover, since the middle Pleistocene, the

entire Calabrian arc has undergone strong tectonic uplift.

Present-day activity is testified by the strong historical seis-

micity (De Guidi and Scudero, 2013, and references therein).

In the area outcropping lithologies consist of (Lentini et al.,

2000) (1) phyllites of the Mandanici units; (2) paragneiss and

mica schists of the Mela units; and (3) gneiss and paragneiss

metamorphic rocks (Aspromonte units). Further information

on the geological setting, is given in Lentini et al. (2000),

Goswami et al. (2011) and De Guidi and Scudero (2013).

In the last decade, this area has been hit by highly damag-

ing diffused shallow landslides. Precisely, widespread land-

slide events occurred in this area on (I) 15 September 2006

(areas 4, 5, 6 and 7), (II) 25 October 2007 (area 7), (III)

24 September 2009 (areas 1, 2, 3, 4, 5) and (IV) 1 Octo-

ber 2009 (area 7). The associated areas indicated in paren-

theses have been derived from newspapers archives (cf., e.g.,

http://gazzettadelsud.virtualnewspaper.it/gdsstorico/), which

also present further information on the events. Among these

events, the one that occurred on 1 October 2009 was the most

severe. On that date, landslides were triggered by a rainfall

event of more that 220 mm in less than 7 h, causing 37 deaths

and innumerable injured people, most of them in the munic-

ipality of Giampilieri (Ardizzone et al., 2012).

A map of the landslides which occurred on 1 Oc-

tober 2009, derived from interpretation of orthopho-

tos, is available from website http://www.regione.

sicilia.it/presidenza/protezionecivile/documenti/rischi/r_

idrogeologico/documenti/20091001_CartaDissesti.jpg. This

map presents in red the slide/erosion areas and in orange

the propagation/deposition areas. Figure 3 shows the slides

derived from red areas of that map. The analysis of the

specific upslope contributing area A/B (ratio between the

upslope draining area A and the contour length B; see

Appendix B) and the slope δ within the slide areas, based

on a pre-event DTM at a 5 m resolution, shows that the

most populated class of A/B is centered on the value of

10 m, while the mean slope within the range of theoretical

potentially unstable slopes 29◦ ≤ δ ≤ 47◦ is slightly lower

than 40◦. Moreover, the values of A/B = 10 m and δ = 40◦

correspond to a portion of the Peloritani mountains for which

it starts to be worthy of issuing landslide early warnings.

Hence these values may be adopted for the successive

derivation of a threshold for the area (see Sect. 5).

Core samples collected in the area indicate the presence of

surficial debris material dLZ = 2 m deep, covering a fractured

bedrock strata. The debris cover consists of a sandy loam

with a significant proportion of gravel (up to 50 %) which

Table 2. Parameters of the NSRP rainfall model resulting from cali-

bration on Fiumedinisi rainfall data, for the four homogeneous rainy

seasons (the Weibull shape parameter has been fixed to b = 0.6).

Parameter Jan, Feb, Mar Sep, Oct Nov Dec

λ [h−1] 0.002295 0.021195 0.001485 0.003185

ν 44.28 1.57 42.41 42.61

β [h−1] 0.010161 2.1179 0.0059551 0.0098760

η [h−1] 0.72113 0.83999 0.94053 0.67735

ξ [hb mm−b] 1.13441 0.46260 0.69261 1.03521

corresponds to a gravelly sandy loam according to USDA

soil classification. The assumption of a leaking basal bound-

ary, characterized by a given cd ratio (see Sect. B2) is real-

istic, given the fractured bedrock strata. We assume that the

hydraulic and geotechnical properties of Table 3 may repre-

sent the natural heterogeneity within the study area.

Spatial variability of each of the soil properties could be

included in our model simulations. Nonetheless, detailed in-

formation on how the properties are distributed spatially is

unavailable. Hence we preferred to carry out a sensitivity

analysis, by varying the hydraulic conductivity KS, the leak-

age ratio cd and the soil depth dLZ according to Table 4, and

the critical wetness ratio in the range 0< ζCR < 1. To pro-

ceed in this way enables one to better analyze the way model

results are influenced by these variables rather than assuming

that they are distributed spatially with interpolating laws of

difficult validation. Since slope mainly affects slope stabil-

ity (Eq. B5) rather than the infiltration process, variation of

slope is indirectly taken into account by variation of ζCR. It

is noteworthy to mention that an alternative approach may be

to consider model parameters generated according to a prob-

ability distribution, as proposed by the TRIGRS-P modifica-

tion of the TRIGRS code, developed by Raia et al. (2014).

4.2 Rainfall data and NSRP model calibration

Climate in the Peloritani area is Mediterranean with with hot

and dry summers, and precipitation – mainly convective –

falling mostly in the period from October to January.

For calibration of the NSRP model, the rainfall series mea-

sured at the Fiumedinisi rain gauge from 21 February 2002 to

9 February 2011 (almost 9 years) has been used (see Fig. 2).

Based on a preliminary analysis of monthly statistics, six ho-

mogeneous rainfall seasons have been identified: (1) Septem-

ber and October, (2) November, (3) December, (4) January–

March, (5) April and (6) May–August (see Fig. 4 and its cap-

tion). Separate sets of parameters of the NSRP model have

been determined for each one of the four rainy seasons (in

total 5 · 4= 20 parameter values), while the last two seasons

have been considered to have negligible rainfall. The Weibull

shape parameter b has been fixed to 0.6 for all seasons, based

on different trials. Parameters obtained from calibration are

shown in Table 2.
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Figure 3. (a) Enlargement of inner box of the map of Fig. 2 showing slides occurred on 1 October 2009. Polygons were derived from

slide (red) areas reported in map of Civil Protection Department of the Sicilian Region (source: http://www.regione.sicilia.it/presidenza/

protezionecivile/documenti/rischi/r_idrogeologico/documenti/20091001_CartaDissesti.jpg). In all, 643 slides, occupying a total area of

2.30 km2, are present in the map. (b) Statistical distribution, within the slide areas, of slope δ and of upslope specific contributing area

A/B.

Table 3. Soil properties considered for application of the model to the Peloritani mountains case-study area.

φ′ c′ γs θs θr Ks D0 α dLZ δ ζCR cd

[
◦
] [kPa] [Nm−3] [–] [–] [ms−1] [m2 s−1] [m−1] [m] [

◦
] [–] [–]

37 5.7 19 000 0.35 0.045 2× 10−5 5× 10−5 3.5 2 40 0.4645 0.1

From the assumed inter-event time 1tmin = 24 h and soil

properties of Table 3 the resulting number of rainfall events

is NRE = 19 826 (in average 19.83 events per year). This

number derives from the initial 28 751 events from which

the events with hourly intensities below imin = cdKs(1−

cos2δ)= 2.975 mm h−1 were cut. These values are statisti-

cally comparable to the ones on the observed series (19.18

events/year from 28.91 events/year before the cut of under-

leakage events).

5 Results and discussion

5.1 Derivation and evaluation of rainfall thresholds

In Fig. 5 the scatterplots of triggering and non-triggering

events in the log(D)–log(I ) plane, derived from analysis

of Monte Carlo simulations, are shown for the ψ0 = 0 case

and for specific upslope contributing areas A/B = 10, 20 m

(τM = 2.75,5.49 days). Related results are also shown in Ta-

ble 5. In the figure, red points represent triggering rainfall

events, or the set of positives P , while green points represent

the non-triggering ones, or the set of negatives N .

Optimal thresholds have been derived by maximization of

the TSS index (see Eq. 1), preliminarily by considering both

the power-law coefficient a1 and exponent a2 as variable pa-

rameters. Inspection of the results revealed minimal changes

of the exponent a2 with changing ratio A/B, and so a sec-

ond optimization has been carried out only with reference to

the a1 parameter, fixing the exponent a2 to its mean value of

a2 =−0.8. Fixing the exponents forces the different thresh-

olds corresponding to different A/B ratios to be parallel and

therefore to not intersect each other; this is somehow consis-

tent with the fact that as the A/B increases, landslides are

generally more likely to occur for less severe rainfall events

because of increased past-rainfall memory.

From the case of ψ0 = 0, i.e., of an initial water table at

the soil–bedrock interface for all events (Fig. 5a), where sim-

ulated uncertainty of triggering is due only to the variation of

rain intensity within events, it is seen that in this case the

region in which triggering and non-triggering events coex-

ist is quite narrow; moreover, a power-law relation between

I and D dichotomizes well between triggering and non-

triggering conditions. In fact, the optimal power-law thresh-

old in this case has a reliability of TSS= 0.991, practically
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Table 4. Varied soil properties considered for sensitivity analysis.

KS D0 cd dLZ τM (A/B = 10m)

[m s−1
] [m2 s−1

] [−] [m] [days]

1× 10−5 (36 mm h−1) 2.5× 10−5 0.1 1, 1.5, 2 5.5

2× 10−5 (72 mm h−1) 5× 10−5 0.05, 0.1, 0.2 1, 1.5, 2 2.7

3× 10−5 (108 mm h−1) 7.5× 10−5 0.1 1, 1.5, 2 1.8

Table 5. ROC-based indices for the derived best power-law stochastic-input physically based thresholds (S) and comparison with constant-

intensity input physically based ones (C).

A
B
[m] a1 [mm h−1

] TP TN FN FP P0 TPR FPR TSS

0 (ψ0 = 0)
S 101.49 81 19 558 0 187 0 1.000 0.009 0.991

C – 52 19 744 29 1 0 0.642 0.000 0.642

10
S 71.52 104 19 037 11 672 2 0.904 0.034 0.870

C – 52 19 708 63 1 2 0.452 0.000 0.452

20
S 42.95 164 17 131 26 2488 17 0.863 0.127 0.736

C – 52 19 618 138 1 17 0.274 0.000 0.274

equal to the ideal value of 1. Additional insights on the ef-

fect of variability of rainfall intensity within events may be

derived comparing the scatterplots for this ψ0 = 0 case with

the constant-intensity physically based threshold (also deter-

mined considering ψ0 = 0) represented in the plots of Fig. 5

as a dashed black line. Figure 5a reveals that the determinis-

tic threshold approximates the lower envelope curve of crit-

ical events (red dots) for short durations – that, for the ana-

lyzed data, corresponds to durations less than about 12 h. For

higher durations, this is no longer true and variable–intensity

hyetographs start to have a higher destabilizing effect than

the constant-intensity ones of same rainfall volume. The

variability of rainfall intensity within events leads to a de-

viation from the deterministic line of the triggering NSRP

rainfall-event points, making the scatter of triggering points

more similar to a straight line than to the curved determin-

istic threshold. This behavior is essentially due to the pres-

ence of the leakage term ql =min{cdKs(1−cos2δ),q(du, t)},

whose effect is stronger for uniform hyetographs than for

variable ones, since in the former there are no peaks of in-

tensity. In particular, a uniform hyetograph produces no wa-

ter table rise if intensity is below a rate slightly greater than

cdKs(1− cos2δ), because all infiltrating water, after perco-

lating through the unsaturated-zone, goes to basal loss. The

same does not generally occur for a variable intensity hyeto-

graph of the same volume, because instantaneous intensity

may be significantly higher than the event mean intensity

Wtot/Dtot, and consequently a water table rise is produced.

The opposite behavior for short durations is due to the fact

that in this case variable hyetographs may have peaks of

intensity higher than infiltration capacity, and thus not all

rainfall infiltrates into the soil. Due to these reasons, the

model deterministic threshold results in a poor erformance

(TSS= 0.642).

The above results lead to conclude that it is important to

account for variability of intensity during events and that

landslide occurrence related to the transient part of the re-

sponse to rainfall events can be represented with good ap-

proximation by a I–D power-law equation. This provides a

physically based justification for such a widely used thresh-

old form, which turns out to be valid when landslide occur-

rence is mostly due to the transient part of the hillslope re-

sponse to rainfall.

For the A/B = 10 m case (Fig. 5b), which may represent

prevalent conditions for the Peloritani mountains area (see

Sect. 4.1), scattering of the red dots increases due to the intro-

duced variability of initial conditions. Consequently, perfor-

mances of predictions based only on intensity and duration of

rainfall events become worse. Simulations for larger values

of the specific catchment area (e.g., A/B = 20 m, Fig. 5c)

confirm this conclusion.

Based on these results, it may be stated that, for a given

climatic input, performances of thresholds which do not ac-

count for past rainfall time history (antecedent rainfall) are

expected to decrease as the water table recession time con-

stant τM increases. Rainfall time history occurring before

single rainfall events generally influences landslide trigger-

ing, determining whether a threshold based only on rainfall

intensity and duration may be sufficient or the I–D thresh-

old needs to be improved by the introduction of antecedent

rainfall variables.

Finally, the threshold

I = 71.52D−0.8 (2)

may be a reasonable choice for the Peloritani mountains area

since performances are still high, since TSS= 0.862.
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Figure 4. Moments for each month for Fiumedinisi SIAS hourly

rainfall data. In particular µ denotes the mean, γ the variance,

ρ(1,1) the linear autocorrelation coefficient at lag = 1, φ the prob-

ability of a dry interval, φDD the probability that a given interval

is dry after another dry one, φWW the probability that a given in-

terval is wet after another wet one. These moments have been used

in calibration of the NSRP model via the method of moments. It

can be seen that there are low differences of most of the moments

within the following groups of months: Sept–Oct, Nov, Dec, Jan–

Mar, Apr, May–Aug. A separate set of NSRP model parameters was

calibrated for each of the first four of these seasons, while the pe-

riod April–August has been neglected from the successive analyses

because precipitation rates are so low that it is very unlikely that a

triggering event occurs in such period.

5.2 Validation of the threshold using observed data and

comparison with other thresholds

The Monte Carlo simulation technique provides a framework

that is useful for exploiting the information contained in the

observed rainfall series and the physics of the modeled phe-

nomenon. Nonetheless, it remains important to validate the

results against observed data, to check if the models are ca-

pable of reproducing characteristics of interest which are not

directly taken into account in model calibration and develop-

ment.

Here we perform a global validation by comparing the de-

rived threshold (Eq. 2) with the triggering and non-triggering

observed rainfall events.

In particular we have derived from the series the rainfall

events with the same criterion adopted in Monte Carlo simu-

lations. Yet the events in the months neglected there (April–

August) and the events with intensities below the leakage

flow cdKS(1− cos2(δ)) were not removed here in the ob-

served record, for the test to be unbiased to this preprocessing

Figure 5. Derivation of thresholds from ROC optimization of

Monte Carlo simulations. Red points represent triggering simulated

rainfall, while green ones represent the non-triggering. The best

power-law stochastic-input physically based thresholds (S) are de-

rived by maximization of the TSS ROC-based index. The constant-

intensity input physically based threshold (C) is determined con-

sidering the response to uniform hyetographs and water table ini-

tially at the basal boundary. (a) zero memory case ψ0 = 0, (b)

A/B = 10 m (threshold derived by Gariano et al. (2013) for Sicily

is shown as well, thin dotted line, for comparison with the one de-

rived) and (c) A/B = 20 m.
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Figure 6. Validation of threshold-derivation procedure with ob-

served rainfall events. Red lines indicate mean intensity I (D)=

W(D)/D time histories that exceed the derived threshold. Green

lines represent observed events that do not exceed the threshold.

Threshold is exceeded for all and only the four dates in which land-

slides occurred in the Peloritani area: (I) 15 September 2006, (II)

25 October 2007, (III) 24 September 2009 and (IV) 1 October 2009.

of data. This resulted in 190 events, whose temporal evolu-

tion of accumulated intensities I (D)=W(D)/D has been

compared with the derived threshold, as shown in Fig. 6. The

figure indicates positive validation of the methodology, as the

events in the I–D plane that exceed the threshold are all and

only the four events that have triggered landslides in the con-

sidered period (red-line time histories). This is the best result

one can obtain from this test, but it is perhaps noteworthy to

clarify that it is expected that in the long period the same test

will not perform without errors, consistently with the Monte

Carlo simulations and the way that the threshold was derived.

Comparison with other thresholds may also help in un-

derstanding how reliable the performed analysis is. Gari-

ano et al. (2013) proposed for Sicily the threshold E =

10.4D0.22, whereE = I×D is cumulative event rainfall, and

hence threshold is equivalent to I = 10.4D−0.78. This thresh-

old has been derived considering only observed triggering

events and it is corresponding to an exceedance frequency of

1%. It is firstly interesting to notice that the exponent is prac-

tically equal to the one that results from our analyses (a2 =

−0.8). Furthermore, as can be seen from Fig. 5b this thresh-

old exceeds one triggering event of the Monte Carlo simu-

lated data, which constitutes the 1% of the triggering-rainfall

data set (see Table 5: 0.01×(TP+FN)= 0.01×(104+11)=

1.15). This result is a further support to the validity of the

performed Monte Carlo analysis and highlights the impor-

tance to take into account non-triggering rainfall in assessing

threshold performance.

Figure 7. Sensitivity of triggering thresholds and of the relative per-

formances to hydraulic conductivity KS (cf. Table 4). Plots show,

for the two cases of zero memory (ψ0 = 0) and A/B = 10 m, how

the a1 power-law coefficient of optimized stochastic-input physi-

cally based thresholds and relative TSS performance index vary

with the critical wetness ratio ζCR. Performances of the constant-

intensity physically based thresholds are shown as well (in green).

Different soil depths are considered: (a) dLZ = 1 m, (b) dLZ =

1.5 m and (c) dLZ = 2 m.
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Figure 8. Sensitivity of triggering thresholds and of the relative

performances to the leakage ratio cd (fractured bedrock) (cf. Ta-

ble 4). Plots show, for the two cases of zero memory (ψ0 = 0)

and A/B = 10 m, how the a1 power-law coefficient of optimized

stochastic-input physically based thresholds and relative TSS per-

formance index vary with the critical wetness ratio ζCR . Perfor-

mances of the constant-intensity physically based thresholds are

shown as well (in green). Different soil depths are considered: (a)

dLZ = 1 m, (b) dLZ = 1.5 m and (c) dLZ = 2 m.

5.3 Sensitivity analysis

A sensitivity analysis has been conducted with respect to the

following variables (Sect. 4 and Table 4): the hydraulic con-

ductivity KS, the leakage ratio cd, the soil depth dLZ and the

critical wetness ratio ζCR. Plots similar to those of Fig. 5 can

be derived for each set of values of such variables. For brevity

those plots are not shown here and the analysis is performed

considering the plots of the optimal threshold coefficient a1

(again the exponent has been fixed to a2 =−0.80) and the

maximum value of the objective function TSS as functions

of ζCR.

The results of this analysis are shown in Figs. 7–8, which

can be commented on as follows:

– Sensitivity to hydraulic conductivity: in the ψ0 = 0 case

the variation of KS induces relevant changes neither in

the threshold nor in the performance TSS. It can how-

ever be hypothesized that considering more low values

of KS, infiltrating rates more strongly depend on how

rainfall is distributed within the event and thus uncer-

tainty increases. Conversely, to an higher KS variation

neither of the threshold nor of the performance may

be observed, since infiltration capacity will always be

higher than rainfall intensity, which then infiltrates to-

tally. In the A
B
= 10 m case the variations of a1 and TSS

are relevant and due to increased memory with decreas-

ingKS; the threshold decreases with KS and the associ-

ated uncertainty increases (lower TSS).

– Sensitivity to leakage ratio: both in the ψ0 = 0 and the
A
B
= 10 m cases, the increase of the cd ratio induces

an increase of the threshold and in the relative uncer-

tainty. Such a variation is of comparable magnitude in

the two cases. This happens because the variation of

cd affects only pressure head response during rainfall

events, but does not affect significantly memory due to

antecedent rainfall. Sensitivity to cd increases with soil

depth, because the increased water absorption in the un-

saturated strata and the consequent increased damping

and smoothing effect induces an increase of the portion

of infiltrating water that goes to leakage. Indeed this af-

fects more the threshold (a1) than the relative perfor-

mance (TSS).

– Variation of ζCR and of soil depth dLZ: with increas-

ing ζCR the threshold increases, while the associated

uncertainty decreases. The threshold and relative per-

formances decrease with soil depth. This indicates that

landslides become less predictable as soil depth dLZ and

ζCR diminish.

Generally, antecedent rainfall has to be taken into account

to improve performance of landslide-triggering thresholds

based on rainfall. Nonetheless, the use of only the I and D

variables may still lead to good performing thresholds when

Hydrol. Earth Syst. Sci., 18, 4913–4931, 2014 www.hydrol-earth-syst-sci.net/18/4913/2014/



D. J. Peres and A. Cancelliere: Landslide-triggering thresholds 4925

memory is relatively low, soil thickness is not too shallow

and hillslope is naturally not close to instability (ζCR is rel-

atively high). In fact I–D power-law thresholds resulted in

good performance (TSS> 0.8) when τM ≤ 3 days, ζCR > 0.5

and dLZ ≥ 1.5 m.

The constant-rainfall physically based thresholds always

perform poorly. This confirms that variability of intensity

during rainfall events influences significantly rainfall inten-

sity and duration associated with landslide triggering.

6 Conclusions

In this work it has been shown how stochastic rainfall models

and hydrological and slope stability physically based mod-

els can be advantageously combined in a Monte Carlo simu-

lation framework to derive and evaluate landslide-triggering

thresholds. The approach synthesizes research findings in the

fields of rainfall and landslide hydrological modeling to pro-

vide an output that is easily implemented in a early warn-

ing system, i.e., a landslide-triggering threshold, based on

rainfall monitoring, of the same type that is commonly de-

rived by direct empirical analysis of observed rainfall and

landslide data. The advantages of the approach consist in a

better exploitation of the information contained in observed

rainfall series and measurements of hydraulic, geotechnical

soil properties and geomorphological analysis. Because both

triggering and non-triggering rainfall events are taken into

account, the approach enables a more correct derivation and

evaluation of thresholds, for which well-known prediction-

skill receiver operating characteristic (ROC) analysis may be

advantageously used to reduce subjectivity in the identifica-

tion of thresholds and to estimate the convenience of the use

of the threshold within a landslide early warning system.

Furthermore, the specific modeling framework imple-

mented in this work enabled to analyze some general issues

on landslide-triggering phenomena regarding its controlling

factors and uncertainty related to variability of rainfall in-

tensity within events and past rainfall (antecedent rainfall),

with a particular focus on the widely used power-law rain-

fall intensity–duration threshold form. In particular, from the

application to the Peloritani mountains area in north-eastern

Sicily (Italy) and the conducted sensitivity analysis on var-

ious controlling parameters, the following conclusions can

be drawn: (1) variability of intensity during rainfall events

significantly influences rainfall intensity and duration associ-

ated with landslide triggering. In particular constant-intensity

input thresholds perform conservatively only for low rain-

fall durations, while the opposite occurs for events of longer

duration. On the other hand, when a time-variable rainfall-

rate event is considered, the simulated triggering points may

be separated with a very good approximation (i.e., true skill

statistic is close to 1) from the non-triggering ones by a I–

D power-law equation. This indicates that this widely used

model is adequate to represent the triggering part due to tran-

sient infiltration produced by rainfall events. Thus, this gives

a physically based justification for such a widely used thresh-

old form, which turns out to be valid when landslide occur-

rence is mostly due to that part. This depends, for a given

rainfall climate, mostly on the timing of recession of the sat-

urated zone occurring during dry inter-event intervals (in our

model represented by the constant τM), but also on the other

soil hydraulic and geotechnical parameters, and in particular

on soil depth dLZ, which must not be too shallow, and critical

wetness ratio ζCR, that must be not too low. For instance, for

the case-study area, the I–D power-law threshold performs

with a TSS> 0.80 when it is τM ≤ 3 days and dLZ ≥ 1.5 m

and ζCR > 0.50. (2) In general, rainfall time history occur-

ring before single rainfall events influences landslide trigger-

ing, determining whether a threshold based only on rainfall

intensity and duration may be sufficient or the I–D threshold

needs to be improved by the introduction of antecedent rain-

fall variables. (3) Sensitivity analysis indicated that in gen-

eral threshold performance is affected by the depth of the

basal boundary and the critical wetness ratio that represents

the natural degree of stability of the hillslope. In particular,

uncertainty of landslide-triggering prediction increases as the

soil depth or the critical wetness decrease. Hence, it is more

difficult to predict landslides the more an hillslope is shallow

and the more it is naturally close to instability. A decrease

of performance is obtained as basal drainage (leakage) in-

creases as well. Hence the I–D power-law may not be per-

forming adequately in the case that the bedrock is signifi-

cantly fractured and the soil cover is very shallow. Results

also indicate that hydraulic conductivity mainly influences

memory of past rainfall and only slightly affects the uncer-

tainty related to variability of rainfall intensity within events.

Further ongoing research is oriented to introduce addi-

tional information in the derivation of the thresholds, such

as antecedent precipitation as well as indexes representative

of the shape of the hyetograph.
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Appendix A: Stochastic rainfall model

Stochastic rainfall point models are aimed at the generation

realistic synthetic time series of (virtually) unlimited length,

by calibration based on a observed rainfall series. The unini-

tiated reader is invited to read Neyman and Scott (1958),

Kavvas and Delleur (1975), Waymire and Gupta (1981a, b,

c), Rodriguez-Iturbe et al. (1987a, b), Salas (1993) and Cow-

pertwait et al. (1996). Here we give some specific details on

the NSRP model, for it being the one used in this work to

model rainfall at a site.

NSRP process belongs to the so-called class of cluster

models (cf., e.g., Salas, 1993). The NSRP cluster model

consists in a two-level mechanism process. This process is

related to a conceptualization of meteorological processes

that originate rainfall events (Foufoula-Georgiou and Gut-

torp, 1989), and it is obtained by the following steps (see

Fig. A1):

– First, clusters – also known as storm-generating sys-

tems, or simply storms – arrive governed by a Poisson

process of parameter λt (this is the first-level mecha-

nism)

– For each cluster origin, rectangular pulses (rain cells)

are generated (this is the second-level mechanism). The

number of pulses C associated with each storm is ex-

tracted from another separate Poisson distribution. In

order to have realizations of C not less than one, it is as-

sumed that C′ = C− 1, with c′ = 0,1,2, . . . (which im-

plies c = 1,2,3, . . .), is Poisson distributed with mean

ν− 1

– Each cell has origin at time τi,j with j = 1,2, . . .,ci
measured from ti , according to an exponential random

variable of parameter β

– A rectangular pulse of duration di,j and intensity xi,j
is associated with each rain cell. Pulses have duration

exponentially distributed with parameter η while inten-

sities X are extracted from a Weibull distribution (cf.

Cowpertwait et al., 1996), which has cumulative distri-

bution function F(x;ξ,b)= 1− exp(−ξxb)

– Finally, the total intensity at any point in time is given

by the sum of the intensities of all active cells at that

point.

We have calibrated the NSRP model by the method of mo-

ments, i.e., using the properties of the aggregated NSRP pro-

cess Y (τ) at different timescales of aggregation τ (cf., e.g.,

Rodriguez-Iturbe et al., 1987a, b; Cowpertwait et al., 1996;

Calenda and Napolitano, 1999). According to this method,

model parameters, i.e., λ, ν, β, η and ξ (b is typically fixed,

in the range 0.6≤ b ≤ 0.9; see Cowpertwait et al., 1996) are

estimated using at least as many moments as the parame-

ters of the model, considering different statistics (moments)

Figure A1. Representation of the NSRP stochastic process for at-

site rainfall modeling (adapted from Cowpertwait et al., 1996).

at various time aggregations, and solving the related equa-

tion system, where the theoretical expressions, containing the

parameters, are equated to the sample moments. Theoretical

moments of Y (τ), such as the mean µ(τ), variance γ (τ) and

autocorrelation at lag k, ρ(τ,k), are given by formulas de-

rived by Rodriguez-Iturbe et al. (1987a). Transition probabil-

ities were derived as well, by Cowpertwait (1991), and have

been included in the calibration process. We have solved the

nonlinear equation system by numerical minimization of an

objective function S(λ,ν,β,η,ξ), that measures the global

relative error between theoretical and sample moments (cf.

Cowpertwait et al., 1996).

Though calibration is conducted taking into account sea-

sonality, by calibrating the model separately for the various

homogeneous seasons within the year (Sect. 4.2), it is note-

worthy to point out that the generated series is globally sta-

tionary, and consequently eventual annual non-stationarity

due to climate change is not taken into account. In other

words, the generated series represents possible realizations of

the rainfall events under current climate conditions, the final

aim being of deriving thresholds suitable under the present

climate and not to assess how climate change may affect

them.

Appendix B: Hillslope hydrological and stability model

The total pressure head response ψ of an hillslope soil to

a rainfall event is given by the sum of a transient part ψ1 and

an initial part ψ0 (cf. Iverson, 2000; D’Odorico et al., 2005).
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Figure B1. Soil 1-D vertical scheme used to model infiltration and

slope stability based on the TRIGRS unsaturated model (adapted

from Baum et al., 2008).

The transient part is due to infiltration of event rainfall, while

the initial part depends on rainfall time history before the

current rainfall event. As pointed out by Iverson (2000), for

soils that are relatively shallow, i.e., when the ratio between

soil depth and the square root of the upslope contributing area

is small, ε = dLZ/
√
A� 1, the prevailing process that deter-

mines ψ1 is 1-D vertical infiltration, while in the dry periods

in between events, the prevailing process is sub-horizontal

drainage.

Based on these considerations, we use a vertical infil-

tration model for computing ψ1, the TRIGRS unsaturated

model (Baum et al., 2008, 2010), and a linear reservoir sub-

horizontal drainage model to compute the initial conditions

from the water table height at the end of the rainfall event pre-

ceding the current one (which in turn depends on past rain-

fall time history). This latter model is derived from a mass-

conservation equation of soil water coupled with the Darcy’s

law used to describe seepage flow, where for simplicity the

soil volumetric strain is neglected (the variation of porosity

with pressure head is assumed null). A similar conceptual-

ization is the basis of the model proposed by Rosso et al.

(2006).

In order to understand the controlling factors of landslide

triggering, it is useful to separate the analysis of the response

to rainfall in terms of the transient part only. This may be

done by performing the simulations assuming ψ0 = 0 at the

beginning of events.

From the pressure head response, the factor of safety FS

for slope stability is computed, using a infinite slope model.

The description of these model components follows.

B1 Initial conditions model

The initial condition to rainfall event i is computed from the

response at the end of rainfall event i− 1, using a water ta-

ble height h recession model between storms based on the

following mass-conservation equation (Rosso et al., 2006):

B h Ks sinδ =−A (θs− θr)
dh

dt
, (B1)

where A is the contributing area draining across the contour

length B of the lower boundary of the hillslope, δ is the in-

clination of the hillslope, Ks is the saturated hydraulic con-

ductivity, and θs− θr is soil porosity, θs and θr being the sat-

urated and residual soil water contents, respectively. The ra-

tio A/B, which can be computed based on a digital terrain

model (DTM), is the well-known specific upslope contribut-

ing area, an important variable on which the topographic con-

trol on shallow landslide triggering depends (Montgomery

and Dietrich, 1994). For instance, it is A/B = B Nd, where

Nd is the number of cells draining into the local one, if one

determines flow paths via the non-dispersive single direction

(D8) method (O’Callaghan and Mark, 1984). Other methods

consider multiple flow directions (cf. Holmgren, 1994).

The solution to Eq. (B1) is used to compute the water table

height at the beginning of rainfall event i:

hi =
ψ(dLZ, tf,i−1)

cos2δ
exp

(
−

Ks sinδ

A
B
(θs− θr)

1ti

)

=
ψ(dLZ, tf,i−1)

cos2δ
exp

(
−
1ti

τM

)
, (B2)

where ψ(dLZ , tf,i−1) and the inter-arrival time 1ti are de-

fined in Sect. 2. The time constant τM regulates the pressure

head memory from one event to another.

The initial pressure head distribution above the water ta-

ble is computed accordingly with assumptions of the tran-

sient vertical infiltration model (see next Sect. B2), letting

the steady (initial) surface flux IZLT = 0, which yields the

following equation (see Baum et al., 2010; Baum and Godt,

2013):

ψ(Z,t = 0)=−(du−Z)cosδ−
1

α
, (B3)

for depths Z ≤ du, du being the depth to the top of the cap-

illary fringe and α the parameter of Gardner’s (1958) expo-

nential soil–water characteristic curve (cf. Fig. B1).

B2 Transient infiltration model

Reference scheme for a simulated hillslope is shown in

Fig. B1. Infiltration in the unsaturated zone is mod-

eled through Richards’ (1931) vertical-infiltration equa-

tion for a sloping surface particularized for the Gardner’s

(1958) exponential soil–water characteristic curve K(ψ)=
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Ks exp{α(ψ −ψcf)}:

α1(θs− θr)

KS

∂K

∂t
=
∂2K

∂Z2
−α1

∂K

∂Z
, (B4)

where Ks is the saturated hydraulic conductivity, α is the

SWCC parameter, ψcf =−1/α is the pressure head at the

top of the capillary fringe, θr is the residual water content, θs

is the water content at saturation and α1 = αcos2δ.

A closed-form solution to this equation for δ = 0 has

been provided by Srivastava and Yeh (1991) and extended

to a sloping surface by Savage et al. (2004), and used in the

TRIGRS unsaturated model (Baum et al., 2008, 2010).

The solution to Richards’ equation provides the pore pres-

sure profile in the unsaturated zone, and a flux to the sat-

urated zone q(du, t). Because of the partial absorption of

water within the unsaturated zone, this flux turns out to be

damped and smoothed with respect to the infiltrating flux

at the ground surface (cf. Fig. 8 of Baum et al., 2008).

The TRIGRS model then computes water table rise using

q(du, t) and subtracting from it a leakage flow rate given by

ql =min{cdKs(1− cos2δ),q(du, t)} (vertical drainage at the

basal boundary, which is not assumed perfectly impervious),

where cd represents the ratio between saturated hydraulic

conductivities of the basal boundary layer and of the regolith

surficial layer. In the case that no specific information on cd

ratio is available, a reasonable value may be cd = 0.1 (cf.

Baum et al., 2010), which means that hydraulic conductivity

of the layer below depth Z = dLZ is of one order of magni-

tude less than the regolith surficial layer.

The resulting water table rise is computed by comparing

this excess flux accumulating at the top of the capillary fringe

to the available pore space directly above it.

Pressure head rise is assumed transient in the saturated

zone as well, and computed by formulas adapted from anal-

ogous heat-flow problems (see Baum et al., 2008).

B3 Slope stability model

For analysis of hillslope stability we assume an infinite slope

scheme, and compute minimum factor of safety FS with the

following formula (Taylor, 1948):

FS(dLZ, t)=
tanφ′

tanδ
+
c′−ψ(dLZ, t)γw tanφ′

γsdLZ sinδ cosδ
, (B5)

where c′ is soil cohesion for effective stress, φ′ is the soil

friction angle for effective stress, γw is the unit weight of

groundwater, γs is the soil unit weight and δ is the slope an-

gle. In this scheme the failure occurs at the basal boundary

Z = dLZ, because the pressure head results maximum at that

depth.

It is useful to consider the critical wetness ratio, derived

from Eq. (B5) letting FS= 1, which is a parameter that for

a given hillslope (given slope δ and soil depth dLZ) depends

only on the geotechnical characteristics of the soil:

ζCR =
γs

γw

[(
c′

γsdLZ sinδ cosδ
− 1

)
tanδ

tanφ′
+ 1

]
. (B6)

The ζCR varies from 0 to 1, respectively, for an uncon-

ditionally unstable and a unconditionally stable hillslope

(Montgomery and Dietrich, 1994), and hence it indicates the

natural degree of stability of the hillslope.
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