Research article 26 Aug 2014
Research article | 26 Aug 2014
Geophysical methods to support correct water sampling locations for salt dilution gauging
C. Comina et al.
Related authors
E. Adamopoulos, C. Colombero, C. Comina, F. Rinaudo, M. Volinia, M. Girotto, and L. Ardissono
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-M-1-2021, 1–8, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, 2021
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10035-2013, https://doi.org/10.5194/hessd-10-10035-2013, 2013
Revised manuscript not accepted
E. Adamopoulos, C. Colombero, C. Comina, F. Rinaudo, M. Volinia, M. Girotto, and L. Ardissono
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-M-1-2021, 1–8, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, 2021
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10035-2013, https://doi.org/10.5194/hessd-10-10035-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Instruments and observation techniques
Investigating the environmental response to water harvesting structures: a field study in Tanzania
The importance of city trees for reducing net rainfall: comparing measurements and simulations
Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method
Hydrogeological controls on spatial patterns of groundwater discharge in peatlands
Monitoring surface water quality using social media in the context of citizen science
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
Learning about water resource sharing through game play
High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications
Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning
The use of semi-structured interviews for the characterisation of farmer irrigation practices
High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport
Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring
Vulnerability of groundwater resources to interaction with river water in a boreal catchment
Drivers of spatial and temporal variability of streamflow in the Incomati River basin
Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments
Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation
Water management simulation games and the construction of knowledge
Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium
Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise
Potentials and limits of urban rainwater harvesting in the Middle East
Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China
Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring
Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor
The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia
Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets
Relative impacts of key drivers on the response of the water table to a major alley farming experiment
Jessica A. Eisma and Venkatesh M. Merwade
Hydrol. Earth Syst. Sci., 24, 1891–1906, https://doi.org/10.5194/hess-24-1891-2020, https://doi.org/10.5194/hess-24-1891-2020, 2020
Short summary
Short summary
Sand dams capture and store water for use during the dry season in rural communities. A year long field study of three sand dams in Tanzania showed that sand dams are not a suitable habitat for aquatic insects. They capture plenty of water, but most is evaporated during the first few months of the dry season. Sand dams positively impact vegetation and minimally impact erosion. Community water security can be increased by sand dams, but site characteristics and construction are important factors.
Vincent Smets, Charlotte Wirion, Willy Bauwens, Martin Hermy, Ben Somers, and Boud Verbeiren
Hydrol. Earth Syst. Sci., 23, 3865–3884, https://doi.org/10.5194/hess-23-3865-2019, https://doi.org/10.5194/hess-23-3865-2019, 2019
Short summary
Short summary
The impact of city trees for intercepting rainfall is quantified using measurements and modeling tools. The measurements show that an important amount of rainfall is intercepted, limiting the amount of water reaching the ground. Models are used to extrapolate the measurement results. The performance of two specialized interception models and one water balance model is evaluated. Our results show that the performance of the water balance model is similar to the specialized interception models.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Danielle K. Hare, David F. Boutt, William P. Clement, Christine E. Hatch, Glorianna Davenport, and Alex Hackman
Hydrol. Earth Syst. Sci., 21, 6031–6048, https://doi.org/10.5194/hess-21-6031-2017, https://doi.org/10.5194/hess-21-6031-2017, 2017
Short summary
Short summary
This research examines what processes drive the location and strength of groundwater springs within a peatland environment. Using temperature and geophysical methods, we demonstrate that the relationship between regional groundwater flow gradients and the basin shape below the peatland surface control where groundwater springs occur. Understanding this relationship will support effective restoration efforts, as groundwater spring locations are important to overall peatland function and ecology.
Hang Zheng, Yang Hong, Di Long, and Hua Jing
Hydrol. Earth Syst. Sci., 21, 949–961, https://doi.org/10.5194/hess-21-949-2017, https://doi.org/10.5194/hess-21-949-2017, 2017
Short summary
Short summary
Do you feel angry if the river in your living place is polluted by industries? Do you want to do something to save your environment? Just log in to http://www.thuhjjc.com and use the Tsinghua Environment Monitoring Platform (TEMP) to photograph the water pollution actives and make your report. This study established a social media platform to monitor and report surface water quality. The effectiveness of the platform was demonstrated by the 324 water quality reports across 30 provinces in China.
Matteo Giuliani, Andrea Castelletti, Roman Fedorov, and Piero Fraternali
Hydrol. Earth Syst. Sci., 20, 5049–5062, https://doi.org/10.5194/hess-20-5049-2016, https://doi.org/10.5194/hess-20-5049-2016, 2016
Short summary
Short summary
The unprecedented availability of user-generated data on the Web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images. The value of the obtained virtual snow indexes is assessed for a real-world water management problem.
Tracy Ewen and Jan Seibert
Hydrol. Earth Syst. Sci., 20, 4079–4091, https://doi.org/10.5194/hess-20-4079-2016, https://doi.org/10.5194/hess-20-4079-2016, 2016
Short summary
Short summary
Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be explored. We look at how games can be used to teach about water resource sharing, by both playing and developing water games. An evaluation of the web-based game Irrigania found Irrigania to be an effective and easy tool to incorporate into curriculum, and a course on developing water games encouraged students to think about water resource sharing in a more critical and insightful way.
Frans C. van Geer, Brian Kronvang, and Hans Peter Broers
Hydrol. Earth Syst. Sci., 20, 3619–3629, https://doi.org/10.5194/hess-20-3619-2016, https://doi.org/10.5194/hess-20-3619-2016, 2016
Short summary
Short summary
The paper includes a review of the current state of high-frequency monitoring in groundwater and surface waters as an outcome of a special issue of HESS and four sessions at EGU on this topic. The focus of the paper is to look at how high-frequency monitoring can be used as a valuable support to assess the management efforts under various EU directives. We conclude that we in future will see a transition from research to implementation in operational monitoring use of high-frequency sensors.
Matthew D. Berg, Franco Marcantonio, Mead A. Allison, Jason McAlister, Bradford P. Wilcox, and William E. Fox
Hydrol. Earth Syst. Sci., 20, 2295–2307, https://doi.org/10.5194/hess-20-2295-2016, https://doi.org/10.5194/hess-20-2295-2016, 2016
Short summary
Short summary
Rangelands, from grasslands to woodlands, cover much of the earth. These areas face great pressure to meet growing water needs. Data on large-scale dynamics that drive water planning remain rare. Our watershed-scale results challenge simplistic hydrological assumptions. Streamflow was resilient to dramatic landscape changes. These changes did shape sediment yield, affecting water storage. Understanding these processes is vital to projections of rangeland water resources in a changing world.
Jimmy O'Keeffe, Wouter Buytaert, Ana Mijic, Nicholas Brozović, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 20, 1911–1924, https://doi.org/10.5194/hess-20-1911-2016, https://doi.org/10.5194/hess-20-1911-2016, 2016
Short summary
Short summary
Semi-structured interviews provide an effective and efficient way of collecting qualitative and quantitative data on water use practices. Interviews are organised around a topic guide, which helps lead the conversation while allowing sufficient opportunity to identify issues previously unknown to the researcher. The use of semi-structured interviews could significantly and quickly improve insight on water resources, leading to more realistic future management options and increased water security.
J. C. Rozemeijer, A. Visser, W. Borren, M. Winegram, Y. van der Velde, J. Klein, and H. P. Broers
Hydrol. Earth Syst. Sci., 20, 347–358, https://doi.org/10.5194/hess-20-347-2016, https://doi.org/10.5194/hess-20-347-2016, 2016
Short summary
Short summary
Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. For a grassland field in the Netherlands, we measured the changes in the field water and solute balance after introducing controlled drainage. We concluded that controlled drainage reduced the drain discharge and increased the groundwater storage in the field, but did not have clear positive effects for water quality.
S. C. Sherriff, J. S. Rowan, A. R. Melland, P. Jordan, O. Fenton, and D. Ó hUallacháin
Hydrol. Earth Syst. Sci., 19, 3349–3363, https://doi.org/10.5194/hess-19-3349-2015, https://doi.org/10.5194/hess-19-3349-2015, 2015
A. Rautio, A.-L. Kivimäki, K. Korkka-Niemi, M. Nygård, V.-P. Salonen, K. Lahti, and H. Vahtera
Hydrol. Earth Syst. Sci., 19, 3015–3032, https://doi.org/10.5194/hess-19-3015-2015, https://doi.org/10.5194/hess-19-3015-2015, 2015
Short summary
Short summary
Based on low-altitude aerial infrared surveys, around 370 groundwater–surface water interaction sites were located. Longitudinal temperature patterns, stable isotopes and dissolved silica composition of the studied rivers differed. Interaction sites identified in the proximity of 12 municipal water plants during low-flow seasons should be considered as potential risk areas during flood periods and should be taken under consideration in river basin management under changing climatic situations.
A. M. L. Saraiva Okello, I. Masih, S. Uhlenbrook, G. P. W. Jewitt, P. van der Zaag, and E. Riddell
Hydrol. Earth Syst. Sci., 19, 657–673, https://doi.org/10.5194/hess-19-657-2015, https://doi.org/10.5194/hess-19-657-2015, 2015
Short summary
Short summary
We studied long-term daily records of rainfall and streamflow of the Incomati River basin in southern Africa. We used statistical analysis and the Indicators of Hydrologic Alteration tool to describe the spatial and temporal variability flow regime. We found significant declining trends in October flows, and low flow indicators; however, no significant trend was found in rainfall. Land use and flow regulation are larger drivers of temporal changes in streamflow than climatic forces in the basin.
J. M. Campbell, P. Jordan, and J. Arnscheidt
Hydrol. Earth Syst. Sci., 19, 453–464, https://doi.org/10.5194/hess-19-453-2015, https://doi.org/10.5194/hess-19-453-2015, 2015
Short summary
Short summary
High-resolution phosphorus and flow data were used to gauge the effects of diffuse (soil P) and point source (septic tank system) mitigation measures in two flashy headwater river catchments. Over 4 years the data indicated an overall increase in P concentration in defined high flow ranges and low flow P concentration showed little change. The work indicates fractured responses to catchment management advice and mitigation which were also affected by variations in seasonal hydrometeorology.
J. Audet, L. Martinsen, B. Hasler, H. de Jonge, E. Karydi, N. B. Ovesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 18, 4721–4731, https://doi.org/10.5194/hess-18-4721-2014, https://doi.org/10.5194/hess-18-4721-2014, 2014
Short summary
Short summary
The mitigation of excess nitrogen and phosphorus in river waters requires costly measures. Therefore it is essential to use reliable monitoring methods to select adequate mitigation strategies. Here we show that more development is needed before passive samplers can be considered as reliable alternative for sampling nutrients in stream. We also showed that although continuous sampling is expensive, its reliability precludes unnecessarily high implementation costs of mitigation measures.
M. Rusca, J. Heun, and K. Schwartz
Hydrol. Earth Syst. Sci., 16, 2749–2757, https://doi.org/10.5194/hess-16-2749-2012, https://doi.org/10.5194/hess-16-2749-2012, 2012
J. Rozemeijer, C. Siderius, M. Verheul, and H. Pomarius
Hydrol. Earth Syst. Sci., 16, 2405–2415, https://doi.org/10.5194/hess-16-2405-2012, https://doi.org/10.5194/hess-16-2405-2012, 2012
F. Jørgensen, W. Scheer, S. Thomsen, T. O. Sonnenborg, K. Hinsby, H. Wiederhold, C. Schamper, T. Burschil, B. Roth, R. Kirsch, and E. Auken
Hydrol. Earth Syst. Sci., 16, 1845–1862, https://doi.org/10.5194/hess-16-1845-2012, https://doi.org/10.5194/hess-16-1845-2012, 2012
J. Lange, S. Husary, A. Gunkel, D. Bastian, and T. Grodek
Hydrol. Earth Syst. Sci., 16, 715–724, https://doi.org/10.5194/hess-16-715-2012, https://doi.org/10.5194/hess-16-715-2012, 2012
T. T. Jin, B. J. Fu, G. H. Liu, and Z. Wang
Hydrol. Earth Syst. Sci., 15, 2519–2530, https://doi.org/10.5194/hess-15-2519-2011, https://doi.org/10.5194/hess-15-2519-2011, 2011
T. A. Endreny and M. M. Soulman
Hydrol. Earth Syst. Sci., 15, 2119–2126, https://doi.org/10.5194/hess-15-2119-2011, https://doi.org/10.5194/hess-15-2119-2011, 2011
N. Pasquale, P. Perona, P. Schneider, J. Shrestha, A. Wombacher, and P. Burlando
Hydrol. Earth Syst. Sci., 15, 1197–1212, https://doi.org/10.5194/hess-15-1197-2011, https://doi.org/10.5194/hess-15-1197-2011, 2011
B. M. Teklu, H. Tekie, M. McCartney, and S. Kibret
Hydrol. Earth Syst. Sci., 14, 2595–2603, https://doi.org/10.5194/hess-14-2595-2010, https://doi.org/10.5194/hess-14-2595-2010, 2010
T. Raziei, I. Bordi, L. S. Pereira, and A. Sutera
Hydrol. Earth Syst. Sci., 14, 1919–1930, https://doi.org/10.5194/hess-14-1919-2010, https://doi.org/10.5194/hess-14-1919-2010, 2010
S. L. Noorduijn, K. R. J. Smettem, R. Vogwill, and A. Ghadouani
Hydrol. Earth Syst. Sci., 13, 2095–2104, https://doi.org/10.5194/hess-13-2095-2009, https://doi.org/10.5194/hess-13-2095-2009, 2009
Cited articles
Clemente, P., De Luca, D. A., Dino, G. A., and Lasagna, M.: Water losses from irrigation canals evaluation: comparison among different methodologies, Geophys. Res. Abstr., EGU2013-9024, EGU General Assembly 2013, Vienna, Austria, 2013.
Drost, J. W.: Single-Well and Multi-Well Nuclear Tracer Techniques – a Critical Review, Technical Documents in Hydrology, International Hydrological Programme 96, UNESCO, Paris, 1989.
Fangary, Y. S., Williams, R. A., Neil, W. A., Bond, J., and Faulks, I.: Application of electric resistance tomography to detect deposition in hydraulic conveying systems, Powder Technol., 95, 61–66, 1998.
Gees, A.: Flow measurement under difficult measuring conditions: Field experience with the salt dilution method, in: Hydrology in Mountainous Regions I. Hydrological Measurements; The Water Cycle, edited by: Lang, H. and Musy, A., IAHS Publ., 193, 255–262, 1990.
Hudson, R. and Fraser, J.: Alternative methods of flow rating in small coastal streams, Extension Note EN-014 Hydrology, Vancouver Forest Region, B.C. Ministry of Forests, Vancouver, p. 11, 2002.
Jaramillo, F.: Estimating and modeling soil loss and sediment yield in the Maracas-St. Joseph River Catchment with empirical models (RUSLE and MUSLE) and a physically based model (Erosion 3D), Master in Civil Engineering-Thesis, McGill University, Montreal, 134 pp., 2007.
Kite, G.: Computerized streamflow measurement using slug injection, Hydrol. Process., 7, 227–233, 1993.
Kumar, B. and Nachiappan, R. P.: Estimation of alluvial aquifer parameters by a single-well dilution technique using isotopic and chemical tracers: a comparison, in: Tracers and Modelling in Hydrogeology, IAHS Publ. 262, edited by: Dassargues, A., IAHS Press, Wallingford, 53–56, 2000.
Lucas, G. P., Cory, J., Waterfall, R. C., Loh, W. W., and Dickin, F. J.: Measurement of the solids volume fraction and velocity distributions in solids–liquid flows using dual-plane electrical resistance tomography, Flow Meas. Instrum., 10, 249–258, 1999.
Moore, R. D.: Introduction to salt dilution gauging for streamflow measurement: Part I, Streaml. Watershed Manage. Bull., 7, 20–23, 2004.
Moore, R. D.: Slug injection using salt in solution, Streaml. Watershed Manage. Bull., 8, 1–6, 2005.
Perotti, L., Clemente, P., De Luca, D. A., Dino, G. A., and Lasagna, M.: Remote sensing and hydrogeological methodologies for irrigation canal leakage detection: the Osasco and Fossano test sites (Northwestern Italy), Geophys. Res. Abstr., EGU2013-5705, EGU General Assembly 2013, Vienna, Austria, 2013.
Radulovic, M., Radojevic, D., Devic, D., and Blecic, M.: Discharge calculation of the spring using salt dilution method – application site Bolje Sestre Spring (Montenegro), available at: http:25//balwois.com/balwois/administration /fullpaper/ffp-1257.pdf (last access: 24 July 2013), 2008.
Rantz, S. E.: Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge, US Geological Survey Water-Supply Paper 2175, US Department of the Interior, US Government Printing Office, Washington, D.C., 1982.
Sambuelli, L. and Comina, C.: Fast ert to estimate pollutants and solid transport variation in water flow: a laboratory experiment, B. Geofis. Teor. Appl., 51, 1–22, 2010.
Sambuelli, L., Lollino, G., Morelli, G., Socco, L. V., and Bidone, L.: First experiments on solid transport estimation in river-flow by fast impedance tomography, VIII EEGS meeting, 8–15 September, Aveiro, Portugal, 4 pp., 2002.
Scobey, F. C.: Flow of water in irrigation and similar canals, US Dept. of Agriculture, Washington, D.C., 79 pp., 1939.
Tapp, H. S. and Wilson, R. H.: Developments in low-cost electrical imaging techniques, Process Contr. Qual., 9, 7–16, 1997.
Tazioli, A.: Experimental methods for river discharge measurements: comparison among tracers and current meter, Hydrolog. Sci. J., 56, 1314–1324, 2011.
Wang, M. and Cilliers, J. J.: Detecting non-uniform foam density using electrical resistance tomography, Chem. Eng. Sci., 54, 707–712, 1999.
Warsito, W. and Fan, L. S.: Measurement of real-time flow structures in gas–liquid and gas–liquid–solid flow systems using electrical capacitance tomography (ECT), Chem. Eng. Sci., 56, 6455–6462, 2001.
Xie, C. G., Reinecke, N., Beck, M. S., Mewes, D., and Williams, R. A.: Electrical tomography techniques for process engineering applications, Chem. Eng. J., 56, 127–133, 1995.
Yang, W. Q. and Liu, S.: Role of tomography in gas/solids flow measurement, Flow Meas. Instrum., 11, 237–244, 2000.
Zellweger, G. W.: Testing and comparison of four ionic tracers to measure stream flow loss by multiple tracer injection, Hydrol. Process., 8, 155–165, 1994.