Articles | Volume 17, issue 2
https://doi.org/10.5194/hess-17-795-2013
https://doi.org/10.5194/hess-17-795-2013
Research article
 | 
22 Feb 2013
Research article |  | 22 Feb 2013

A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions

P. Pokhrel, D. E. Robertson, and Q. J. Wang

Related authors

Better continental-scale streamflow predictions for Australia: LSTM as a land surface model post-processor and standalone hydrological model
Ashkan Shokri, James C. Bennett, David E. Robertson, Jean-Michel Perraud, Andrew J. Frost, and Eric A. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-805,https://doi.org/10.5194/egusphere-2025-805, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Uncovering a Key Predictors for Enhancing Daily Streamflow Simulation Using Machine Learning
Arash Aghakhani, David E. Robertson, and Valentijn R. N. Pauwels
EGUsphere, https://doi.org/10.5194/egusphere-2025-553,https://doi.org/10.5194/egusphere-2025-553, 2025
Short summary
Identification of nighttime urban flood inundation extent using deep learning
Jiaquan Wan, Xing Wang, Yannian Cheng, Cuiyan Zhang, Yufang Shen, Fengchang Xue, Tao Yang, and Quan J. Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-77,https://doi.org/10.5194/egusphere-2025-77, 2025
Short summary
A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China
Yuan Li, Kangning Xü, Zhiyong Wu, Zhiwei Zhu, and Quan J. Wang
Hydrol. Earth Syst. Sci., 27, 4187–4203, https://doi.org/10.5194/hess-27-4187-2023,https://doi.org/10.5194/hess-27-4187-2023, 2023
Short summary
Development of a national 7-day ensemble streamflow forecasting service for Australia
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022,https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary

Cited articles

Duan, Q., Sorooshian S., and Gupta V. K.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, 1994.
Engeland, K., Xu, C. Y., and Gottschalk, L.: Assessing uncertainties in a conceptual water balance model using Bayesian methodology, Hydrol. Sci. J., 50, 45–63, 2005.
Gupta, H. V., Beven, K. J., and Wagener, T.: Model calibration and uncertainty estimation, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M., John Wiley & Sons Ltd: Chichester, 1–17, 2005.
Hashino, T., Bradley, A. A., and Schwartz, S. S.: Evaluation of bias-correction methods for ensemble streamflow volume forecasts, Hydrol. Earth Syst. Sci., 11, 939–950, https://doi.org/10.5194/hess-11-939-2007, 2007.
Jones, D. A., Wang, W., and Fawcett, R.: High-quality spatial climate data-sets for Australia, Aust. Meteorol. Ocean. J., 58, 233–248, 2009.
Download
Share