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Abstract. Hydrologic model predictions are often biased
and subject to heteroscedastic errors originating from vari-
ous sources including data, model structure and parameter
calibration. Statistical post-processors are applied to reduce
such errors and quantify uncertainty in the predictions. In this
study, we investigate the use of a statistical post-processor
based on the Bayesian joint probability (BJP) modelling ap-
proach to reduce errors and quantify uncertainty in stream-
flow predictions generated from a monthly water balance
model. The BJP post-processor reduces errors through elim-
ination of systematic bias and through transient errors up-
dating. It uses a parametric transformation to normalize data
and stabilize variance and allows for parameter uncertainty
in the post-processor. We apply the BJP post-processor to 18
catchments located in eastern Australia and demonstrate its
effectiveness in reducing prediction errors and quantifying
prediction uncertainty.

1 Introduction

Streamflow predictions from a hydrological model can be
used for wide range of applications including flood forecast-
ing at short time scales to long-term assessments of water
resources. Model predictions are subject to errors originating
from various sources including input data, model structure
and parameters. The model is usually calibrated prior to its
application to compensate for these errors, thus reducing un-
certainty in the predictions. However, a model being a sim-
plified representation of a system will always contain uncer-
tainty in its predictions (Gupta et al., 2005). Post-processors
are statistical models that are applied to model predictions

to further reduce errors and to quantify uncertainty in the
streamflow predictions (Seo et al., 2006).

Post-processors can reduce errors through elimination of
systematic bias and/or by reduction of “short memory” or
transient errors (Pagano et al., 2011). The former is generally
achieved by using simple statistical approaches like quantile
mapping or regression (Hashino et al., 2007; Shi et al., 2008),
while the latter is generally achieved by prediction updating
(Lekkas et al., 2001; Moraweitz et al., 2011). The prediction
updating techniques exploit persistence of residuals to cor-
rect for errors using linear or non-linear auto-regressive mod-
els (WMO, 1992; Shamseldin and O’Connor, 2001; Xiong
and O’Connor, 2002; Pagano et al., 2011). Streamflow pre-
dictions, even after bias correction and prediction updat-
ing, contain errors that cannot be eliminated, and informa-
tion on prediction uncertainty is useful for decision makers
who use the predictions. Post-processors are generally de-
signed to provide an estimate of the total “lumped” uncer-
tainty in the predictions by constructing statistical models of
errors based on model predictions and historical observations
(e.g. Krzysztofowicz, 1999; Engeland et al., 2005; Montanari
and Grossi, 2008).

In hydrology, post-processors have been mostly used for
short-term streamflow or river height forecasting. The exam-
ples include Bayesian Forecasting System (BFS; Krzyszto-
fowicz, 1999, 2002; Reggiani and Weerts, 2008), the US Na-
tional Weather Service (NWS) post-processor (Seo et al.,
2006), the General Linear Model Post-Processor (Zhao et
al., 2011), the meta-Gaussian post-processor (Montanari and
Grossi, 2008) and others. They range in complexity from
the NWS post-processor that adopts a fairly simple auto-
regressive error structure (Seo et al., 2006) to BFS that uses
a complex parameterization scheme based on meta-Gaussian
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distributions. Some are primarily intended for uncertainty
quantification but also include components for error reduc-
tion (e.g. Krzysztofowicz, 1999, 2002).

Methods for parameterization, parameter estimation and
calculation of predictive distributions differ among post-
processors, although some common features can be found.
Most post-processors produce probabilistic predictive distri-
butions of streamflow (or river height) conditioned on model
predictions and recent streamflow observations. They gener-
ally assume linear dependence among the variates in a trans-
formed normal space, and most use normal quantile trans-
formation (NQT; Krzysztofowicz, 1997, 1999; Todini, 2008;
Li et al., 2010) to normalize the variables. All assume the
estimated values of the parameters (of the post-processors)
to be “true” and ignore the uncertainty in estimating their
values (Krzysztofowicz, 1999, 2002). For a complex post-
processor like BFS, this (parametric uncertainty) can be sub-
stantial (Seo et al., 2006). More importantly, they are all de-
signed to post-process streamflow predictions at daily or sub-
daily time scales.

For many hydrological applications, such as seasonal
streamflow forecasting, water resources and climate change
assessments, monthly streamflow volumes are of primary
interest. While daily predictions from daily models may
be post-processed at the daily time scale and then aggre-
gated to monthly, there is no guarantee that the monthly
volumes so produced have reliable uncertainty distributions
and the least errors achievable. It is likely much more ef-
fective to apply post-processing directly at the monthly time
scale, where pre-processed monthly volumes may come ei-
ther from aggregating daily model outputs or simply from
monthly models.

In this study, we investigate the use of a Bayesian joint
probability (BJP) modelling approach to post-process model
predictions of monthly streamflow volumes. The BJP method
was originally developed for forecasting seasonal stream-
flows in Australia (Wang et al., 2009). Here we apply it for
bias correction, prediction updating and uncertainty quan-
tification of monthly streamflow volumes generated from
a monthly water balance model. The BJP method uses a
parametric transformation to normalize data and stabilize
variance. It allows for parameter uncertainty in the post-
processor, and this can be important when dealing with
monthly variables, which have far fewer data points than
daily variables. In this study, we assess three formulations
of the BJP post-processor in their ability to reduce error and
quantify uncertainty.

The paper is structured as follows. Section 2 describes the
catchments and data used in the study. Section 3 presents
the hydrological model used and the formulations of the BJP
post-processor. Evaluation of the post-processor is given in
Sect. 4 and followed by discussions in Sect. 5. Conclusions
are drawn in Sect. 6.

2 Study area and data

We test BJP post-processor in 18 catchments located in
Queensland, Victoria (including one at the border with New
South Wales) and Tasmania (see Fig. 1). The Victorian catch-
ments are further divided into 3 regions: upper Murray, cen-
tral Victoria and southern Victoria (see Table 1).

The catchments range in size from 127 to 36 000 km2. The
Queensland catchments are the largest in size and experi-
ence a semi-arid type of climate, characterized by low rain-
fall and high evapotranspiration. The mean annual rainfall is
less than 600 mm, and the catchments are dry during the aus-
tral winter. In contrast, the Victorian catchments experience
a temperate climate, with higher rainfall (617–1400 mm) oc-
curring during the austral winter and spring. The Tasmanian
catchments experience temperate oceanic climate and are the
wettest with mean annual rainfall in excess of 1900 mm. The
Tasmanian catchments are wet throughout the year.

We use observed monthly streamflow data obtained from
various water resource management agencies and the Bu-
reau of Meteorology, Australia. For most catchments, with
the exception of some in Queensland and Victoria, the
data are available from 1950 to 2008 (see Table 1). The
monthly catchment average rainfall and potential evapotran-
spiration for each catchment are calculated from a 5-km grid-
ded dataset available from the Australian Water Availability
Project (AWAP; Jones et al., 2009).

3 Methods

In each catchment, we calibrate parameters of a hydro-
logic water balance model and generate streamflow pre-
dictions. In the context of this study, we define prediction
as one time step ahead of forecast of streamflow, under
perfect rainfall forecast. The “raw” deterministic stream-
flow predictions generated by the model contain errors
that are unreconciled during calibration process. The BJP
post-processor aims to reduce such errors and quantify un-
certainty. This section describes the process of generating
streamflow predictions, using a hydrologic model, and their
subsequent post-processing.

3.1 Generation of streamflow predictions using a
hydrological model

We use a monthly model known as WAPABA (WAter PArti-
tion and BAlance; Wang et al., 2011) to generate streamflow
predictions. WAPABA is a modified version of the Budyko
framework model (Zhang et al., 2008) and consists of two
storages and five parameters. The model uses consumption
curves to partition water into different components based on
the availability of water (supply) and demand. WAPABA has
been tested in 331 catchments in Australia and demonstrated
to perform well (Wang et al., 2011).

Hydrol. Earth Syst. Sci., 17, 795–804, 2013 www.hydrol-earth-syst-sci.net/17/795/2013/
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Table 1.Brief attributes of the 18 catchments used for the study.

Available Catchment Mean annual Mean annual Annual
Catchment Region Record area (km2) rainfall (mm) flow (mm) runoff coeff.

Burdekin River Queensland 1967–2008 36 260 567 76 (2765 GL) 0.13
Cape River Queensland 1967–2008 16 074 456 23 (372 GL) 0.05
Lake Hume upper Murray 1950–2008 12 184 819 227 (2764 GL) 0.28
Dartmouth Reservoir upper Murray 1950–2008 3193 1042 279 (890 GL) 0.27
Kiewa River upper Murray 1965–2008 1748 1099 248 (433 GL) 0.23
Ovens River upper Murray 1959–2008 7543 963 175 (1320 GL) 0.18
Lake Nillahcootie central Victoria 1950–2008 422 942 150 (63 GL) 0.16
Lake Eildon central Victoria 1950–2008 3877 1104 373 (1447 GL) 0.34
Goulburn Weir central Victoria 1950–2008 7166 769 188 (1349 GL) 0.24
Eppalock Reservoir central Victoria 1950–2008 1749 630 98 (172 GL) 0.16
Cairn Curran Reservoir central Victoria 1950–2008 1603 617 72 (115 GL) 0.12
Tullaroop Reservoir central Victoria 1950–2008 702 633 77 (54 GL) 0.12
Thompson Reservoir southern Victoria 1950–2008 487 1299 485 (236 GL) 0.37
Upper Yarra Reservoir southern Victoria 1950–2008 336 1387 443 (149 GL) 0.32
Maroondah Reservoir southern Victoria 1950–2008 129 1351 577 (74 GL) 0.43
O’Shannassy Reservoir southern Victoria 1950–2008 127 1404 766 (97 GL) 0.55
Mersey-Forth HES Tasmania 1950–2008 2698 1900 793 (2141 GL) 0.42
King HES Tasmania 1950–2008 731 2703 1724 (1260 GL) 0.64

Note: HES stands for Hydro Electric Scheme.

We calibrate WAPABA using the shuffled complex evo-
lution search method (SCE; Duan et al., 1994) for a pe-
riod of five years. Prior to every model run we allow a five-
year warm-up period to reduce model sensitivity to state ini-
tialization errors. We maximize a scalarized multi-objective
measure consisting of a uniformly weighted average of the
Nash–Sutcliffe efficiency (NS) coefficient (Nash and Sut-
cliffe, 1970), the NS of log transformed flows, the Pearson
correlation coefficient and a symmetric measure of bias. The
NS is an “observed-variance-normalized mean squared er-
ror” measure that emphasizes large errors, often occurring
during large events. The NS of log-transformed flow empha-
sizes errors occurring during low flow events. The Pearson
correlation measures the co-variability of the simulated and
the observed. The symmetrical measure of bias evaluates the
match between average simulation and average observation
(Wang et al., 2011). We then use the calibrated parameters
to produce raw WAPABA streamflow predictions using the
observed rainfall.

3.2 Statistical post-processing

The BJP modelling approach assumes that a set of predic-
tands,y(2), and their predictors,y(1), follow a joint multi-
variate normal distribution in a transformed space. Normal-
ization of the variables is achieved by using the log-sinh
transformation (Wang et al., 2012). The log-sinh transforma-
tion replaces the previously used Yeo-Johnson transforma-
tion (Yeo and Johnson, 2000; Wang et al., 2009; Wang and
Robertson, 2011). Although both have data normalization
and variance stabilization properties, the log-sinh has been

shown to outperform the Box-Cox-based Yeo-Johnson trans-
formation when applied to catchments with highly skewed
data (Wang et al., 2011). The posterior distribution of the pa-
rametersp(θ |YOBS), including mean, variance and transfor-
mation parameters for each variable and a correlation matrix
for the multivariate normal distribution, is estimated using a
Bayesian inference (Eq. 1):

p(θ |YOBS) ∝ p(θ) · p(YOBS|θ) (1)

whereYOBScontains the historical data of both predictory(1)
and predictandy(2) variables used for model inference, and
θ is the parameter vector.p(θ) is the prior distribution of
the parameters of the multivariate normal distribution, repre-
senting any information available before the use of historical
data,YOBS. The termp(YOBS|θ) is the likelihood function
defining the probability of observing the historical data given
the model and the parameter sets. The posterior parameter
distribution is approximated by 1000 sets of parameters sam-
pled using a Markov Chain Monte Carlo (MCMC) method.

The posterior predictive density for a new event is given by

f (y (2)|y (1)) = p(y (2)|y (1) ;YOBS)

=

∫
p(y (2)|y (1) ,θ) · p(θ |YOBS) · dθ . (2)

Details of the method for the numerical evaluation of Eqs. (1)
and (2) and the prior distribution of the parameters can be
found in Wang et al. (2009) and Wang and Robertson (2011).

To apply BJP as a post-processing tool we implement three
methodologies with different combinations of the predictors.

www.hydrol-earth-syst-sci.net/17/795/2013/ Hydrol. Earth Syst. Sci., 17, 795–804, 2013
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Figure 1: Location of the 18 catchments used for the study. 455 
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Fig. 1.Location of the 18 catchments used for the study.

3.2.1 Method A

Method A represents the simplest case where only WAPABA
predictions are applied as the predictor (y(1) in Eq. 2) and
the observed streamflows as the predictand (y(2) in Eq. 2).
This combination is to achieve two post-processing objec-
tives, correction of systematic bias and quantification of un-
certainty. The bias correction is achieved through the regres-
sion property embedded within the BJP modelling approach
(see Wang et al., 2009).

3.2.2 Method B

For method B, we add a second predictor over that used for
method A. We add streamflow data observed one month pre-
viously. The inclusion of lagged streamflow observations is
to add an auto-regressive component to the post-processor
and allow prediction updating. This method reduces errors
through prediction updating as well as correction of system-
atic bias and quantifies uncertainty.

3.2.3 Method C

For method C, we introduce a third predictor, the WAPABA
model outputs simulated in the previous month. This inclu-
sion is to further improve the prediction updating ability of
the post-processor by utilizing the persistence in the simu-
lated time series.

For each method, we first train the post-processor using
the historically observed data. To account for seasonal ef-
fects, we establish 12 different models for different months
of the year. For each month, the post-processed probabilistic
predictions are generated using a “leave-one-out” cross val-
idation procedure. This consists of sampling the parameters
using all but the year of interest and then generating predic-
tions for the “left-out” year. The cross validation period in
most catchments is about 59 yr (1950–2008).

Figure 2 is an example of the post-processed predictions
generated by the BJP post-processor. This example is to
provide the reader with an appreciation of how the post-
processed predictions from the BJP post-processor may look.
A detailed evaluation of the post-processor, with respect to
the post-processing qualities, will be presented in Sect. 4.
The example is drawn from Lake Eildon in central Victoria
and shows [0.1, 0.25, 0.5, 0.75, 0.9] quantiles and observed
streamflow values plotted chronologically. In this case the
post-processed predictions do not show any obvious trend
with time, and the widths of the quantile intervals seem to
cover the expected number of observed values.

4 Results

In this section, we assess the quality of the probabilistic pre-
dictions generated by using the three methods and evaluate

Hydrol. Earth Syst. Sci., 17, 795–804, 2013 www.hydrol-earth-syst-sci.net/17/795/2013/
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Figure 2: The time series of the post-processed prediction quantiles against the observed; only a 462 

subset of the entire cross validation period is shown. [Light blue lines represent 0.1 – 0.9 quantiles, 463 

dark blue lines represent the 0.25 – 0.75 quantiles, and blue dots represent the medians of the post-464 

processed predictive distributions. Red dots are the observed streamflow values.]  465 
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Fig. 2. The time series of the post-processed prediction quantiles
against the observed; only a subset of the entire cross validation
period is shown (Light blue lines represent 0.1–0.9 quantiles, dark
blue lines represent the 0.25–0.75 quantiles, and blue dots represent
the medians of the post-processed predictive distributions. Red dots
are the observed streamflow values.).

how effective the BJP post-processor is in reducing errors
and quantifying uncertainty.

4.1 Reduction of error

We assess the ability of the BJP post-processor to reduce er-
rors by using a measure of accuracy called root mean squared
error in probability (RMSEP; Wang and Robertson, 2011).
RMSEP (Eq. 2) measures error in a probability space. An
advantage of RMSEP over the more commonly used mean
squared error or root mean squared error is that it places
equal emphasis on errors obtained at all events rather than
on a few large errors occurring at large events.

RMSEP=

[
1

n

n∑
t=1

(
FCLI

(
yt

)
− FCLI(y

t
OBS)

)2

] 1
2

(3)

whereyt andyt
OBS are the predictions and observations at

t = 1, 2. . .n events respectively. The predictions can be ei-
ther WAPABA simulations or the medians of post-processed
distributions.FCLI is the cumulative historical distribution,
andFCLI(y) is the non-exceedance probability.

4.1.1 Performance of the WAPABA model

The RMSEP error values of the WAPABA predictions are
shown in Fig. 3. Each row in the figure corresponds to a
catchment and each column to a month. In general, except for
Cape River and in Queensland, Thompson and O’Shannassy
reservoirs in southern Victoria, the RMSEP values are rela-
tively higher in drier months or months when the catchments
just start to get wet. This occurs during August–October in
Queensland, May–March in upper Murray, January–May in
central Victoria and February–March in Tasmania.
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Figure 3: Performance of WAPABA in all 18 catchments in terms of RMSEP values calculated for 477 

each month. 478 
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Fig. 3. Performance of WAPABA in all 18 catchments in terms of
RMSEP values calculated for each month.

This suggests an inability of the model to properly charac-
terize low flows and to capture the change in catchment dy-
namics from being dry to getting wet. There can be various
reasons for this, including, for example, non-consistency in
the data between the calibration and evaluation period (with
the calibration period being either wetter or drier), the choice
of objective function for calibration, inadequate model struc-
ture or a combination of these. While it might be interesting
to investigate the causes of poor model performance in these
catchments from a model diagnostic point of view, this is be-
yond the scope of this study. Here we only focus on evaluat-
ing whether the errors can be reduced by the post-processor.

4.1.2 Method A: bias reduction

Figure 4a shows the differences in RMSEP error values be-
tween the WAPABA predictions and those produced from
method A (WAPABA prediction – method A). The values are
colour coded with blue indicating the reductions in RMSEP
error values and red indicating increases.

In general, the result shows that method A effectively re-
duces systematic bias present in WAPABA predictions. This
is manifested as reductions in RMSEP error values over the
18 catchments. The reductions in RMSEP roughly follow the
error patterns seen in Fig. 3. In most cases, the differences
in RMSEP values are either positive or zero, indicating that
the post-processor either reduces errors or preserves (does
not degrade) performance of the WAPABA predictions. The
highest reductions in RMSEP values occur in Lake Eildon
and Goulburn Weir of central Victoria.

www.hydrol-earth-syst-sci.net/17/795/2013/ Hydrol. Earth Syst. Sci., 17, 795–804, 2013
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Figure 4: (a) Difference in RMSEP values between WAPABA predictions and method A (WAPABA – method A); (b) difference in RMSEP values between 483 
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Fig. 4. (a)Difference in RMSEP values between WAPABA predictions and method A (WAPABA – method A);(b) difference in RMSEP
values between method A and B (method A –method B);(c) difference in RMSEP values between method B and C (method B – method C).

4.1.3 Method B: prediction updating

Figure 4b shows the benefit of prediction updating by
assimilating the recent streamflow observations (method
B). We use the difference between methods A and B
(method A – method B) to indicate any further reduc-
tions in errors achieved by prediction updating. As in the
previous case, blue indicates reductions in errors and red
indicates increases.

The figure shows further reductions in RMSEP values af-
ter bias correction (method A). The reductions occur in most
of the catchments. The reductions in errors are governed by
whether the errors are present after bias correction and the
persistence in the streamflow observation data. For exam-
ple, the WAPABA predictions in Cape River of Queensland
and Lake Nillahcootie of central Victoria (Fig. 3) show the
presence of substantially large error values in the initial few
months even after bias correction, but they cannot be cor-
rected due to the lack of persistence in the errors. In the upper
Murray region, central Victoria and southern Victoria, reduc-
tions occur in most of the catchments, and in some catch-
ments (such as Cairn Curran Reservoir) it is greater than that
achieved through bias correction. In Tasmanian catchments,
the reductions are negligible.

4.1.4 Method C: prediction updating using WAPABA
lagged simulation

Figure 4c shows additional benefits achieved by assimilating
“lagged” streamflow simulation. The difference is measured
relative to method B (method B – method C) such that posi-

tive (blue) values indicate further reductions in RMSEP error
values over that achieved by method B. The result shows that
the benefits of adding lag-1 WAPABA streamflow tend to be
negligible in most catchments and seasons. However, some
reductions in RMSEP error values can be observed in Ma-
roondah reservoir (in southern Victoria), for the months of
February, March and May. In other catchments, the differ-
ences in RMSEP values are close to zero. This suggests that
two predictors in the BJP post-processors (WAPABA predic-
tion and lag-1 streamflow observation) are able to capture
all information about the residual error structure from the
training data, thus making contributions from an additional
predictor redundant.

4.2 Quantification of uncertainty

The post-processor should be able to quantify the uncertainty
in predictions. As a measure of the ability to quantify un-
certainty, we assess if the probabilistic predictions generated
by the post-processor are reliable and robust. We assess the
predictions generated using all three methods in 18 catch-
ments but present results for Lake Eildon using method B as
a general representation.

4.2.1 Assessment of reliability

Reliability refers to “statistical consistency” of the predic-
tive probability distributions with the observed frequency of
the events (Toth et al., 2003; Robertson et al., 2012). In this
study, we use PIT (probability integral transform) uniform
probability plots (Wang et al., 2009; Wang and Robertson,
2011) to assess the overall reliability of the post-processed
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Fig. 5. PIT uniform probability plots of post-processed stream-
flow predictions for two months (February and July) in Lake Eil-
don (1: 1 solid line, theoretical uniform distribution; broken lines,
Kolmogorov 5 % significance band; circle, PIT value of observed
streamflow).

predictive distributions. We choose PIT uniform probabil-
ity plots over other methods because they are more suited
to smaller sample sizes (Wang et al., 2009).

The PIT of the observed value is given asπ t
= F t

(
yt

OBS

)
,

whereF t
(
yt

OBS

)
is the non-exceedance probability of the

observed streamflow in the predictive distribution. The pre-
dictive distributions are said to be reliable if the PIT values
are distributed uniformly. To check uniformity, we plot PIT
values corresponding to each event in a uniform probabil-
ity plot (Wang et al., 2009; Wang and Robertson, 2011). A
close alignment of the values to 1: 1 indicates uniformity
and therefore reliable distributions. Deviations from the 1: 1
line indicate if the predictive distributions are too low or
high and if the uncertainty spreads are too wide or narrow.
The details on how to interpret the PIT plots can be found
in Thyer et al. (2009), Wang et al. (2009) and Wang and
Robertson (2011).

Figure 5 shows the PIT uniform probability plots of
the post-processed predictions generated for the months of
February and July in Lake Eildon. The dotted inclined lines
depict the Kolmogorov 5 % significance band. The PIT val-
ues in the plots align quite uniformly along the diagonal 1: 1
line (solid inclined line) and are well within the significance
band. This suggests that the post-processed predictive distri-
butions are overall reliable and the width of uncertainty inter-
vals are of appropriate spread (not too wide or narrow). The
result is similar for all the months in Lake Eildon (figures not
included).

4.2.2 Assessment of robustness

Robustness refers here to “conditional reliability” of the pre-
dictive distributions over time and event size. To measure
the robustness of the predictive distributions against time, we
plot PIT values chronologically and analyse the plot for the
presence of any trends or patterns. The distributions are ro-
bust (over time) if the PIT values are distributed uniformly.
Any existing trends or patterns indicate the presence of sys-
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Fig. 6.Top row – probability integral transform (PIT) values plotted
against time for the months of February and July; bottom row –
post-processed quantiles plotted against their median values for the
months of February and July. The red dots represent the observed
streamflows, light blue vertical lines represent the 0.1–0.9 quantiles
and the dark blue lines represent the 0.25–0.75 quantiles. The 1: 1
lines represent the forecast median.

tematic errors in the distributions (Wang et al., 2009; Wang
and Robertson, 2011).

Figure 6 (top row) shows the PIT values plotted chrono-
logically for February and July. The PIT values tend to be
distributed randomly against time, devoid of any trends or
patterns indicating that distributions are robust. In fact, this
was the case for all the months in Lake Eildon (figure not
included).

To measure robustness of the post-processed predictions
against flow magnitudes, we plot post-processed prediction
quantiles and the observed streamflow values against the me-
dians of the predictions. As in the previous case, we anal-
yse the plot to detect presence of any trends or patterns.
Figure 6 (bottom row) shows the post-processed quantiles
plotted against event magnitude.

The figure shows that the quantiles increase with event
sizes and the medians are consistent with the observed flows.
The observed flows are scattered randomly about the me-
dians, suggesting that the post-processed quantiles are ro-
bust with respect to event magnitudes. The plots also show
that the width of the uncertainty intervals are of appropriate
spread for all the event size.

This verification approach is applied for all post-
processing method (A, B and C) for all the catchments,
for each month. In general, the results are consistent to the
results obtained in Lake Eildon.
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Fig. 7.Monthly biases (%) in Lake EILDON, raw WAPABA predic-
tions (blue) and method A (black) [The bias for method A= (mean
monthly streamflow observations – mean probabilistic predictions
averaged each month)/(Average observed monthly streamflow); the
bias for WAPABA= (mean monthly streamflow observations –
mean monthly WAPABA predictions)/(Average observed monthly
streamflow)].

5 Discussion

The results show that large bias can occur in predictions
despite calibrating WAPABA using a multicriteria objective
function that includes a symmetric measure of bias. This is
not surprising because maximization of the scalarized func-
tion is a result of compromise between four objective func-
tions and does not necessarily lead to removal of systematic
bias in all catchments and in all months. The presence of bias
is especially high in Lake Eildon. The BJP post-processor
eliminates bias in the predictions effectively, resulting in bias
close to zero throughout the year. This can be better appreci-
ated in Fig. 7, which shows monthly percentage bias obtained
by WAPABA predictions and its elimination by method A.

Furthermore, it is interesting to note that the bias correc-
tion is not just due to linear changes in slope or intercepts
but also due to non-linear changes as illustrated by Fig. 8.
The figures demonstrate non-linear compensations to WA-
PABA predictions by the BJP post-processor. The log-sinh
transformation in combination with the BJP model param-
eter inference allow for the non-linear corrections of errors,
thus allowing for corrections of conditional as well as uncon-
ditional biases.

Our results show that further error reductions can be pos-
sible through prediction updating. This contradicts the as-
sumptions made by Li et al. (2011), who assume that per-
sistence in error structure at monthly time step is negligible.
However, we note that the results tend to be catchment spe-
cific. In our case the improvements are mostly seen in catch-
ments that have substantial streamflow contribution from the
slow responding mechanisms (resulting in longer memory)
in the catchment. This seems to be the case in upper Murray,
central Victoria and southern catchments, where significant
reductions in errors can be observed. The two catchments in
Tasmania, the one in Queensland and the one in central Vic-
toria have shorter catchment “memory” with the streamflow
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Figure 8:  WAPABA predictions vs. the medians of post-processed predictions produced by method A 521 

in Lake Eildon for months of February (left) and July (right), showing the example of non-linear error 522 

corrections by the BJP post-processor.  523 
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Fig. 8.WAPABA predictions vs. the medians of post-processed pre-
dictions produced by method A in Lake Eildon for the months of
February (left) and July (right), showing the example of non-linear
error corrections by the BJP post-processor.
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Figure 9: Scatter plots of RMSEP values; (left) WAPABA predictions vs. Method A, (right) Method 527 

A vs. Method B. 528 
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Fig. 9. Scatter plots of RMSEP values; (left) WAPABA predictions
vs. method A, (right) method A vs. method B.

being dominated by fast-responding runoff processes, and
therefore the benefits of prediction updating are negligible.

In general, the reduction of errors by the post-processor
does not necessarily depend upon the magnitude of errors
and occurs for small as well as large errors (Fig. 9). How-
ever, reductions of errors are not possible in all situations,
as illustrated by the points lying in the 1: 1 lines. As with
all the statistical methods, the effectiveness of the BJP post-
processor depends upon the correlation between predictand
and predictors, stationarity in relationship (between predic-
tors and predictands) and persistence in the error structure
that allow for prediction updating. The post-processor is not
effective in situations where none of these occur; this seem
to be the case for many points lying in the 1: 1 lines, most
prominent among them being the high RMSEP error values
(> 0.25) corresponding to predictions in Nillahcootie (see
Figs. 9 and 3). However, more importantly the BJP post-
processor is able to preserve skill (not degrade performance)
of WAPABA prediction even when error correction is not
possible.

We acknowledge that the rainfall forecast uncertainty rep-
resents a major source of uncertainty in streamflow forecast
(Krzysztofowicz, 1999; Kuczera et al., 2006). In this study,
however, we run the water balance model in a simulation
mode. Therefore the total uncertainty quantified by the post-
processor is the “lumped” combination of the hydrologic
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uncertainty, rainfall measurement uncertainty, the stream-
flow measurement uncertainty and the uncertainty in infer-
ring the values of the parameters of the BJP post-processor.

However, the post-processor is equally applicable in real
world applications using rainfall forecast ensembles. In such
cases the hydrologic model could be forced with rainfall
forecast ensembles to create streamflow forecast ensem-
bles. The streamflow forecast ensembles could then be post-
processed to reduce errors and further quantify hydrologic
uncertainty in the streamflow forecast (Seo et al., 2006). An
alternative approach would be to force the hydrologic model
using the mean of rainfall forecast ensembles, then train the
post-processor on the deterministic streamflow forecast pro-
duced by the hydrologic model, and finally post-process the
deterministic forecast to reduce error and quantify the total
uncertainty (Pokhrel et al., 2012).

6 Summary and conclusions

In this study, we present a statistical post-processor capable
of reducing errors and quantifying uncertainty in monthly
streamflow predictions. The statistical post-processor is
based on the BJP modelling approach (Wang et al., 2009).
The BJP post-processor is applied to 18 catchments in Aus-
tralia, and its ability to reduce errors, through reductions of
systematic bias and prediction updating, and to quantify un-
certainty in the monthly streamflow predictions is assessed.

The study shows that the BJP post-processor is capable of
improving the accuracy of the streamflow predictions by re-
ducing systematic bias in most of the catchments. In many
cases, reduction of bias is achieved by means of a non-
linear relationship between model predictions and the ob-
served streamflow values. The post-processor also demon-
strates its useful property in preserving the accuracy (does
not increase error) of predictions when bias correction is not
possible.

Prediction updating through the assimilation of recent
streamflows by the post-processor results in further reduc-
tions in RMSEP error values over those achieved by bias cor-
rection alone, and it is most effective for catchments showing
stronger persistence in the prediction errors. Benefits of pre-
diction updating using additional information from the water
balance model simulation at the previous time step seem to
be very marginal and do not justify the added complexity of
introducing another predictor to the post-processor.

The BJP post-processor is capable of generating prob-
abilistic predictions that are overall reliable. The uncer-
tainty quantified by the processor is of appropriate spread.
The post-processed predictive distributions are robust with
respect to time and event magnitude.
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