Research article
22 Feb 2013
Research article | 22 Feb 2013
CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data
T. Y. Lakhankar et al.
Related authors
L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand
Nataniel Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-373,https://doi.org/10.5194/bg-2020-373, 2020
Revised manuscript accepted for BG
Short summary
L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand
Nataniel Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-373,https://doi.org/10.5194/bg-2020-373, 2020
Revised manuscript accepted for BG
Short summary
Related subject area
A snow cover climatology for the Pyrenees from MODIS snow products
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015,https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
P. B. Kirchner, R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo
Hydrol. Earth Syst. Sci., 18, 4261–4275, https://doi.org/10.5194/hess-18-4261-2014,https://doi.org/10.5194/hess-18-4261-2014, 2014
Short summary
Early 21st century snow cover state over the western river basins of the Indus River system
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014,https://doi.org/10.5194/hess-18-4077-2014, 2014
Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan
A. A. Tahir, P. Chevallier, Y. Arnaud, and B. Ahmad
Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011,https://doi.org/10.5194/hess-15-2275-2011, 2011
Cited articles
Brucker, L., Royer, A., Picard, G., Langlois, A., and Fily, M.: Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution-emission model, Remote Sens. Environ., 115, 1966–1977, https://doi.org/10.1016/j.rse.2011.03.019, 2011.
Chang, A. T. C., Foster, J. L., Hall, D. K., Rango, A., and Hartline, B. K.: Snow water equivalent determination by microwave radiometry, Cold Reg. Sci. Technol., 5, 259–267, 1981.
Chang, A. T. C., Kelly, R. E. J., Foster, J. L., and Hall, D. K.: Global SWE monitoring using AMSR-E data, Geoscience and Remote Sensing Symposium, IGARSS'03, Proceedings., 1, 680–682, https://doi.org/10.1109/IGARSS.2003.1293880, 2003.
Durand, M., Kim, E. J., and Margulis, S. A.: Quantifying Uncertainty in Modeling Snow Microwave Radiance for a Mountain Snowpack at the Point-Scale, Including Stratigraphic Effects, IEEE T. Geosci. Remote, 46, 1753–1767, https://doi.org/10.1109/TGRS.2008.916221, 2008.
Elder, K., Cline, D., Liston, G. E., and Armstrong, R.: NASA Cold Land Processes Experiment (CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture, J. Hydrometeorol., 10, 320–329, https://doi.org/10.1175/2008JHM877.1, 2009.
Foster, J. L., Chang, A. T. C., and Hall, D. K.: Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, a Revised Algorithm and a Snow Depth Climatology, Remote Sens. Environ., 62, 132–142, 1997.
Grody, N. C.: Surface identification using satellite microwave radiometers, IEEE T. Geosci. Remote, 26, 850–859, 1988.
Grody, N. C.: Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz, J. Geophys. Res., 113, 1–17, https://doi.org/10.1029/2007JD009685, 2008.
Grody, N. C. and Basist, A. N.: Global identification of snowcover using SSM/I measurements, IEEE T. Geosci. Remote, 34, 237–249, https://doi.org/10.1109/36.481908, 1996.
Hewison, T. J. and English, S. J.: Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths, IEEE T. Geosci. Remote, 37, 1871–1879, https://doi.org/10.1109/36.774700, 1999.
Jordan, R.: A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM.89, US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1991.
Kelly, R. E., Chang, A., Tsang, L., and Foster, J. L.: A prototype AMSR-E global snow area and snow depth algorithm, IEEE T. Geosci. Remote, 41, 230–242, 2003.
Kongoli, C., Grody, N. C., and Ferraro, R. R.: Interpretation of AMSU microwave measurements for the retrievals of snow water equivalent and snow depth, J. Geophys. Res., 109, 1–12, https://doi.org/10.1029/2004JD004836, 2004.
Langlois, A., Barber, D. G., and Hwang, B. J.: Development of a winter snow water equivalent algorithm using in situ passive microwave radiometry over snow-covered first-year sea ice, Remote Sens. Environ., 106, 75–88, https://doi.org/10.1016/j.rse.2006.07.018, 2007.
Langlois, A., Kohn, J., Royer, A., Cliche, P., Brucker, L., Picard, G., Fily, M., Derksen, C., and Willemet, J. M.: Simulation of Snow Water Equivalent (SWE) Using Thermodynamic Snow Models in Québec, Canada, J. Hydrometeorol., 10, 1447–1463, https://doi.org/10.1175/2009JHM1154.1, 2009.
Macelloni, G., Paloscia, S., Pampaloni, P., Brogioni, M., Ranzi, R., and Crepaz, A.: Monitoring of melting refreezing cycles of snow with microwave radiometers: the Microwave Alpine Snow Melting Experiment (MASMEx 2002–2003), IEEE T. Geosci. Remote, 43, 2431–2442, https://doi.org/10.1109/TGRS.2005.855070, 2005.
McCabe, G. J., Hay, L. E., and Clark, M. P.: Rain-on-Snow Events in the Western United States, B. Am Meteorol. Soc., 88, 319–328, https://doi.org/10.1175/BAMS-88-3-319, 2007.
Papa, F., Prigent, C., and Rossow, W. B.: Ob' River flood inundations from satellite observations: A relationship with winter snow parameters and river runoff, J. Geophys. Res., 112, 1–11, https://doi.org/10.1029/2007JD008451, 2007.
Rosenfeld, S. and Grody, N. C.: Metamorphic signature of snow revealed in SSM/I measurements, IEEE T. Geosci. Remote, 38, 53–63, https://doi.org/10.1109/36.823901, 2000.
Simic, A., Fernandes, R., Brown, R., Romanov, P., and Park, W.: Validation of VEGETATION, MODIS, and GOES+SSM/I snow-cover products over Canada based on surface snow depth observations, Hydrol Process., 18, 1089–1104, https://doi.org/10.1002/hyp.5509, 2004.
Singh, P., Spitzbart, G., Hubl, H., and Weinmeister, H. W.: Hydrological response of snowpack under rain-on-snow events: a field study, J. Hydrol., 202, 1–20, https://doi.org/10.1016/S0022-1694(97)00004-8, 1997.
Tiuri, M., Sihvola, A., Nyfors, E., and Hallikaiken, M.: The complex dielectric constant of snow at microwave frequencies, IEEE J. Oceanic Eng., 9, 377–382, https://doi.org/10.1109/JOE.1984.1145645, 1984.
Ulaby, F. T. and Stiles, W. H.: The Active and Passive Microwave Response to Snow Parameters 2. Water Equivalent of Dry Snow, J. Geophys. Res., 85, 1045–1049, https://doi.org/10.1029/JC085iC02p01045, 1980.
Wiesmann, A. and Mätzler, C.: Microwave Emission Model of Layered Snowpacks, Remote Sens. Environ., 70, 307–316, https://doi.org/10.1016/S0034-4257(99)00046-2, 1999.