Articles | Volume 17, issue 11
https://doi.org/10.5194/hess-17-4367-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-4367-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modeling root reinforcement using a root-failure Weibull survival function
M. Schwarz
Bern University of Applied Sciences (BFH), Langgasse 85, 3052 Zollikofen, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
EcorisQ, route des trois villages, 38660 Saint Hilaire du Touvet, France
F. Giadrossich
Department of Agriculture, University of Sassari, via Enrico de Nicola 1, 07100 Sassari, Italy
Nucleo Ricerca Desertificazione (NRD), viale Italia 39, 07100 Sassari, Italy
D. Cohen
Institute for Environmental Sciences, University of Geneva, Route de Drize 7, 1227 Carouge, Switzerland
Department of Geological and Atmospheric Sciences, Iowa State University, 253 Science I, Ames, IA 50011, USA
Related authors
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-76, https://doi.org/10.5194/nhess-2024-76, 2024
Preprint under review for NHESS
Short summary
Short summary
We developed a machine learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables including metrics on terrain, geomorphology, vegetation height, and lithology and used data from two Swiss field inventories to calibrate and test the models. The best performing machine learning model consistently reduced the mean average error by least 17 % compared to previously existing models.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Adel Albaba, Massimiliano Schwarz, Corinna Wendeler, Bernard Loup, and Luuk Dorren
Nat. Hazards Earth Syst. Sci., 19, 2339–2358, https://doi.org/10.5194/nhess-19-2339-2019, https://doi.org/10.5194/nhess-19-2339-2019, 2019
Short summary
Short summary
We present a discrete-element-based model which is adapted and used to produce hillslope debris flows. The model parameters were calibrated using field experiments, and a very good agreement was found in terms of pressure and flow velocity. Calibration results suggested that a link might exist between the model parameters and the initial conditions of the granular material. However, to better understand this link, further investigations are required by conducting detailed lab-scale experiments.
Massimiliano Schwarz, Filippo Giadrossich, Peter Lüscher, and Peter F. Germann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-761, https://doi.org/10.5194/hess-2017-761, 2018
Preprint withdrawn
Short summary
Short summary
Vegetation strongly influences the hydrology of hillslopes that are important for the mitigation of flood risks. In this work we present a new conceptual model that aims to link the effect of tree roots combined to the preferential flow of water. We use data from field experiments, coupled to tree position and dimension for the quantification of water preferential flow patches of a vegetated hillslope, considering topography and soil profile characteristics.
Denis Cohen and Massimiliano Schwarz
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, https://doi.org/10.5194/esurf-5-451-2017, 2017
Short summary
Short summary
Tree roots reinforce soils on slopes. A new slope stability model is presented that computes root reinforcement including the effects of root heterogeneities and dependence of root strength on tensile and compressive strain. Our results show that roots stabilize slopes that would otherwise fail under a rainfall event. Tension in roots is more effective than compression. Redistribution of forces in roots across the hillslope plays a key role in the stability of the slope during rainfall events.
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-76, https://doi.org/10.5194/nhess-2024-76, 2024
Preprint under review for NHESS
Short summary
Short summary
We developed a machine learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables including metrics on terrain, geomorphology, vegetation height, and lithology and used data from two Swiss field inventories to calibrate and test the models. The best performing machine learning model consistently reduced the mean average error by least 17 % compared to previously existing models.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Publication in NHESS not foreseen
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Thomas Bueche, Marko Wenk, Benjamin Poschlod, Filippo Giadrossich, Mario Pirastru, and Mark Vetter
Geosci. Model Dev., 13, 565–580, https://doi.org/10.5194/gmd-13-565-2020, https://doi.org/10.5194/gmd-13-565-2020, 2020
Short summary
Short summary
The R-based graphical user interface glmGUI provides tools for pre- and postprocessing of General Lake Model (GLM) simulations. This includes an autocalibration, parameter sensitivity analysis, and several plot options. The model parameters can be analyzed and calibrated for the simulation output variables water temperature and lake level. The toolbox is tested for two sites (lake Ammersee, Germany, and lake Baratz, Italy).
Adel Albaba, Massimiliano Schwarz, Corinna Wendeler, Bernard Loup, and Luuk Dorren
Nat. Hazards Earth Syst. Sci., 19, 2339–2358, https://doi.org/10.5194/nhess-19-2339-2019, https://doi.org/10.5194/nhess-19-2339-2019, 2019
Short summary
Short summary
We present a discrete-element-based model which is adapted and used to produce hillslope debris flows. The model parameters were calibrated using field experiments, and a very good agreement was found in terms of pressure and flow velocity. Calibration results suggested that a link might exist between the model parameters and the initial conditions of the granular material. However, to better understand this link, further investigations are required by conducting detailed lab-scale experiments.
Massimiliano Schwarz, Filippo Giadrossich, Peter Lüscher, and Peter F. Germann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-761, https://doi.org/10.5194/hess-2017-761, 2018
Preprint withdrawn
Short summary
Short summary
Vegetation strongly influences the hydrology of hillslopes that are important for the mitigation of flood risks. In this work we present a new conceptual model that aims to link the effect of tree roots combined to the preferential flow of water. We use data from field experiments, coupled to tree position and dimension for the quantification of water preferential flow patches of a vegetated hillslope, considering topography and soil profile characteristics.
Denis Cohen and Massimiliano Schwarz
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, https://doi.org/10.5194/esurf-5-451-2017, 2017
Short summary
Short summary
Tree roots reinforce soils on slopes. A new slope stability model is presented that computes root reinforcement including the effects of root heterogeneities and dependence of root strength on tensile and compressive strain. Our results show that roots stabilize slopes that would otherwise fail under a rainfall event. Tension in roots is more effective than compression. Redistribution of forces in roots across the hillslope plays a key role in the stability of the slope during rainfall events.
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
A systematic review of climate change science relevant to Australian design flood estimation
Technical Note: Resolution enhancement of flood inundation grids
Floods and droughts: a multivariate perspective
Technical note: Statistical generation of climate-perturbed flow duration curves
Deep learning methods for flood mapping: a review of existing applications and future research directions
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Technical note: The beneficial role of a natural permeable layer in slope stabilization by drainage trenches
Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Observation operators for assimilation of satellite observations in fluvial inundation forecasting
Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River
Inundation mapping based on reach-scale effective geometry
Effects of variability in probable maximum precipitation patterns on flood losses
The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data
A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction
Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset
Technical note: Design flood under hydrological uncertainty
Topography- and nightlight-based national flood risk assessment in Canada
Regime shifts in annual maximum rainfall across Australia – implications for intensity–frequency–duration (IFD) relationships
Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs
A continuous rainfall model based on vine copulas
Estimates of global dew collection potential on artificial surfaces
Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes
An assessment of the ability of Bartlett–Lewis type of rainfall models to reproduce drought statistics
Socio-hydrology: conceptualising human-flood interactions
Application of a model-based rainfall-runoff database as efficient tool for flood risk management
Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis
HydroViz: design and evaluation of a Web-based tool for improving hydrology education
Web 2.0 collaboration tool to support student research in hydrology – an opinion
SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach
Discharge estimation combining flow routing and occasional measurements of velocity
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
Comment on "A praxis-oriented perspective of streamflow inference from stage observations – the method of Dottori et al. (2009) and the alternative of the Jones Formula, with the kinematic wave celerity computed on the looped rating curve" by Koussis (2009)
An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé
Hydrol. Earth Syst. Sci., 27, 2499–2507, https://doi.org/10.5194/hess-27-2499-2023, https://doi.org/10.5194/hess-27-2499-2023, 2023
Short summary
Short summary
The proposed approach is based on the parameterisation of flow duration curves (FDCs) to generate hypothetical streamflow futures. (1) We sample a broad range of future climates with modified values of three key streamflow statistics. (2) We generate an FDC for each hydro-climate future. (3) The resulting ensemble is ready to support robustness assessments in a changing climate. Our approach seamlessly represents a large range of futures with increased frequencies of both high and low flows.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021, https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Short summary
How can we effectively train PhD candidates both (i) across different knowledge domains in water science and engineering and (ii) in computer science? To address this issue, the Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering.
Onno Bokhove, Tiffany Hicks, Wout Zweers, and Thomas Kent
Hydrol. Earth Syst. Sci., 24, 2483–2503, https://doi.org/10.5194/hess-24-2483-2020, https://doi.org/10.5194/hess-24-2483-2020, 2020
Short summary
Short summary
Wetropolis is a
table-topdemonstration model with extreme rainfall and flooding, including random rainfall, river flow, flood plains, an upland reservoir, a porous moor, and a city which can flood. It lets the viewer experience extreme rainfall and flood events in a physical model on reduced spatial and temporal scales with an event return period of 6.06 min rather than, say, 200 years. We disseminate its mathematical design and how it has been shown most prominently to over 500 flood victims.
Gianfranco Urciuoli, Luca Comegna, Marianna Pirone, and Luciano Picarelli
Hydrol. Earth Syst. Sci., 24, 1669–1676, https://doi.org/10.5194/hess-24-1669-2020, https://doi.org/10.5194/hess-24-1669-2020, 2020
Short summary
Short summary
The aim of this paper is to demonstrate, through a numerical approach, that the presence of soil layers of higher permeability, a not unlikely condition in some deep landslides in clay, may be exploited to improve the efficiency of systems of drainage trenches for slope stabilization. The problem has been examined for the case that a unique pervious layer, parallel to the ground surface, is present at an elevation higher than the bottom of the trenches.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Elizabeth S. Cooper, Sarah L. Dance, Javier García-Pintado, Nancy K. Nichols, and Polly J. Smith
Hydrol. Earth Syst. Sci., 23, 2541–2559, https://doi.org/10.5194/hess-23-2541-2019, https://doi.org/10.5194/hess-23-2541-2019, 2019
Short summary
Short summary
Flooding from rivers is a huge and costly problem worldwide. Computer simulations can help to warn people if and when they are likely to be affected by river floodwater, but such predictions are not always accurate or reliable. Information about flood extent from satellites can help to keep these forecasts on track. Here we investigate different ways of using information from satellite images and look at the effect on computer predictions. This will help to develop flood warning systems.
Bart van Osnabrugge, Remko Uijlenhoet, and Albrecht Weerts
Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019, https://doi.org/10.5194/hess-23-1453-2019, 2019
Short summary
Short summary
A correct estimate of the amount of future precipitation is the most important factor in making a good streamflow forecast, but evaporation is also an important component that determines the discharge of a river. However, in this study for the Rhine River we found that evaporation forecasts only give an almost negligible improvement compared to methods that use statistical information on climatology for a 10-day streamflow forecast. This is important to guide research on low flow forecasts.
Cédric Rebolho, Vazken Andréassian, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 22, 5967–5985, https://doi.org/10.5194/hess-22-5967-2018, https://doi.org/10.5194/hess-22-5967-2018, 2018
Short summary
Short summary
Inundation models are useful for hazard management and prevention. They are traditionally based on hydraulic partial differential equations (with satisfying results but large data and computational requirements). This study presents a simplified approach combining reach-scale geometric properties with steady uniform flow equations. The model shows promising results overall, although difficulties persist in the most complex urbanised reaches.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Guillaume Le Bihan, Olivier Payrastre, Eric Gaume, David Moncoulon, and Frédéric Pons
Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, https://doi.org/10.5194/hess-21-5911-2017, 2017
Short summary
Short summary
This paper illustrates how an integrated flash flood monitoring (or forecasting) system may be designed to directly provide information on possibly flooded areas and associated impacts on a very detailed river network and over large territories. The approach is extensively tested in the regions of Alès and Draguignan, located in south-eastern France. Validation results are presented in terms of accuracy of the estimated flood extents and related impacts (based on insurance claim data).
Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci., 21, 3827–3838, https://doi.org/10.5194/hess-21-3827-2017, https://doi.org/10.5194/hess-21-3827-2017, 2017
Short summary
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Ricardo Zubieta, Augusto Getirana, Jhan Carlo Espinoza, Waldo Lavado-Casimiro, and Luis Aragon
Hydrol. Earth Syst. Sci., 21, 3543–3555, https://doi.org/10.5194/hess-21-3543-2017, https://doi.org/10.5194/hess-21-3543-2017, 2017
Short summary
Short summary
This paper indicates that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, in comparison to observed rainfall (by 11.1 % and 15.7 %, respectively). Statistical analysis indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets for estimating observed streamflows in Andean–Amazonian regions (Ucayali Basin, southern regions of the Amazon Basin of Peru and Ecuador).
Anna Botto, Daniele Ganora, Pierluigi Claps, and Francesco Laio
Hydrol. Earth Syst. Sci., 21, 3353–3358, https://doi.org/10.5194/hess-21-3353-2017, https://doi.org/10.5194/hess-21-3353-2017, 2017
Short summary
Short summary
The paper provides an easy-to-use implementation of the UNCODE framework, which allows one to estimate the design flood value by directly accounting for sample uncertainty. Other than a design tool, this methodology is also a practical way to quantify the value of data in the design process.
Amin Elshorbagy, Raja Bharath, Anchit Lakhanpal, Serena Ceola, Alberto Montanari, and Karl-Erich Lindenschmidt
Hydrol. Earth Syst. Sci., 21, 2219–2232, https://doi.org/10.5194/hess-21-2219-2017, https://doi.org/10.5194/hess-21-2219-2017, 2017
Short summary
Short summary
Flood mapping is one of Canada's major national interests. This work presents a simple and effective method for large-scale flood hazard and risk mapping, applied in this study to Canada. Readily available data, such as remote sensing night-light data, topography, and stream network were used to create the maps.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
P. A. Marker, N. Foged, X. He, A. V. Christiansen, J. C. Refsgaard, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 19, 3875–3890, https://doi.org/10.5194/hess-19-3875-2015, https://doi.org/10.5194/hess-19-3875-2015, 2015
H. Vernieuwe, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, https://doi.org/10.5194/hess-19-2685-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
M. T. Pham, W. J. Vanhaute, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 5167–5183, https://doi.org/10.5194/hess-17-5167-2013, https://doi.org/10.5194/hess-17-5167-2013, 2013
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
E. Habib, Y. Ma, D. Williams, H. O. Sharif, and F. Hossain
Hydrol. Earth Syst. Sci., 16, 3767–3781, https://doi.org/10.5194/hess-16-3767-2012, https://doi.org/10.5194/hess-16-3767-2012, 2012
A. Pathirana, B. Gersonius, and M. Radhakrishnan
Hydrol. Earth Syst. Sci., 16, 2499–2509, https://doi.org/10.5194/hess-16-2499-2012, https://doi.org/10.5194/hess-16-2499-2012, 2012
K. X. Soulis and J. D. Valiantzas
Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, https://doi.org/10.5194/hess-16-1001-2012, 2012
G. Corato, T. Moramarco, and T. Tucciarelli
Hydrol. Earth Syst. Sci., 15, 2979–2994, https://doi.org/10.5194/hess-15-2979-2011, https://doi.org/10.5194/hess-15-2979-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1943–1961, https://doi.org/10.5194/hess-14-1943-2010, https://doi.org/10.5194/hess-14-1943-2010, 2010
A. D. Koussis
Hydrol. Earth Syst. Sci., 14, 1093–1097, https://doi.org/10.5194/hess-14-1093-2010, https://doi.org/10.5194/hess-14-1093-2010, 2010
J. A. Velázquez, T. Petit, A. Lavoie, M.-A. Boucher, R. Turcotte, V. Fortin, and F. Anctil
Hydrol. Earth Syst. Sci., 13, 2221–2231, https://doi.org/10.5194/hess-13-2221-2009, https://doi.org/10.5194/hess-13-2221-2009, 2009
Cited articles
Ammann, M., Böll, A., Rickli, C., Speck, T., and Holdenrieder, O.: Significance of tree root decomposition for shallow landslides, For. Snow Landsc. Res., 82, 79–94, 2009.
Bathurst, J. C., Moretti, G., El-Hames, A., Beguería, S., and García-Ruiz, J. M.: Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees, Hydrol. Earth Syst. Sci., 11, 569–583, https://doi.org/10.5194/hess-11-569-2007, 2007.
Bischetti, G. B., Chiaradia, E. A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., and Zocco, A.: Root strength and root area ratio of forest species in Lombardy (Northern Italy), Plant Soil, 278, 11–22, 2005.
Bischetti, G. B., Chiaradia, E. A., Epis, T., and Morlotti, E.: Root cohesion of forest species in the Italian Alps, Plant Soil, 324, 71–89, 2009.
Cohen, D., Schwarz, M., and Or, D.: An analytical fiber bundle model for pullout mechanics of root bundles, J. Geophys. Res., 116, F03010, https://doi.org/10.1029/2010JF001886, 2011.
Curtin, W. A. and Takeda, N.: Tensile Strength of Fiber-Reinforced Composites: I. Model and Effects of Local Fiber Geometry, J. Compos. Mater., 32, 2042–2059, https://doi.org/10.1177/002199839803202203, 1998.
Czarnes, S., Hiller, S., Dexter, A. R., Hallett, P. D., and Bartoli, F.: Root:soil adhesion in the maize rhizosphere: the rheological approach, Plant Soil, 211, 69–86, 1999.
Edmaier, K., Burlando, P., and Perona, P.: Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment, Hydrol. Earth Syst. Sci., 15, 1615–1627, https://doi.org/10.5194/hess-15-1615-2011, 2011.
Edmaier, K., Crouzy, B., Perona P., and Burlando, P.: Experimental characterization of root anchoring in non-cohesive sediment, RiverFLow 2012, 1, 617–622, 2012.
Giadrossich, F., Schwarz, M., Cohen, D., Preti, F., and Or, D.: Mechanical interactions between neighbouring roots during pullout tests, Plant Soil, 367, 391–406, https://doi.org/10.1007/s11104-012-1475-1, 2013.
Hesse, R.: Incorrect Nonlinear Trend Curves in Excel, FORESIGHT: Int. J. Appl. Forecast., 3, 39–43, 2006.
Loades, K. W.: Quantifying soil reinforcement by fibrous roots, Ph.D thesis, University of Dundee, UK, 241 pp., 2007.
Loades, K. W., Bengough, A. G., Bransby, M. F., and Hallett, P. D.: Planting density influence on fibrous root reinforcement of soils, Ecol. Eng., 36, 276–284, 2010.
Loades, K. W., Bengough, A. G., Bransby, M. F., and Hallett, P. D.: Reinforcement of soil by fibrous roots, Enhancing Understanding and Quantification of Soil–Root Growth Interactions, 197–228, https://doi.org/10.2134/advagricsystmodel4.c9, 2013.
Operstein, V. and Frydman, S.: The influence of vegetation on soil strength, Ground Improvement, 4, 81–89, 2000.
Petrone, A. and Preti, F.: Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua, Hydrol. Earth Syst. Sci., 12, 1241–1248, https://doi.org/10.5194/hess-12-1241-2008, 2008.
Phillips, C. J. and Watson, A. J.: Structural tree root research in New Zealand: a review, Landcare Research Science Series No. 7, 70 pp., 1994.
Pinder, J. E., Wiener, J. G., and Smith, M. H.: The Weibull distribution: A new method for summarizing survivorship data, Ecology, 59, 175–179, 1978.
Pollen, N. and Simon, A.: Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model, Water Resour. Res., 41, W07025, https://doi.org/10.1029/2004WR003801, 2005.
Rickli, C. and Graf, F.: Effects of forests on shallow landslides – case studies in Switzerland, For. Snow Landsc. Res., 82, 33–44, 2009.
Schwarz, M. and Cohen, D.: Influence of root distribution and compressibility of rooted soil on the triggering mechanism of shallow landslides, Geophys. Res. Abstr., EGU2011-4817, EGU General Assembly 2011, Vienna, Austria, 2011.
Schwarz, M. and Thormann, J. J.: Neue Ansätze zur Quantifizierung der Schutzwaldwirkung, Geosciences, 2, 26–29, 2012.
Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., and Or, D.: Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., 36, 285–291, https://doi.org/10.1016/j.ecoleng.2009.06.014, 2010a.
Schwarz, M., Lehmann, P., and Or, D.: Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands, Earth Surf. Proc. Land., 35, 354–367, 2010b.
Schwarz, M., Cohen, D., and Or, D.: Soil-root mechanical interactions during pullout and failure of root bundles, J. Geophys. Res., 115, F04035, https://doi.org/10.1029/2009JF001603, 2010c.
Schwarz, M., Cohen, D., and Or, D.: Pullout tests of root analogs and natural root bundles in soil – experiments and modeling, J. Geophys. Res., 116, F02007, https://doi.org/10.1029/2010JF001753, 2011.
Schwarz, M., Cohen, D., and Or, D.: Spatial characterization of root reinforcement at stand scale: Theory and case study, Geomorphology, 171–172, 190–200, https://doi.org/10.1016/j.geomorph.2012.05.020, 2012.
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., and Schaub, T.: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024, 2001.
Sidle, R. C.: A theoretical model of the effects of timber harvesting on slope stability, Water Resour. Res., 28, 1897–1910, 1992.
Waldron, L. J. and Dekessian, S.: Soil reinforcement by roots: calculation of increased soil shear resistance from root properties, Soil Sci., 132, 427–435, 1981.
Weibull, W.: A statistical theory on the strength of materials, Ing. Vetenskaps Akad. Handl., 151, 1–45, 1939.
Wu, T. H., McKinnell, W. P., and Swanston, D. N.: Strength of tree roots and landslides on Prince of Wales Island, Alaska, Can. Geotech. J., 16, 19–33, 1979.
Zhang, C., Chen, L., Jiang, J., and Zhou, S.: Effects of gauge length and strain rate on the tensile strength of tree roots, Trees: Structure and Function, 26, 1577–1584, 2012.