Articles | Volume 17, issue 10
https://doi.org/10.5194/hess-17-3779-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-3779-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Satellite-based analysis of recent trends in the ecohydrology of a semi-arid region
M. Gokmen
Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Z. Vekerdy
Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
W. Verhoef
Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
O. Batelaan
Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussel, Belgium
School of the Environment, Flinders University, Adelaide, Australia
Related authors
Mustafa Gokmen
Hydrol. Earth Syst. Sci., 20, 3777–3788, https://doi.org/10.5194/hess-20-3777-2016, https://doi.org/10.5194/hess-20-3777-2016, 2016
Short summary
Short summary
Based on ECMWF's two reanalysis datasets, our assessment of the spatiotemporal trends revealed an average warming of 1.26 °C [0.8 to 1.8] in Turkey from 1979 to 2010. With respect to the regional trends in hydrological variables, ERA-Interim and ERA-Interim/Land revealed quite different pictures. Based on ERA-Interim/Land, which was closer to the observations, there have been no widespread and strong hydrological trends for the same period throughout the country despite the strong warming.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Ajiao Chen, Huade Guan, and Okke Batelaan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-400, https://doi.org/10.5194/hess-2020-400, 2020
Revised manuscript not accepted
Short summary
Short summary
It is well-known that global measures for reducing emissions are essential in combating hot extremes. This study indicates that local moisture deficit dominates hot extreme occurrence in regions with a total area twice as large as dominated by increased atmospheric CO2 concentration during 1985–2015. It suggests that to mitigate hot extremes, important attention should also be directed to address the increasing moisture deficit in some regions.
Olanrewaju Abiodun, Okke Batelaan, Huade Guan, and Jingfeng Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-70, https://doi.org/10.5194/essd-2019-70, 2019
Revised manuscript not accepted
Short summary
Short summary
Evaporation, Transpiration, and Evapotranspiration Products for Australia based on the Maximum Entropy Production model (MEP). We produce each of these datasets over the entire Australia for the years 2003–2013 on daily timescales at the 5 km spatial resolution. The data have been tested across various land covers and regions of Australia where measured data is available. These products may be used for research, education and other relevant studies and/or analysis.
Olanrewaju O. Abiodun, Huade Guan, Vincent E. A. Post, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 2775–2794, https://doi.org/10.5194/hess-22-2775-2018, https://doi.org/10.5194/hess-22-2775-2018, 2018
Short summary
Short summary
In recent decades, evapotranspiration estimation has been improved by remote sensing methods as well as by hydrological models. However, comparing these methods shows differences of up to 31 % at a spatial resolution of 1 km2. Land cover differences and catchment averaged climate data in the hydrological model were identified as the principal causes of the differences in results. The implication is that water management will have to deal with large uncertainty in estimated water balances.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Robert L. Andrew, Huade Guan, and Okke Batelaan
Hydrol. Earth Syst. Sci., 21, 4469–4478, https://doi.org/10.5194/hess-21-4469-2017, https://doi.org/10.5194/hess-21-4469-2017, 2017
Short summary
Short summary
In this study we statistically analyse the relationship between vegetation cover and components of total water storage. Splitting water storage into different components allows for a more comprehensive understanding of the temporal response of vegetation to changes in water storage. Generally, vegetation appears to be more sensitive to interannual changes in water storage than to shorter changes, though this varies in different land use types.
Nobuhle P. Majozi, Chris M. Mannaerts, Abel Ramoelo, Renaud Mathieu, Alecia Nickless, and Wouter Verhoef
Hydrol. Earth Syst. Sci., 21, 3401–3415, https://doi.org/10.5194/hess-21-3401-2017, https://doi.org/10.5194/hess-21-3401-2017, 2017
Short summary
Short summary
The study analysed the quality and partitioning of a 15-year surface energy dataset from Skukuza flux tower. The yearly mean energy balance ratio (EBR) was 0.93, with the dry season having the lowest ratio. Night ratio was lower than daytime, with analysis showing an increase in EBR with increase in friction velocity, which is also linked to time of day. The energy partitioning showed that sensible heat flux is the dominant portion in the dry season, and latent heat flux during the wet season.
Mustafa Gokmen
Hydrol. Earth Syst. Sci., 20, 3777–3788, https://doi.org/10.5194/hess-20-3777-2016, https://doi.org/10.5194/hess-20-3777-2016, 2016
Short summary
Short summary
Based on ECMWF's two reanalysis datasets, our assessment of the spatiotemporal trends revealed an average warming of 1.26 °C [0.8 to 1.8] in Turkey from 1979 to 2010. With respect to the regional trends in hydrological variables, ERA-Interim and ERA-Interim/Land revealed quite different pictures. Based on ERA-Interim/Land, which was closer to the observations, there have been no widespread and strong hydrological trends for the same period throughout the country despite the strong warming.
T. Berezowski, J. Nossent, J. Chormański, and O. Batelaan
Hydrol. Earth Syst. Sci., 19, 1887–1904, https://doi.org/10.5194/hess-19-1887-2015, https://doi.org/10.5194/hess-19-1887-2015, 2015
B. Rogiers, K. Beerten, T. Smeekens, D. Mallants, M. Gedeon, M. Huysmans, O. Batelaan, and A. Dassargues
Hydrol. Earth Syst. Sci., 17, 5155–5166, https://doi.org/10.5194/hess-17-5155-2013, https://doi.org/10.5194/hess-17-5155-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Remote Sensing and GIS
Circumarctic land cover diversity considering wetness gradients
Multi-decadal floodplain classification and trend analysis in the Upper Columbia River valley, British Columbia
Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth
Simulating carbon and water fluxes using a coupled process-based terrestrial biosphere model and joint assimilation of leaf area index and surface soil moisture
Untangling irrigation effects on maize water and heat stress alleviation using satellite data
Information-based uncertainty decomposition in dual-channel microwave remote sensing of soil moisture
Assessing the large-scale plant–water relations in the humid, subtropical Pearl River basin of China
Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes
Long-term water stress and drought assessment of Mediterranean oak savanna vegetation using thermal remote sensing
Temporal interpolation of land surface fluxes derived from remote sensing – results with an unmanned aerial system
Pattern and structure of microtopography implies autogenic origins in forested wetlands
The influence of water table depth on evapotranspiration in the Amazon arc of deforestation
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
Laser vision: lidar as a transformative tool to advance critical zone science
Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China
Evapotranspiration and water yield over China's landmass from 2000 to 2010
Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach
Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones
Quantifying the performance of automated GIS-based geomorphological approaches for riparian zone delineation using digital elevation models
Climate change, growing season water deficit and vegetation activity along the north–south transect of eastern China from 1982 through 2006
Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data
The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model
The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Italo Sampaio Rodrigues, Christopher Hopkinson, Laura Chasmer, Ryan J. MacDonald, Suzanne E. Bayley, and Brian Brisco
Hydrol. Earth Syst. Sci., 28, 2203–2221, https://doi.org/10.5194/hess-28-2203-2024, https://doi.org/10.5194/hess-28-2203-2024, 2024
Short summary
Short summary
The research evaluated the trends and changes in land cover and river discharge in the Upper Columbia River Wetlands using remote sensing and hydroclimatic data. The river discharge increased during the peak flow season, resulting in a positive trend in the open-water extent in the same period, whereas open-water area declined on an annual basis. Furthermore, since 2003 the peak flow has occurred 11 d earlier than during 1903–1928, which has led to larger discharges in a shorter time.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Sinan Li, Li Zhang, Jingfeng Xiao, Rui Ma, Xiangjun Tian, and Min Yan
Hydrol. Earth Syst. Sci., 26, 6311–6337, https://doi.org/10.5194/hess-26-6311-2022, https://doi.org/10.5194/hess-26-6311-2022, 2022
Short summary
Short summary
Accurate estimation for global GPP and ET is important in climate change studies. In this study, the GLASS LAI, SMOS, and SMAP datasets were assimilated jointly and separately in a coupled model. The results show that the performance of joint assimilation for GPP and ET is better than that of separate assimilation. The joint assimilation in water-limited regions performed better than in humid regions, and the global assimilation results had higher accuracy than other products.
Peng Zhu and Jennifer Burney
Hydrol. Earth Syst. Sci., 26, 827–840, https://doi.org/10.5194/hess-26-827-2022, https://doi.org/10.5194/hess-26-827-2022, 2022
Short summary
Short summary
Satellite data were used to disentangle water and heat stress alleviation due to irrigation. Our findings are as follows. (1) Irrigation-induced cooling was captured by satellite LST but air temperature failed. (2) Irrigation extended maize growing season duration, especially during grain filling. (3) Water and heat stress alleviation constitutes 65 % and 35 % of the irrigation benefit. (4) The crop model simulating canopy temperature better captures the irrigation benefit.
Bonan Li and Stephen P. Good
Hydrol. Earth Syst. Sci., 25, 5029–5045, https://doi.org/10.5194/hess-25-5029-2021, https://doi.org/10.5194/hess-25-5029-2021, 2021
Short summary
Short summary
We found that satellite retrieved soil moisture has large uncertainty, with uncertainty caused by the algorithm being closely related to the satellite soil moisture quality. The information provided by the two main inputs is mainly redundant. Such redundant components and synergy components provided by two main inputs to the satellite soil moisture are related to how the satellite algorithm performs. The satellite remote sensing algorithms may be improved by performing such analysis.
Hailong Wang, Kai Duan, Bingjun Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 4741–4758, https://doi.org/10.5194/hess-25-4741-2021, https://doi.org/10.5194/hess-25-4741-2021, 2021
Short summary
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
David N. Dralle, W. Jesse Hahm, K. Dana Chadwick, Erica McCormick, and Daniella M. Rempe
Hydrol. Earth Syst. Sci., 25, 2861–2867, https://doi.org/10.5194/hess-25-2861-2021, https://doi.org/10.5194/hess-25-2861-2021, 2021
Short summary
Short summary
Root zone water storage capacity determines how much water can be stored belowground to support plants during periods without precipitation. Here, we develop a satellite remote sensing method to estimate this key variable at large scales that matter for management. Importantly, our method builds on previous approaches by accounting for snowpack, which may bias estimates from existing approaches. Ultimately, our method will improve large-scale understanding of plant access to subsurface water.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020, https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary
Short summary
Remote sensing only provides snapshots of rapidly changing land surface variables; this limits its application for water resources and ecosystem management. To obtain continuous estimates of surface temperature, soil moisture, evapotranspiration, and ecosystem productivity, a simple and operational modelling scheme is presented. We demonstrate it with temporally sparse optical and thermal remote sensing data from an unmanned aerial system at a Danish bioenergy plantation eddy covariance site.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Hydrol. Earth Syst. Sci., 23, 5069–5088, https://doi.org/10.5194/hess-23-5069-2019, https://doi.org/10.5194/hess-23-5069-2019, 2019
Short summary
Short summary
We found evidence for spatial patterning of soil elevation in forested wetlands that was well explained by hydrology. The patterns that we found were strongest at wetter sites, and were weakest at drier sites. When a site was wet, soil elevations typically only belonged to two groups: tall "hummocks" and low "hollows. The tall, hummock groups were spaced equally apart from each other and were a similar size. We believe this is evidence for a biota–hydrology feedback that creates hummocks.
John O'Connor, Maria J. Santos, Karin T. Rebel, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 23, 3917–3931, https://doi.org/10.5194/hess-23-3917-2019, https://doi.org/10.5194/hess-23-3917-2019, 2019
Short summary
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Olanrewaju O. Abiodun, Huade Guan, Vincent E. A. Post, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 2775–2794, https://doi.org/10.5194/hess-22-2775-2018, https://doi.org/10.5194/hess-22-2775-2018, 2018
Short summary
Short summary
In recent decades, evapotranspiration estimation has been improved by remote sensing methods as well as by hydrological models. However, comparing these methods shows differences of up to 31 % at a spatial resolution of 1 km2. Land cover differences and catchment averaged climate data in the hydrological model were identified as the principal causes of the differences in results. The implication is that water management will have to deal with large uncertainty in estimated water balances.
Shoubo Li, Yan Zhao, Yongping Wei, and Hang Zheng
Hydrol. Earth Syst. Sci., 21, 4233–4244, https://doi.org/10.5194/hess-21-4233-2017, https://doi.org/10.5194/hess-21-4233-2017, 2017
Short summary
Short summary
This study aims to investigate the evolution of natural and crop vegetation systems over the past 2000 years accommodated with the changes in water regimes at the basin scale. It is based on remote-sensing data and previous historical research. The methods developed and the findings obtained from this study could assist in understanding how current ecosystem problems were created in the past and what their implications for future river basin management are.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
Y. Wang, M. L. Roderick, Y. Shen, and F. Sun
Hydrol. Earth Syst. Sci., 18, 3499–3509, https://doi.org/10.5194/hess-18-3499-2014, https://doi.org/10.5194/hess-18-3499-2014, 2014
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
T. S. Ahring and D. R. Steward
Hydrol. Earth Syst. Sci., 16, 4133–4142, https://doi.org/10.5194/hess-16-4133-2012, https://doi.org/10.5194/hess-16-4133-2012, 2012
D. Fernández, J. Barquín, M. Álvarez-Cabria, and F. J. Peñas
Hydrol. Earth Syst. Sci., 16, 3851–3862, https://doi.org/10.5194/hess-16-3851-2012, https://doi.org/10.5194/hess-16-3851-2012, 2012
P. Sun, Z. Yu, S. Liu, X. Wei, J. Wang, N. Zegre, and N. Liu
Hydrol. Earth Syst. Sci., 16, 3835–3850, https://doi.org/10.5194/hess-16-3835-2012, https://doi.org/10.5194/hess-16-3835-2012, 2012
M. Otto, D. Scherer, and J. Richters
Hydrol. Earth Syst. Sci., 15, 1713–1727, https://doi.org/10.5194/hess-15-1713-2011, https://doi.org/10.5194/hess-15-1713-2011, 2011
C. Cammalleri, M. C. Anderson, G. Ciraolo, G. D'Urso, W. P. Kustas, G. La Loggia, and M. Minacapilli
Hydrol. Earth Syst. Sci., 14, 2643–2659, https://doi.org/10.5194/hess-14-2643-2010, https://doi.org/10.5194/hess-14-2643-2010, 2010
E. Teferi, S. Uhlenbrook, W. Bewket, J. Wenninger, and B. Simane
Hydrol. Earth Syst. Sci., 14, 2415–2428, https://doi.org/10.5194/hess-14-2415-2010, https://doi.org/10.5194/hess-14-2415-2010, 2010
Cited articles
Alcaraz-Segura, D., Liras, E., Tabik, S., Paruelo, J., and Cabello, J.: Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II, Sensors, 10, 1291–1314, 2010.
Allen, M. R., Mutlow, C. T., Blumberg, G. M. C., Christy, J. R., McNider, R. T., and Llewellyn-Jones, D. T.: Global change detection, Nature, 370, 24–25, 1994.
Alsdorf, D. E. and Lettenmaier, D. P.: Tracking fresh water from space, Science, 301, 1491–1494, 2003.
Bayari, C. S., Ozyurt, N. N., and Kilani, S.: Radiocarbon age distribution of groundwater in the Konya Closed Basin, central Anatolia, Turkey, Hydrogeol. J., 17, 347–365, 2009.
Beck, H. E., McVicar, T. R., van Dijk, A., Schellekens, J., de Jeu, R. A. M., and Bruijnzeel, L. A.: Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery, Remote Sens. Environ., 115, 2547–2563, 2011.
Burn, D. H. and Elnur, M. A. H.: Detection of hydrologic trends and variability, J. Hydrol., 255, 107–122, 2002.
Dorigo, W., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., and Fernandez-Prieto, D.: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture, Geophys. Res. Lett., 39, L18405, https://doi.org/10.1029/2012GL052988, 2012.
Douville, H., Ribes, A., Decharme, B., Alkama, R., and Sheffield, J.: Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration, Nat. Clim. Change, 3, 59–62, 2012.
Du, J., He, F., Zhang, Z., and Shi, P. J.: Precipitation change and human impacts on hydrologic variables in Zhengshui River Basin, China, Stoch. Environ. Res. Risk Assess., 25, 1013–1025, 2011.
Evans, J. and Geerken, R.: Discrimination between climate and human-induced dryland degradation, J. Arid Environ., 57, 535–554, 2004.
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., de Linage, C. R., and Rodell, M.: Satellites measure recent rates of groundwater depletion in California's Central Valley, Geophys. Res. Lett., 38, L03403, https://doi.org/10.1029/2010GL046442, 2011.
Fan, Y., Li, H., and Miguez-Macho, G.: Global patterns of groundwater table depth, Science, 339, 940–943, 2013.
Fensholt, R. and Proud, S. R.: Evaluation of Earth Observation based global long term vegetation trends – Comparing GIMMS and MODIS global NDVI time series, Remote Sens. Environ., 119, 131–147, 2012.
Fensholt, R. and Rasmussen, K.: Analysis of trends in the Sahelian "rain-use efficiency" using GIMMS NDVI, RFE and GPCP rainfall data, Remote Sens. Environ., 115, 438–451, 2011.
Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S. D., Tucker, C., Scholes, R. J., Le, Q.B., Bondeau, A., Eastman, R., Epstein, H., Gaughan, A. E., Hellden, U., Mbow, C., Olsson, L., Paruelo, J., Schweitzer, C., Seaquist, J., and Wessels, K.: Greenness in semi-arid areas across the globe 1981–2007 – an Earth Observing Satellite based analysis of trends and drivers, Remote Sens. Environ., 121, 144–158, 2012.
Fontugne, M., Kuzucuoglu, C., Karabiyikoglu, M., Hatte, C., and Pastre, J. F.: From Pleniglacial to Holocene: a C-14 chronostratigraphy of environmental changes in the Konya Plain, Turkey, Quaternary Sci. Rev., 18, 573–591, 1999.
Gleeson, T., VanderSteen, J., Sophocleous, M. A., Taniguchi, M., Alley, W. M., Allen, D. M., and Zhou, Y. X.: Groundwater sustainability strategies, Nat. Geosci., 3, 378–379, 2010.
Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., and van der Tol, C.: Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions, Remote Sens. Environ., 121, 261–274, 2012.
Gokmen, M., Vekerdy, Z., Lubczynski, M. W., Timmermans, J., Batelaan, O., and Verhoef, W.: Assessing groundwater storage changes using RS-based evapotranspiration and precipitation at a large semi-arid basin scale, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-12-0156.1, online first, 2013.
Grafton, R. Q., Pittock, J., Davis, R., Williams, J., Fu, G., Warburton, M., Udall, B., McKenzie, R., Yu, X., Che, N., Connell, D., Jiang, Q., Kompas, T., Lynch, A., Norris, R., Possingham, H., and Quiggin, J.: Global insights into water resources, climate change and governance, Nat. Clim. Change, 3, 315–321, 2013.
Hatzianastassiou, N., Katsoulis, B., Pnevmatikos, J., and Antakis, V.: Spatial and temporal variation of precipitation in Greece and surrounding regions based on global precipitation climatology project data, J. Climate, 21, 1349–1370, 2008.
Jia, L., Su, Z. B., van den Hurk, B., Menenti, M., Moene, A., De Bruin, H. A. R., Yrisarry, J. J. B., Ibanez, M., and Cuesta, A.: Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements, Phys. Chem. Earth, 28, 75–88, 2003.
Jin, X. M., Schaepman, M. E., Clevers, J., and Su, Z. B.: Impact and consequences of evapotranspiration changes on water resources availability in the arid Zhangye Basin, China, Int. J. Remote Sens., 30, 3223–3238, 2009.
Julien, Y., Sobrino, J. A., and Verhoef, W.: Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999, Remote Sens. Environ., 103, 43–55, 2006.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J. Q., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q. Z., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951–954, 2010.
Karami, E. and Hayati, D.: Rural Poverty and Sustainability: The Case of Groundwater Depletion in Iran. Asian Journal of Water, Environ. Pollut., 2, 51–61, 2005.
Kendall, M. G.: Rank Correlation Methods, Charles Griffin, London, 1975.
Konikow, L. F. and Kendy, E.: Groundwater depletion: A global problem, Hydrogeol. J., 13, 317–320, 2005.
Lebel, T. and Ali, A.: Recent trends in the Central and Western Sahel rainfall regime (1990–2007), J. Hydrol., 375, 52–64, 2009.
Leroy, S. S., Anderson, J. G., and Ohring, G.: Climate Signal Detection Times and Constraints on Climate Benchmark Accuracy Requirements, J. Climate, 21, 841–846, https://doi.org/10.1175/2007JCLI1946.1, 2008.
Liu, J. and Yang, H.: Spatially explicit assessment of global consumptive water uses in cropland: green and blue water, J. Hydrol., 384, 187–197, 2010.
Liu, J., Folberth, C., Yang, H., Röckström, J., Abbaspour, K., and Zehnder, A. J. B.: A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use, PLoS ONE, 8, e57750, https://doi.org/10.1371/journal.pone.0057750, 2013.
Ma, W. Q., Hafeez, M., Rabbani, U., Ishikawa, H., and Ma, Y. M.: Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia, Atmos. Environ., 59, 408–414, 2012.
Ma, Y. M., Song, M. H., Ishikawa, H., Yang, K., Koike, T., Jia, L., Meneti, M., and Su, Z. B.: Estimation of the regional evaporative fraction over the Tibetan Plateau area by using Landsat-7 ETM data and the field observations, J. Meteorol. Soc. Jpn, 85A, 295–309, 2007.
Mann, H. B.: Nonparametric Tests against Trend, Econometrica, 13, 245–259, 1945.
McGuire, V.: Changes in water levels and storage in the High Plains aquifer, predevelopment to 2007, USGS Fact Sheet, US Geological Survey Scientific Investigations Report, 2009–3005, 2009.
Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., and Smith, L. C.: Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000, Global Planet. Change, 62, 187–194, 2008.
Morrow, E., Mitrovica, J. X., and Fotopoulos, G.: Water Storage, Net Precipitation, and Evapotranspiration in the Mackenzie River Basin from October 2002 to September 2009 Inferred from GRACE Satellite Gravity Data, J. Hydrometeorol., 12, 467–473, 2011.
New, M., Todd, M., Hulme, M., and Jones, P.: Precipitation measurements and trends in the twentieth century, Int. J. Climatol., 21, 1899–1922, 2001.
Oku, Y., Ishikawa, H., and Su, Z. B.: Estimation of land surface heat fluxes over the Tibetan Plateau using GMS data, J. Appl. Meteorol. Climatol., 46, 183–195, 2007.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of satellite-derived global land surface moisture, J. Geophys. Res.-Earth, 113, 2003–2012, 2008.
Pan, M., Wood, E. F., Wojcik, R., and McCabe, M. F.: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation, Remote Sens. Environ., 112, 1282–1294, 2008.
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.: Multisource Estimation of Long-Term Terrestrial Water Budget for Major Global River Basins, J. Climate, 25, 3191–3206, 2012.
Parsons, A. J. and Abrahams, A. D. (Eds.): Geomorphology of desert environments, CRC Press, London, 1994.
Rodell, M., Chen, J. L., Kato, H., Famiglietti, J. S., Nigro, J., and Wilson, C. R.: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeol. J., 15, 159–166, 2007.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in India, Nature, 460, 999–1002, 2009.
Ryu, Y., Baldocchi, D. D., Ma, S., and Hehn, T.: Interannual variability of evapotranspiration and energy exchange over an annual grassland in California, J. Geophys. Res.-Atmos., 113, D09104, https://doi.org/10.1029/2007JD009263, 2008.
Santer, B. D., Mears, C., Doutriaux, C., Caldwell, P., Gleckler, P. J., Wigley, T. M. L., Solomon, S., Gillett, N. P., Ivanova1, D., Karl, T. R., Lanzante, J. R., Meehl, G. A., Stott, P. A., Taylor, K. E., Thorne, P. W., Wehner, M. F., and Wentz, F. J.: Separating signal and noise in atmospheric temperature changes: The importance of timescale, J. Geophys. Res., 116, D22105, https://doi.org/10.1029/2011JD016263, 2011.
Scanlon, B. R., Reedy, R. C., and Gates, J. B.: Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas, Water Resour. Res., 46, W09537, https://doi.org/10.1029/2009WR008427, 2010.
Sharma, K. P., Moore, B., and Vorosmarty, C. J.: Anthropogenic, climatic, and hydrologic trends in the Kosi Basin, Himalaya, Clim. Change, 47, 141–165, 2000.
Snyder, R. L., Orang, M., Matyac, S., and Grismer, M. E.: Simplified estimation of reference evapotranspiration from pan evaporation data in California, J. Irrig. Drain. Eng.-Asce, 131, 249–253, 2005.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J.: An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteorol., 40, 1933–1951, 2001.
Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Change 3, 322–329, 2013.
Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P., Buchmann, N., Ammann, C., Montagnani, L., Richardson, A. D., Wohlfahrt, G., and Seneviratne, S. I.: A regional perspective on trends in continental evaporation, Geophys. Res. Lett., 36, L02404, https://doi.org/10.1029/2008GL036584, 2009.
Tiwari, V. M., Wahr, J., and Swenson, S.: Dwindling groundwater resources in northern India, from satellite gravity observations, Geophys. Res. Lett., 36, L18401, https://doi.org/10.1029/2009GL039401, 2009.
Verhoef, W., Menenti, M., and Azzali, S.: A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992), Int. J. Remote Sens., 17, 231–235, 1996.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sens. Environ., 115, 801–823, 2011.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable groundwater sustaining irrigation: A global assessment, Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562, 2012.
Wang, Q., Adiku, S., Tenhunen, J., and Granier, A.: On the relationship of NDVI with leaf area index in a deciduous forest site, Remote Sens. Environ., 94, 244–255, 2005.
Yang, D. W., Sun, F. B., Liu, Z. Y., Cong, Z. T., Ni, G. H., and Lei, Z. D.: Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis, Water Resour. Res., 43, W04426, https://doi.org/10.1029/2006WR005224, 2007.
Zhang, K., Kimball, J. S., Mu, Q. Z., Jones, L. A., Goetz, S. J., and Running, S. W.: Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005, J. Hydrol., 379, 92–110, 2009.
Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual evapotranspiration to vegetation changes at catchment scale, Water Resour. Res., 37, 701–708, 2001.
Zhang, Q., Jiang, T., Gemmer, M., and Becker, S.: Precipitation, temperature and runoff analysis from 1950 to 2002 in the Yangtze basin, China, Hydrolog. Sci. J., 50, 65–80, 2005.
Zhang, Y. Q., Liu, C. M., Tang, Y. H., and Yang, Y. H.: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau, J. Geophys. Res.-Atmos., 112, D12110, https://doi.org/10.1029/2006JD008161, 2007.
Zhang, Y. Q., Leuning, R., Chiew, F. H. S., Wang, E. L., Zhang, L., Liu, C. M., Sun, F. B., Peel, M. C., Shen, Y. J., and Jung, M.: Decadal Trends in Evaporation from Global Energy and Water Balances, J. Hydrometeorol., 13, 379–391, 2012.