Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5791-2025
https://doi.org/10.5194/hess-29-5791-2025
Research article
 | 
28 Oct 2025
Research article |  | 28 Oct 2025

Catchment Attributes and MEteorology for Large-Sample SPATially distributed analysis (CAMELS-SPAT): streamflow observations, forcing data and geospatial data for hydrologic studies across North America

Wouter J. M. Knoben, Cyril Thébault, Kasra Keshavarz, Laura Torres-Rojas, Nathaniel W. Chaney, Alain Pietroniro, and Martyn P. Clark

Related authors

Technical note: Separating signal from noise in large-domain hydrologic model evaluation – Benchmarking model performance under sampling uncertainty
Gaby J. Gründemann, Wouter J. M. Knoben, Yalan Song, Katie van Werkhoven, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-6460,https://doi.org/10.5194/egusphere-2025-6460, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Comparing multi-model mosaic and multi-model combination methods to simulate streamflow across the contiguous USA
Cyril Thébault, Wouter J. M. Knoben, Nans Addor, Andrew J. Newman, Diana Spieler, Nicolás A. Vásquez, Yalan Song, Gaby J. Gründemann, Shaun Carney, Mukesh Kumar, Katie van Werkhoven, Chaopeng Shen, Andrew W. Wood, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-6083,https://doi.org/10.5194/egusphere-2025-6083, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Metrics that Matter: Objective Functions and Their Impact on Signature Representation in Conceptual Hydrological Models
Peter Wagener, Wouter J. M. Knoben, Niels Schütze, and Diana Spieler
EGUsphere, https://doi.org/10.5194/egusphere-2025-5413,https://doi.org/10.5194/egusphere-2025-5413, 2025
Short summary
Technical Note: High Nash Sutcliffe Efficiencies conceal poor simulations of interannual variance in tropical, alpine, and polar catchments
Sacha W. Ruzzante, Wouter J. M. Knoben, Thorsten Wagener, Tom Gleeson, and Markus Schnorbus
EGUsphere, https://doi.org/10.5194/egusphere-2025-3851,https://doi.org/10.5194/egusphere-2025-3851, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017a. a, b, c, d, e, f, g, h, i, j
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: Catchment attributes for large-sample studies, https://ral.ucar.edu/solutions/products/camels (last access: 24 October 2025), 2017b (data set available at https://zenodo.org/records/15529996, last access: 24 October 2025). a, b
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrol. Sci. J., 65, 712–725, https://doi.org/10.1080/02626667.2019.1683182, 2020. a
Ahmed, M. I., Shook, K., Pietroniro, A., Stadnyk, T., Pomeroy, J. W., Pers, C., and Gustafsson, D.: Implementing a parsimonious variable contributing area algorithm for the prairie pothole region in the HYPE modelling framework, Environ. Model. Softw., 167, 105769, https://doi.org/10.1016/j.envsoft.2023.105769, 2023. a, b
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, no. 56 in FAO irrigation and drainage paper, Food and Agriculture Organization of the United Nations, Rome, ISBN 978-92-5-104219-9, 1998. a
Download
Short summary
Many existing datasets for hydrologic analysis tend to treat catchments as single spatially homogeneous units focusing on daily data and typically do not support more complex models. This paper introduces a dataset that goes beyond this set-up by (1) providing data at a higher spatial and temporal resolution, (2) specifically considering the data requirements of all common hydrologic model types, and (3) using statistical summaries of the data aimed at quantifying spatial and temporal heterogeneity.
Share