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Abstract. We build on the existing Catchment Attributes and
MEteorology for Large-sample Studies (CAMELS) dataset
to present a new dataset aimed at hydrologic studies across
North America, with a particular focus on facilitating spa-
tially distributed studies. The dataset includes basin outlines,
streamflow observations, meteorological data and geospa-
tial data for 1426 basins in the US and Canada. To facil-
itate a wide variety of studies, we provide the basin out-
lines at a lumped and semi-distributed resolution; stream-
flow observations at daily and hourly time steps; variables
suitable for running a wide range of models obtained and
derived from different meteorological datasets at daily (one
dataset) and hourly (three datasets) time steps; and geospa-
tial data and derived attributes from 11 different datasets that
broadly cover climatic conditions, vegetation properties, land
use and subsurface characteristics. Forcing data are provided
at their original gridded resolution, as well as averaged at
the basin and sub-basin level. Geospatial data are provided
as maps per basin, as well as summarized as catchment at-
tributes at the basin and sub-basin level with various statis-
tics. Attributes are further complemented with statistics de-
rived from the forcing data and streamflow and focus on
quantifying the variability of natural processes and catch-
ment characteristics in space and time. Our goal with this
dataset is to build upon existing large-sample datasets and
provide the means for a more detailed investigation of hy-
drologic behaviour across large geographical scales. In par-

ticular, we hope that this dataset provides others with the
data needed to implement a wide range of modelling ap-
proaches and to investigate the impact of basin heterogene-
ity on hydrologic behaviour and similarity. The CAMELS-
SPAT (Catchment Attributes and MEteorology for Large-
Sample SPATially distributed analysis) dataset is available at
https://doi.org/10.20383/103.01306 (Knoben et al., 2025).

1 Introduction

Increases in geospatial data availability and computing
power have enabled rapid advances in large-domain and
large-sample hydrology (Cloke and Hannah, 2011; Addor
et al., 2020). A key difference between these fields is the spa-
tial continuity of the study area. Where large-domain studies
concern themselves with obtaining predictions across con-
tinuous areas, large-sample studies tend to select separate
basins in a given area of interest. The large-sample approach
strikes a balance between spatial variability and ease of use.
Large-sample studies can be representative of larger spatial
regions at a fraction of the computational effort needed to run
a large-domain study over the same geographical region.
Building upon the foundations laid by the MOPEX dataset
(Schaake et al., 2006), a driving force behind the large-
sample movement has been the “CAMELS” family of
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datasets. The original Catchment Attributes and MEteorol-
ogy for Large-sample Studies (CAMELS) dataset was de-
veloped as a two-part initiative. First, basin-averaged me-
teorological time series were provided for several hundreds
of basins across the contiguous US (Newman et al., 2015).
Second, statistical descriptors (referred to as catchment at-
tributes) of each catchment’s hydroclimatic conditions were
made available (Addor et al., 2017a). This combined dataset
has proven useful for various purposes, mainly within the
overarching themes of understanding, quantifying and mod-
elling hydrologic processes across a diverse range of catch-
ments (e.g. Kratzert et al., 2019; Knoben et al., 2020; Stein
et al., 2021) and quantifying hydrologic predictability (e.g.
Wood et al., 2016; Newman et al., 2017). The success of the
CAMELS dataset has motivated the development of multi-
ple (typically national) variants (see Table 1 for a summary
of these), as well as the aggregated cloud-based CARAVAN
collection (Kratzert et al., 2023, see also Farber et al., 2024).

Table 1 provides a brief overview of the main characteris-
tics of various CAMELS(-like) datasets. Because our interest
is in hydrologic modelling, we limit this overview to datasets
that include meteorologic time series that could serve as in-
put to hydrologic models. A commonality between most of
these datasets is a focus on aggregated data: meteorologic
forcing data and catchment attributes are typically provided
as basin-averaged values, and the temporal resolution of pro-
vided forcing data is almost always at daily time steps. Sim-
ilarly, most datasets provide a specific selection of forcing
variables: precipitation (P) and temperature (7') are always
included, as well as a potential evapotranspiration (PET) time
series or the variables necessary to calculate PET. In mod-
elling terms, these datasets focus strongly on catchment mod-
elling with lumped conceptual models. Such models treat
catchments as single (i.e. lumped) entities, are typically run
at daily time resolutions and generally require only time se-
ries of P, T and PET to function. Commonly known exam-
ples of such models are SAC-SMA (National Weather Ser-
vice, 2005), HBV (Lindstrém et al., 1997) and GR4J (Perrin
et al., 2003). These models are computationally cheap but are
often criticized for their somewhat empirical and spatially
lumped nature and their lack of explicit energy balance cal-
culations.

Spatially distributed process-based models, such as VIC
(Liang et al., 1994) and SUMMA (Clark et al., 2015a, b),
address these concerns but come with the trade-off of in-
creased computational cost and face their own challenges.
Notable challenges include the definition of appropriate pa-
rameter values and questions about the scale-dependency of
their constitutive functions (Hrachowitz and Clark, 2017). In-
vestigating these models in large-sample studies could pro-
vide helpful insights, but running such models is not eas-
ily possible with most of the datasets listed in Table 1.
The clearest exception to this are the LamaH-CE (Klingler
et al., 2021) and LamaH-Ice datasets (Helgason and Nijssen,
2024), which cover the Upper Danube River basin in Central
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Europe and interior Iceland, respectively. Both datasets pro-
vide data in a semi-distributed spatially continuous fashion
and provide a collection of forcing variables generally asso-
ciated with process-based modelling approaches. However,
the spatially continuous nature of these datasets means they
are somewhat constrained geographically, covering an area
of only 170000 km? (roughly 600 by 300 km) in Central Eu-
rope and an area of 46 000 km? (roughly 300 by 150km) in
interior Iceland, respectively. Both datasets also still aggre-
gate data at the sub-basin level, prohibiting the use of grid-
based models. There is a clear gap in the current collection
of large-sample hydrologic datasets that (1) enables the use
of spatially distributed process-based models across a wide
range of hydroclimatic conditions and (2) enables studies
aimed at investigating spatial heterogeneity at a resolution
made possible by the geospatial datasets that underpin the
current generation of large-sample hydrology datasets.

In this paper, we introduce the CAMELS-SPAT dataset
(“Catchment Attributes and MEteorology for Large-Sample
SPATially distributed analysis™). We expand on the original
CAMELS dataset (Newman et al., 2015; Addor et al., 2017a)
in various ways. First, we provide the CAMELS-SPAT data
at three spatial resolutions: (1) at its original gridded resolu-
tion, (2) spatially averaged at the sub-basin level (defined as
smaller areas that subdivide the area upstream of each gauge
to facilitate semi-distributed modelling) and (3) spatially av-
eraged at the basin level (equivalent to how catchments are
treated as lumped entities in the original CAMELS dataset).
Second, we extend the geographical domain of the dataset
to include Canada, which includes various types of hydro-
logically challenging landscapes not included in the orig-
inal CAMELS dataset (e.g. glaciated basins, regions with
extensive permafrost, arctic deserts). Third, we provide a
wider range of forcing variables at a temporal resolution
(i.e. hourly) suitable for process-based modelling, in addi-
tion to a commonly used daily dataset. Fourth, to facilitate
sub-daily analyses, we provide streamflow data at both daily
and hourly resolutions. Fifth, we provide a wider range of
catchment attributes, with the specific goal of quantifying
the attributes’ ranges in time and space rather than provid-
ing mean values only. Compared to LamaH-CE and LamaH-
Ice, our main contributions can be found in the wider range
of hydroclimatic conditions found across the US and Canada
and the inclusion of forcing and geospatial data at their orig-
inal (non-aggregated) resolution. Compared to HYSETS, an-
other large-sample dataset focused on North America, our
main contributions can be found in the wider range of forcing
variables, a higher temporal and spatial resolution of forcing
data, the inclusion of forcing and geospatial data at their orig-
inal (non-aggregated) spatial resolution and the inclusion of
streamflow data at an hourly time step.

This paper is structured as follows. Section 2 starts by
outlining our design considerations for this dataset, fol-
lowed by five longer subsections that describe the meth-
ods and outcomes of our basin selection (Sect. 2.1), basin
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delineation (Sect. 2.2), streamflow observation processing
(Sect. 2.3), forcing data processing (Sect. 2.4) and geospa-
tial data-processing procedures (Sect. 2.5). Section 3 then
provides details on how we used the geospatial data to de-
rive over 1100 statistical descriptors, also known as catch-
ment attributes, for each basin. Section 4 has various recom-
mendations for data providers based on our experiences with
constructing the CAMELS-SPAT dataset (Sect. 4.1), as well
as various recommendations for data users based on our ex-
pectations of how the CAMELS-SPAT data might be used
(Sect. 4.2). Section 4 also contains some thoughts about the
extension of the dataset to new regions (Sect. 4.3) and notes
on the dataset structure and size (Sect. 4.4). A summary and
conclusions are given in Sect. 5.

2 Design considerations and outcomes

Our goal with this dataset is to enable studies that inves-
tigate spatial heterogeneity across a wide variety of catch-
ments, with a specific focus on spatially distributed process-
based modelling. We also envision this dataset to be used to
compare the performance of these models to their more em-
pirical counterparts and for analyses not directly based on
hydrologic models. Consequently, we processed a variety of
data sources at various levels. We provide further detail about
these requirements in the following subsections, as needed.
Our general methodology for creating CAMELS-SPAT is as
follows:

1. Define an initial set of basins of potential interest, cov-
ering the US and Canada;

2. Create consistent basin delineations for all basins iden-
tified under (1);

3. Obtain and process streamflow observations for the
basins identified under (1), removing those basins for
which no streamflow data can be found;

4. Obtain and process meteorological forcing data for the
basins identified under (3);

5. Obtain and process geospatial datasets (e.g. data de-
scribing each basin’s climate, vegetation, land use, to-
pography, soil and geology) for the basins identified un-
der (3);

6. Remove a number of very large basins from the basins
identified under (3) and divide the remaining basins
into various sub-datasets, based on disk space consid-
erations;

7. Calculate catchment attributes using the data processed
under (3), (4) and (5).

Figure 1 shows a visual summary of the main steps and deci-
sion points in this process, and each step is explained in more
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detail in the following subsections. For the reader’s benefit,
we present combined descriptions of the methods and results
for each of these steps in the following seven subsections, in-
stead of splitting these into dedicated Methods and Results
sections. The code used to generate this dataset is available
online (see the “Code and data availability” statement).

2.1 Basin pre-selection
2.1.1 Context

We impose two initial constraints on the basins we will con-
sider including in this dataset. First, we have chosen to fo-
cus this dataset on (near-)natural basins. Human impacts on
the earth system are critically important but substantially
complicate hydrologic behaviour and are typically difficult
to quantify and thus difficult to account for during analy-
ses. Such impacts include but are not limited to (i) the con-
struction of water management structures such as dams and
drainage ditches at the local level, of which the location
and size are difficult to ascertain and usually unreported in
the continental-scale datasets that CAMELS-SPAT relies on,;
(ii) the construction of large water management infrastruc-
ture such as diversions and reservoirs, which may appear
in continental-scale datasets but for which operating proce-
dures are typically unknown; and (iii) surface and ground-
water abstractions (e.g. agricultural and industrial use), for
which abstraction and return volumes are typically unknown.
That said, it is almost unavoidable that any selected basin
includes at least some human impacts (tourism/recreation,
drainage, forest management, etc.). We rely on existing clas-
sifications to select basins that are closer to the natural end
of this continuum. Second, we require the availability of
at least some streamflow observations at a sub-daily reso-
Iution. Process-based models are typically run at sub-daily
time steps to more accurately simulate diurnal variation in
processes such as evaporation, transpiration, sublimation and
snow melt. In certain basins, such diurnal variability is visi-
ble in the streamflow record, and sub-daily observations are
necessary to evaluate the appropriateness of process-based
model equations. Daily data are by definition too coarse to
distinguish such patterns.

2.1.2 Methods and outcomes

For basins in the US, we rely on the basin selection made
by Newman et al. (2015) that was used for the CAMELS
dataset (Addor et al., 2017a). This ensures that some level
of comparison between outcomes of studies using either
CAMELS or CAMELS-SPAT is possible. We refer the reader
to Sect. 2.1 in Newman et al. (2015) for a description
of the criteria used to create this selection of 671 basins,
and note that, despite meeting these criteria, no basins in
Alaska, Hawaii or Puerto Rico were included in the origi-
nal CAMELS dataset due to limited spatial coverage of the
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Table 1. Overview of large-sample datasets aimed at hydrologic modelling. Datasets are listed chronologically.

Dataset Temporal Region #basins  Temporal Spatial Forcing data Forcing
coverage resolution resolution # products variables
MOPEX®P 19482003  Contiguous US 438  Daily Basin-averaged Station observations in  Precipitation, climatic potential evaporation, maximum air temperature, minimum air temperature
basins
CANOPEX* Varies per Canada 698  Daily Basin-averaged 2 (1 station, 1 gridded)  Precipitation, maximum temperature, minimum temperature
basin
CAMELS? Varies per Contiguous US 671  Daily Basin-averaged; per 3 Precipitation, maximum temperature, minimum temperature, shortwave downward radiation, day length, vapour
forcing elevation band pressure
dataset
CAMELS-CL? Varies per Chile 516  Daily Basin-averaged Multiple, depending on  Precipitation, maximum temperature, mean temperature, minimum temperature, potential evapotranspiration
basin variable
HYSETS? Varies per North America 14425  Daily Basin-averaged 7 Precipitation, maximum air temperature, minimum air temperature
basin
CAMELS-BR?* 19812018  Brazil 897  Daily Basin-averaged Multiple, depending on  Precipitation, maximum temperature, average temperature, minimum temperature, potential evapotranspiration, actual
variable evapotranspiration
CAMELS-GB* 1970-2015  Great Britain 671  Daily Basin-averaged 1 Precipitation, average temperature, potential evapotranspiration, potential evapotranspiration with interception
correction, wind speed, specific humidity, downward shortwave radiation, longwave radiation
CABra® 1980-2010  Brazil 785  Daily Basin-averaged 3 Precipitation, maximum temperature, minimum temperature, solar radiation, 2 m wind speed, potential
evapotranspiration (three estimates), actual evapotranspiration
CAMELS-AUS?  Varies per Australia 222 (v2:561) Daily Basin-averaged Multiple, depending on  Precipitation, maximum temperature, minimum temperature, potential evapotranspiration (four estimates), actual
forcing variable evapotranspiration, solar radiation, vapour pressure, vapour pressure deficit, relative humidity at time of maximum
dataset and temperature, relative humidity at time of minimum temperature, mean sea level pressure
variable
LamaH-CE*¢ 1981-2019  Central Europe 859  Daily, Basin-averaged at three 1 Precipitation, 2 m air temperature, 10 m wind in U direction, 10 m wind in V direction, net solar radiation at the
hourly basin levels surface, net thermal radiation at the surface, surface pressure, total evapotranspiration
CCAM? 1990-2020  China 4911  Daily Basin-averaged 1 Precipitation, 2 m mean temperature, ground surface temperature, potential evapotranspiration, measured evaporation,
ground pressure, relative humidity, 2 m wind speed, sunshine duration
CAMELS-CH®4  1981-2020  Switzerland 331 Daily Basin-averaged 1 (used to derive extra Precipitation, maximum temperature, mean temperature, minimum temperature, relative sunshine duration
and variables)
surrounding
areas
CAMELS-SE* 19612020  Sweden, with 50 Daily Basin-averaged 1 Precipitation, temperature
small parts of
Norway
LamaH-Ice®¢ Varies per Iceland 107  Daily, Basin-averaged at three 3 Precipitation, 2 m air & dew point temperature, surface net solar & thermal radiation, surface pressure, specific
basin hourly basin levels humidity, complemented with various outputs from a land surface model such as soil water content, total evaporation
and snow water equivalent
CAMELS-FR? 1970-2021  France 654 Daily Basin-averaged 1 Solid precipitation, liquid precipitation, minimum & maximum air temperature, wind speed, specific humidity,
atmospheric & visible radiation, three potential evapotranspiration estimates, as well as soil moisture and snow water
equivalent estimates from a land surface model
CAMELS-DE?* Varies per Germany 1582 Daily Basin-averaged 1 Precipitation, minimum/mean/maximum temperature, humidity, radiation, potential evapotranspiration
basin
CAMELS-DK? Varies per Denmark 3330°  Daily Basin-averaged 1 Precipitation, temperature, potential evapotranspiration, complemented with various outputs from a land surface model
basin
CAMELS-IND*  1980-2020  India 472¢  Daily Basin-averaged Multiple, depending on  Precipitation, minimum/mean/maximum temperature, downward longwave radiation, downward shortwave radiation,

variable

wind speed in U, V and average direction, relative humidity, two potential evapotranspiration estimates,
complemented with various outputs from a land surface model

A Referenc:

CAMELS-AUS (Fowler et al., 2021, 2025), LamaH-CE (Klingler et al., 2021

CAMELS-IND (Mangukiya et al., 2025).

b MOPEX variables as described in the “basic requirements” in Duan et al. (2006).

¢ LamaH-CE and LamaH-Ice ba:

are spatially connected.

MOPEX (Schaake et al., 2006), CANOPEX (Arsenault et al., 2016), CAMELS (Newman et al., 2015; Addor et
CCAM (Hao et al., 2021), CAMELS-CH (Hoge et al., 2023), CAMELS-SE (Teutschb

2017a), CAMELS-CL (Alvarez-Garreton et al., 2018), HYSETS (Arsenault et al., 2020), CAMELS-BR (Chagas et al., 2020), CAMELS-GB (Coxon et al
, 2024), LamaH-Ice (Helgason and Ni

2020), CABra (Almagro et al., 2021),
en, 2024), CAMELS-FR (Delaigue et al., 2024), CAMELS-DE (Loritz et al., 2024), CAMELS-DK (Liu et al., 2025),

d CAMELS-CH forcing variables derived from the core forcing include precipitation, mean temperature, global radiation, sunshine duration, wind speed, relative humidity, potential evap actual evap ion and i p p
¢ CAMELS-DK provides streamflow observations for 304 out of 3330 basins; CAMELS-IND provides streamflow observations for 228 out of 472 basins.
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Figure 1. Overview of the CAMELS-SPAT workflow. Grey boxes and light-blue call-outs indicate specific folders on the GitHub repository,
where the necessary code to reproduce these steps can be found. Note that the repository folder 4_data_structure_prep is not listed in this

figure because it contains no methodological choices.

Daymet data at the time. Our primary forcing dataset (see
Sect. 2.4) does not have the coverage to include basins in
Hawaii or Puerto Rico, but cold region processes as may be
found in Alaska are covered by our selection of Canadian
basins.

For basins in Canada, we start with the list of 1027 gauges
included in the “Reference Hydrometric Basin Network”
(RHBN; Environment and Climate Change Canada, 2020a,
retrieved: 18 August 2022). These gauges have a minimum
data availability of 20 years and minimal anthropogenic im-
pacts as quantified by the presence of agriculture, built-up
areas and water management infrastructure, as well as pop-
ulation and road density. These criteria are comparable to
those described in Newman et al. (2015). Note that agri-
culture presence in the Canadian prairie provinces (Alberta,
Saskatchewan, Manitoba) and southern Ontario is substan-
tial and above the 10 % area threshold used for the other

https://doi.org/10.5194/hess-29-5791-2025

provinces and territories (Pellerin and Nzokou Tanekou,
2020, p. 7). Excluding these basins would severely reduce the
number of Canadian gauges we could include in the dataset,
and we thus retain these gauges but include various data
products in CAMELS-SPAT that can be used to quantify or
filter by the presence of agriculture.

Our initial basin selection included 1698 basins across the
US and Canada. Various basins had to be removed due a lack
of streamflow estimates or sub-daily data (see Sect. 2.3). We
further removed several of the largest basins from the dataset,
under the assumption that any new insights that could be
gained from these extremely large basins are minimal (espe-
cially given that these basins are severely under-gauged for
their size) and do not outweigh the extra disk space needed to
store the data for these basins (see Sect. S3 in the Supplement
for details). Our final selection consists of 1426 basins, with
an approximately even spread between the US and Canada.

Hydrol. Earth Syst. Sci., 29, 5791-5833, 2025
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For clarity, any outcomes shown in Sects. 2.2 to 4.4 only
show the final 1426 basins we have made publicly available,
rather than the 1698 basins that are the outcome of this basin
pre-selection step.

2.2 Basin delineation
2.2.1 Context

Hydrologic datasets such as this are conditional on having
accurate basin outlines. Basin outlines are used to estimate
a drainage basin’s area, to crop meteorological and geospa-
tial data to the area of interest and to define the spatial extent
of model configurations. Basin area estimates are also often
used to convert the units of fluxes from volume-per-time to
depth-per-time or vice versa (e.g. from m>s~! to mms™!).
Using incorrect basin area estimates can lead to large conver-
sion errors that propagate into any further analysis (McMil-
lan et al., 2023).

The basin polygons provided as part of the CAMELS data
(Newman et al., 2014; Addor et al., 2017b) are administra-
tive boundaries. These polygons are not based on gauge loca-
tions, and the polygons thus tend to overestimate the basins’
drainage areas. Estimated area errors (derived from a com-
parison of reported upstream area for each gauge and actual
area of the basin polygon) are typically in the order of some
percent (below 2 % for approximately 70 % of basins) but
can be substantial (above 10 % for approximately 8.5 % of
basins, with individual cases well above 100 %). Addition-
ally, openly available polygons for the Canadian gauges did
at the time of project initialization not fully cover all 1027
basins listed in the Reference Hydrometric Basin Network
(RHBN) (Environment and Climate Change Canada, 2020b,
retrieved: 31 January 2022).

To address both concerns, we delineated new basin out-
lines for all basins identified as potential candidates in
Sect. 2.1. Our specific goals were to (1) identify the upstream
area of each gauge and (2) divide this upstream area into sub-
basin polygons of roughly equal size.

2.2.2 Method and outcomes

We obtained gauge metadata (location, name, reference ar-
eas, etc.), as well as reference basin outline polygons if these
were available, for all gauges identified in the first step. For
the US gauges, metadata and polygons showing each basin’s
outline were obtained from the CAMELS dataset (Newman
et al., 2014; Addor et al., 2017b). For the Canadian gauges,
an initial download of the RHBN metadata was used to
identify which gauges are included in the RHBN version
released in 2020. Further metadata (location, name) were
then extracted from the HYDAT database (Environment and
Climate Change Canada, 2010). Two different sets of ref-
erence polygons were available (Environment and Climate
Change Canada, 2020b; Government of Canada, 2022, ac-
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cessed: 23 August 2022, 18 August 2022, respectively), of
which we preferentially used the newer polygons if these
were available for our basins of interest.

To divide larger basins into smaller sub-basins, we used
the MERIT Basins dataset (Lin et al., 2019). This dataset
contains vectorized river basins and river networks, derived
from the MERIT Hydro data (Yamazaki et al., 2019). The
mean sub-basin size in the MERIT Basins data is 45.6 km?
(median: 36.8 km?). We refer the reader to Lin et al. (2019)
for further details. We also obtained the MERIT Hydro flow
direction and accumulation grids (Yamazaki et al., 2019).
The MERIT Hydro data are provided as gridded data in a reg-
ular longitude/latitude coordinate system (EPSG:4326). This
is a common format (most of the meteorological data, and
many of the geospatial datasets we discuss in Sect. 2.4 and
2.5 are also only available in EPSG:4326). We adopt this as
the standard in CAMELS-SPAT to the extent feasible. The
one exception is the RDRS meteorological dataset, which
is originally provided on a custom rotated latitude/longitude
grid. Any area calculations and certain shapefile intersection
operations are performed in the North America Albers Equal
Area Conic projection (ESRI:102008).

The MERIT Basin network was derived independently
from gauges, and the sub-basins in this dataset therefore do
not align with gauge locations as reported by the U.S. Geo-
logical Survey and the Water Survey of Canada. For a given
basin, we thus needed to clip the most downstream sub-basin
polygon to the gauge. We therefore first mapped the gauge
locations onto the MERIT Hydro river network using auto-
mated techniques. This mapping is intended to guarantee that
the delineation of the upstream area of a given gauge starts
from a pixel in the flow direction grid that is part of the main
river (rather than the most downhill pixel of a single hills-
lope). However, there are various scenarios where automatic
mapping is inaccurate and manual intervention is needed.
We identified those cases through a combination of accuracy
metrics (area comparison between new basin delineation and
reported reference area(s) as well as percentage overlap be-
tween new basin delineation and reference polygon if any
were available) and visual inspection of the new basin de-
lineation, reference polygon, underlying MERIT Hydro data
grids and satellite images. If necessary, we manually defined
a better outlet location to delineate the basin from and tracked
this intervention in the CAMELS-SPAT metadata. We also
assigned confidence ratings to our new basin polygons based
on these quality assurance checks. As the final step, we iden-
tified all cases of nested gauges where a larger basin includes
a smaller one. In such cases, we split the sub-basin polygon
that contains the nested gauge and assigned unique identi-
fiers to the upstream and downstream parts of the sub-basin
and river segment.

Figure 2 shows the resulting polygons for the 1426 basins
that form the final CAMELS-SPAT dataset, with colours in-
dicating the confidence ratings we assigned based on the
checks listed previously (i.e. automated overlap and area

https://doi.org/10.5194/hess-29-5791-2025



W. J. M. Knoben et al.: CAMELS-SPAT dataset

checks, as well as manual inspection of polygons and satel-
lite images). “Unknown” refers to cases where no confidence
rating could be assigned, mainly due to lacking reference
polygons. “Low” ratings are assigned when evidence sug-
gests that our basin delineations are inaccurate, and we were
unable to manually find a better outlet location that would
lead to improved basin outlines. “Medium” ratings indicate
that there are substantial differences between our new delin-
eations and existing ones and/or reference areas but that it is
difficult to decide whether our new delineation or the refer-
ence(s) are more accurate. “High” ratings are assigned when
there is a clear match between our new polygons and the ref-
erence(s) or when evidence suggests our new delineations
are more accurate than the reference(s). Detailed reasons for
these ratings are tracked as part of the CAMELS-SPAT meta-
data. Medium and low confidence ratings occur primarily in
regions with flat topography where finding the true outline of
any drainage basin is difficult.

2.3 Streamflow observations
2.3.1 Context

Streamflow is a key variable for many hydrologic studies.
Streamflow estimates are typically provided as either instan-
taneous values (i.e. valid at a given point in time) or as av-
erages over a given time interval. It is critical to know what
type of values (instantaneous or time averages) are available,
as well as the time zones that the data are provided in.

The U.S. Geological Survey (USGS) typically collects
instantaneous streamflow observations at 15 or 60 min in-
tervals. USGS also provides daily average values, com-
puted from the instantaneous data from 00:00 to 24:00 lo-
cal standard time (LST; USGS, personal communication,
20 June 2023). Both instantaneous values and daily averages
are publicly available.

The Water Survey of Canada (WSC) typically collects in-
stantaneous streamflow observations at 5 min intervals and
from these calculates daily averages that are reported in LST
through the HYDAT database (WSC, personal communica-
tion, 4 July 2023). However, when instantaneous values are
extracted through the WSC API, the time series are con-
verted to coordinated universal time (UTC) before being
given to the user (Government of Canada, 2023). Instanta-
neous streamflow observations are available through this API
for the period between the present and minus 18 months. Re-
cently, WSC has also released sub-daily data going back to
2011 (last access: 2 June 2025, Water Survey of Canada,
2025), although this cannot be accessed through the stan-
dard API. To expand the hourly data availability for Cana-
dian basins, we included this data source in our processing.
Daily average values are available for the full time period for
which a gauge has been active.

Our goal with this project is to provide data that are use-
ful for running and evaluating process-based hydrological
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models. We therefore include daily average streamflow val-
ues as available through USGS and WSC. We also include
hourly average streamflow values to match the temporal res-
olution of our selected meteorological datasets. Hourly aver-
age flow data are computed from the sub-daily instantaneous
data available through both agencies. All flow data, as well as
meteorological forcing data, are included in the CAMELS-
SPAT dataset in local standard time. The time zone of each
gauge is tracked as part of the metadata.

2.3.2 Method and outcomes

For the gauges in the US, daily average streamflow
data and instantaneous (sub-daily) data can both be ex-
tracted through API requests (https://nwis.waterservices.
usgs.gov/nwis/dv/ and https://nwis.waterservices.usgs.gov/
nwis/iv/, respectively; last access: 16 June 2023). For
the Canadian gauges, sub-daily data were extracted
from the Environment and Climate Change Canada FTP
server (https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/
www/UnitValueData/, last access: 31 May 2025). Daily
data were extracted from the HYDAT database, version
20230505. We excluded four gauges in the US and 180 Cana-
dian gauges from the original 1697 pre-selected stations be-
cause sub-daily data were not available for these stations. We
removed a further 13 Canadian gauges for lacking daily dis-
charge values. Manual checks of these gauges through the
WSC website (https://wateroffice.ec.gc.ca/search/historical _
e.html, last access: 6 February 2025) indicate that these sta-
tions measure water levels in lakes.

Daily average values for both countries are provided in
LST. We updated the time indices for the sub-daily instanta-
neous values to match. For the gauges in the US, this meant
shifting the time series by 1h for time steps that were pro-
vided in local daylight saving time for gauges in states where
daylight saving time is observed. For the Canadian gauges,
this meant shifting the entire time series for each gauge
by the offset needed to convert UTC to LST. We then set
any negative streamflow values to zero and used a mass-
conserving averaging approach to turn instantaneous flow
data into hourly averages (see Sect. S1 in the Supplement
for more details about the averaging procedure). We speci-
fied the condition that every hourly average must be based
on at least one observation during that time window. Hours
for which no data observations were available were set to
not-a-number (NaN).

Note the critical assumption that we calculated the av-
erage hourly flows as the value at the top of the hour
(e.g. 12:00) using a forward-looking window (in this case,
the value at 12:00 is the average during the time window
12:00-13:00). This matches the daily flows, which are pro-
vided under the same assumption by USGS and WSC (e.g.
the 1 January 2000 value is calculated from data between
00:00, 1 January and 24:00, 1 January; USGS, personal
communication, 20 June 2023; WSC, personal communica-
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Figure 2. Location and delineation confidence of 1426 CAMELS-SPAT basins. Political boundaries by the Commission for Environmental

Cooperation (2022, last access: 20 December 2023).

tion, 26 June 2023). This information is also stored in the
time_bnds (time bounds) variable available in the provided
NetCDF files.

Daily and sub-daily observations were originally provided
in text-based formats. We converted these to NetCDF4 for-
mats to ensure consistency between gauges in the two coun-
tries and to track metadata in a more accessible way (com-
pared to storing the metadata in separate files or headers in
text files). For both USGS and WSC data, we retained the
quality flags that accompany the data and stored these in the
same NetCDF files that contain the streamflow observations.
These quality flags indicate conditions that may adversely
affect the observations (e.g. gauge malfunction, ice condi-
tions) and whether data have been formally approved or are
still considered provisional.

Figure 3 shows aggregated flow data availability for the
1426 catchments included in the CAMELS-SPAT dataset,
with the total record length in blue (number of years between
first and last available streamflow observation) and miss-
ing values in red (number of years in the record length for
which no observations are available). Hourly flow data come
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in two distinct categories: records for the Canadian gauges
are around a decade in length, while sub-daily records for
gauges in the US are typically two to three times longer. This
is a consequence of the Water Survey of Canada’s policy to
make high-resolution gauge data publicly available for only
a relatively short historical period. Missing data for these
shorter records are, however, typically low (see also Fig. Al).
For approximately 60 % of gauges, missing hourly observa-
tions account for up to 10 % of the record length. Data may
be missing for up to 40 % of the record for most remain-
ing gauges, with a handful of gauges having extremely large
data gaps. Daily data record lengths are similar for Canadian
and US gauges. Missing values are relatively rare (< 1 % for
up to 849 out of our 1426 gauges and < 10 % for 1070 out
of 1426 gauges), although this can be substantial (up to ap-
proximately 60 %; see Fig. Al). The period with the greatest
overlap of data records is 1990-2020; hourly observations
are available for only a handful of gauges before this time.
Some further statistics on the streamflow regimes available
in CAMELS-SPAT are discussed in Sect. 3.5.
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Figure 3. Flow data availability for gauges included in CAMELS-SPAT. Record length refers to the period between the first publicly available
flow record for a given station and its last. Missing values occur in this record period and are given here in the same units as the record length
itself. Note that both y axes are truncated: in (a), there are 556 cases where the number of missing values falls between 0 and 1 years of total
(although note that these missing values are not necessarily consecutive and in fact in many cases are caused by seasonally active gauges).
Also truncated is the record length bar showing the 498 cases where the length of the hourly data record is between 12 and 13 years. In (b),
missing values has a count of 898 for time between 0 and 1 years. (a, b) Note that the colours are partly transparent and that overlaps between
the record length and missing values bars will appear as dark red.

2.4 Forcing data 2.4.2 Methods and outcomes
2.4.1 Context CAMELS-SPAT includes four forcing datasets, each with a

specific focus:
Meteorological forcing data in existing datasets are typically

provided as catchment-averaged (lumped) daily data and 1. First, we primarily use the high-resolution RDRS
tends to be limited to precipitation, temperature and potential v2.1 dataset (Gasset et al., 2021, available at 10km
evapotranspiration variables (Table 1). While a large number or approximately 0.09° resolution). RDRS covers the
of the more conceptual models can be run with only precip- North American continent and provides those variables
itation, temperature and potential evapotranspiration inputs needed to run process-based models directly and derive
(see e.g. Knoben et al., 2019; Trotter et al., 2022), more com- most other variables listed in Table 2. A key advan-
plex hydrologic models typically require a wider array of in- tage of RDRS is that it assimilates precipitation obser-
puts at a higher temporal resolution. Table 2 shows a brief vations, which should improve the accuracy of its pre-
overview of the meteorological data requirements for a se- cipitation field.
lection of process-based hydrological models. Typical vari-
ables include (1) precipitation, (2) air temperature, (3) radi- 2. Second, for continuity with the original CAMELS
ation (often distinguishing between shortwave and longwave dataset, we include the Daymet v4 R1 dataset (Thorn-
radiation), (4) air pressure, (5) humidity and (6) wind speed. ton et al., 2021, available at a 1 km or approximately
It is clear from Table 2 that it is impossible to define a 0.009° resolution). Daymet is based on weather sta-
small set of forcing variables that would allow the use of a tion observations and gridded terrain data and is avail-
large number of process-based hydrologic models. We there- able at a daily resolution between 1980 and 2023 on a
fore decided to include a broad selection of meteorological 365 d calendar (during leap years, 31 December is miss-
variables, accepting that this comes at the cost of extra disk ing). The dataset does not include all the forcing vari-
space. We provide these variables at hourly time steps, at ables needed to run process-based models but, if com-
their original gridded resolution as well as averaged at the bined with an appropriate estimate of potential evapo-
sub-basin level. To facilitate the use of the broadest range transpiration (PET), provides sufficient information to
of modelling tools, we also include time series of potential run more conceptual and data-driven models. We infill
evaporation (see footnote in Table 3) and forcing variables the missing day in leap years as a linearly interpolated
aggregated at the lumped basin level. value between the preceding and following days. Fol-

lowing Newman et al. (2015), we add a Priestley—Taylor
PET estimate (Priestley and Taylor, 1972, further details
available in Sect. S2.5 in the Supplement).
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Table 2. Meteorological data needs for CATFLOW (Maurer and Zehe, 2007), CHM (Marsh et al., 2020), CHRM (Pomeroy et al., 2007), ES-
CROC (Lafaysse et al., 2017), HYPE (SMHI, 2022), MESH (Mekonnen and Brauner, 2020), Noah-LSM (Mitchell et al., 2005), PARFLOW
(Maxwell et al., 2019), MM-PIHM (PIHM team, 2007; Yuning Shi, 2018), SUMMA (Clark et al., 2015a, b; Nijssen, 2017), VIC (Liang
et al., 1994; Hamman et al., 2018) and WaSIM (Schulla, 2021). Models are listed alphabetically. Optional inputs indicated with *. t indicates
an arbitrary time unit.

Variable CATFLOW CHM CHRM ES-CROC HYPE MESH
Precipitation [m ! ] [mmt™ 1 ] [mmt™ 1 ] [kg m2g~! ] [mmt™ 1 ] [kg m—2g~! ]
Downward shortwave radiation [W m_z] W m_z] W m_z] MJ m~2d~ 1]* W m_z]
Downward longwave radiation W m_z] W m_z] W m_z]
Air temperature [°C] [°C] [°C] K] [°C] K]

Air pressure [Pa] [Pa]
Specific humidity [kgkg~!]
Wind speed (U direction) [ms™ 1 1*

Wind speed (V direction) [m s_l]*

Sunshine duration

Reflected shortwave radiation W m_z]

Net radiation [Wm_z] [Wm_2]

Vapour pressure

Relative humidity [%] [%] [%] [%] [-]*

Wind speed (mean) [m s_l] [m s_l] [m s_l] [m s_l] [m s_l] [m s_l]
Wind direction [degrees] [degrees]

Variable Noah-LSM PARFLOW MM-PIHM SUMMA VIC WaSIM
Precipitation [in. (30 min)fl] [mm sfl] [kg m—2 sfl] [kg m—2 sfl] [mm tfl] [mm)]
Downward shortwave radiation [W m_z] W m_z] W m_z] W m_z] W m_z] [Wh m_z]
Downward longwave radiation ~ [W m_z] W m_z] [Wm_2] [Wm_z] W m_2]

Air temperature [°C] K] K] K] [°C] [°C]

Air pressure [mbar] [Pa] [Pa] [Pa] [kPa]

Specific humidity [kgkg™ 1] [eg™

Wind speed (U direction) [m g1 ]

Wind speed (V direction) [ms™ l]

Sunshine duration -]
Reflected shortwave radiation

Net radiation

Vapour pressure [kPa]

Relative humidity [-] [%] [-]

Wind speed (mean) [ms_l] [ms_l] [ms_l] [ms_l] [ms_l]

Wind direction

3. Third, to facilitate possible extension of CAMELS-

SPAT beyond North America, as well as provide hourly
data for gauges with observations before 1980 (i.e. out-
side the time period covered by RDRS), we include the
globally available ERAS data (Hersbach et al., 2020,
available at a 0.25° resolution). Like RDRS, ERAS pro-
vides all variables needed to run process-based models
directly and derive most other variables listed in Table 2.
However, unlike the other datasets listed here, ERAS is
a reanalysis product and does not integrate station ob-
servations. Local accuracy may thus be lower for ERAS
data than for datasets that do use station observations.

4. Fourth, to partly address this weakness of ERAS data,

we include the high-resolution EM-Earth dataset (Tang
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et al., 2022b, available at a 0.10° resolution). Previ-
ous work has shown that using station-based precipita-
tion and temperature data from EM-Earth provides bet-
ter modelling results for the North American continent
than using ERAS alone (Rakovec et al., 2023). How-
ever, note that EM-Earth has a fixed temporal coverage
of 1950-2019, whereas our selected gauges have data
beyond 2019.

Table 3 shows an overview of forcing variables available
as time series in the CAMELS-SPAT dataset. Compared to
Table 2, we provide net radiation terms at the surface sep-
arated into net shortwave and net longwave terms and do
not provide a summed net radiation component or a reflected
shortwave variable. Either can be easily derived from the pro-
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vided net shortwave and longwave components (see Hogan,
2015, but also footnote ° in Table 3). We also do not pro-
vide sunshine duration because this is not available in RDRS,
Daymet and EM-Earth. While sunshine duration is available
in ERAS, it is not an independent variable: it is derived di-
rectly from downward shortwave radiation using a threshold
of 120 Wm~2 (Hogan, 2015). We complement the forcing
datasets with various additional variables derived from the
downloaded data in cases where we judged the processing to
be too cumbersome to pass down to the user (i.e. vapour pres-
sure, relative humidity, wind direction) or where the variable
seemed to be of general interest (i.e. mean wind speed, PET).
Potential evapotranspiration estimates for Daymet were de-
rived using the Priestley—Taylor formula (Priestley and Tay-
lor, 1972); PET estimates for RDRS were derived using the
FOA-56 Penman—Monteith method (Allen et al., 1998). The
equations used to derive data are provided in Sect. S2 in the
Supplement. While the list of variables in Table 3 is unlikely
to completely cover all models’ data needs, it will provide a
reasonable starting point for a large number of models.

We retained the original variable names used in each
dataset so that users may easily refer to the existing doc-
umentation of RDRS, Daymet, ERAS5 and EM-Earth if
needed. For convenience and simplicity from a user perspec-
tive, we converted all hourly data to use a consistent set of
units, although we kept the units of the daily data (Daymet)
to be more directly applicable to the types of models more
commonly run at daily time steps. Unit conversion of hourly
data is mostly straightforward but required an assumption
for the density of water, which we set at a constant value
of 1000kgm™3. Data are provided for the full time period
covered by the observational record of each individual gauge
when possible, including time steps for which streamflow
data are missing (see also Sect. 4.2.2 and Table 4). For all
variables, metadata (descriptions, units, derivations if appli-
cable) are stored as variable attributes in the NetCDF files.

We provide the forcing data at three different spatial ag-
gregation levels: (1) as gridded values at the original spatial
resolution of each dataset, clipped to the basin outline; (2) ag-
gregated at the sub-basin level; and (3) aggregated at the
basin level (i.e. the level at which most of the datasets listed
in Table 1 provide data). Averaging of the gridded data to
(sub-)basin polygons was done with the EASYMORE tool-
box (Gharari et al., 2023).

RDRS, ERAS and EM-Earth provide data at an hourly
resolution, in coordinated universal time (UTC). We process
these time indices to be in each gauge’s local standard time
(LST) instead, so that the time indices in the forcing file align
with those used for the flow observations. We make a slight
adjustment for the 57 basins that are located in regions fol-
lowing Newfoundland standard time (NST [UTC—3h 30];
National Research Council Canada, 2019). The time series
of all forcing data products only provide values at the top
of each hour (12:00, 01:00, etc.) and thus cannot easily be
converted to NST without making assumptions about how
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to interpolate the data between the times for which they are
available. We treat these basins as following Atlantic stan-
dard time (AST [UTC—4h 00]) instead. Note that this leads
to a 30 min offset between forcing data and streamflow obser-
vations for these basins. Daymet data are already provided as
daily average values calculated in LST and require no further
adjustment.

Variables in these forcing datasets are either instantaneous
(i.e. representative of conditions at a specific point in time) or
time averaged (i.e. representative of conditions over a given
time window), and this means that the time stamps in each
NetCDF file must be interpreted differently for different vari-
ables. For any instantaneous variable, a value is valid at the
specific moment in time given by the time stamp (European
Centre for Medium-range Weather Forecasting, 2023c). For
any time-averaged variables, we need to distinguish between
two cases. RDRS and ERAS use period-ending or backward-
looking time stamps, meaning that, for example, the average
precipitation rate at time 12:00 is the average rate over the in-
terval 11:00-12:00 (ECCC, personal communication, 2024;
European Centre for Medium-range Weather Forecasting,
2023b, Sect. “Mean rates/fluxes and accumulations”). EM-
Earth’s precipitation variable instead uses period-beginning
or forward-looking time stamps, meaning that, for example,
the average precipitation rate at time 12:00 is the average
rate over the interval 12:00-13:00 (Guogiang Tang, personal
communication, 2024). Table 3 provides an overview of all
forcing variables and summarizes this information.

2.5 Geospatial data
2.5.1 Context

Geospatial data in existing datasets cover four broad cat-
egories: (1) meteorology (as time series and derived sum-
mary statistics), (2) vegetation and land use, (3) topography
and (4) soil and geology. In current large-sample datasets,
geospatial data are typically not provided as maps in their
original formats but tend to be presented as spatial statistics
(mean, mode, etc.). These statistical summaries of the orig-
inal data, commonly referred to as catchment attributes, can
be helpful to succinctly characterize a location’s hydrocli-
matic conditions and support classification efforts. For mod-
elling purposes, geospatial data play a key role in defining
model configurations and parameter values. For example,
models such as Noah-LSM (Niu et al., 2011) and SUMMA
(Clark et al., 2015a, b) rely on vegetation and soil classes to
provide initial values for a number of land use and soil pa-
rameters. More generally, models might require the height of
the vegetation canopy in the vertical direction or the frac-
tion of the basin covered by open water in the horizontal
direction as inputs. It is practically impossible to cover all
possible use cases through statistical summaries of the data
(i.e. through attributes) alone, and we therefore provide the
geospatial data as maps clipped to the basin outlines. The
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Table 3. CAMELS-SPAT meteorological variables. Variable names shown in bold indicate derived variables. “Flux validity” indicates how

time-averaged variables must be interpreted.

Dataset RDRS ERA5 EM-Earth Daymet
Resolution Hourly Hourly Hourly Daily
Flux validity =~ Period-ending? Period-endingb Period-beginning®  n/a

Time-averaged variables Units Name in NetCDF files

Precipitation rate [kg m~2s~!] RDRS_v2.1_A_PRO_SFC mtpr prep

Potential evapotranspiration rate  [kg m—2s71 mperd

Precipitation rate [mmd~!] prep

Potential evapotranspiration rate  [mm d—1 pet

Downward shortwave radiation W m_z] msdwswrf srad

Downward longwave radiation W m72] msdwlwrf

Net surface shortwave radiation  [W m_z] msnswrf®

Net surface longwave radiation W m_2] msnlwrf®

Instantaneous variables Units Name in NetCDF files

Downward shortwave radiation W m_z] RDRS_v2.1_P_FB_SFC

Downward longwave radiation W mfz] RDRS_v2.1_P_FI_SFC

Potential evapotranspiration rate  [kg m~2s71]  pet

Air temperature K] RDRS_v2.1_P_TT_1.5m t tmean

Minimum daily air temperature ~ [°C] tmin

Maximum daily air temperature  [°C] tmax

Daylight length [sd— 1 day

Air pressure [Pa] RDRS_v2.1_P_P0_SFC sp

Specific humidity kg kg_1 ] RDRS_v2.1_P_HU_15m q

Relative humidity [kPakPa™ 1] RDRS_v2.1_P_HR_1.5m rh

Vapour pressure [kPa] e e

Vapour pressure [Pa] vp

Wind speed (U direction) [m sfl] RDRS_v2.1_P_UUC_10m u

Wind speed (V direction) [m s_l] RDRS v2.1 P VVC_10m v

Wind speed (mean) [m s_l] RDRS_v2.1_P_UVC_10m w

Wind direction [degrees] phif phif

4 ECCC, personal communication, 2024. b See https://confluence.ecmwf.int/pages/viewpage.action?pageld=82870405#ERAS5:datadocumentation- Table4 (last access:

3 January 2024), https://confluence.ecmwf.int/pages/viewpage.action?pageld=82870405#ERA5:datadocumentation-Table9 (last access: 3 January 2024),
https://confluence.ecmwf.int/pages/viewpage.action?pageld=82870405#ERA5:datadocumentation- Table2 (last access: 3 January 2024). © Guoqiang Tang, personal
communication, 2024, 4 Assumptions underlying this variable are described here: https://codes.ecmwf.int/grib/param-db/?id=228251 (last access: 1 January 2024). Note
that we provide the equivalent variable as a mean rate as part of the CAMELS-SPAT data, but the URL for that variable lacks a clear description:
https://codes.ecmwf.int/grib/param-db/?id=235070 (last access: 1 January 2024). © Note that these net radiation terms are based on interactions between the atmospheric and
land surface components of the ERAS modelling chain and should thus only be used carefully as a model input to prevent cases where the user’s model duplicates processes
already accounted for by the ERAS models. f We derived most additional variables before averaging the gridded data onto (sub-)basins, but this is not easily possible for
wind direction. Instead, we calculate wind direction separately for the gridded, semi-distributed and lumped cases from U and V components after (sub-)basin averages of
these variables were created. We use the meteorological wind direction as defined by ECMWF (European Centre for Medium-range Weather Forecasting, 2023a): wind
direction in this case indicates the direction that the wind comes from, not where it goes. n/a: not applicable.

maps will allow users to derive model parameters and fur-
ther catchment delineations (such as elevation zones or land
cover polygons) and to derive additional catchment attributes
if our existing selection of attributes does not cover a partic-
ular study’s needs (see Sect. 3). Figure 4 shows an overview
of the 11 different datasets we selected for use in CAMELS-
SPAT.

2.5.2 Methods and outcomes

For internal consistency of the CAMELS-SPAT data, we se-
lected various geospatial datasets that cover at least the US
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and Canada. The specific processing steps vary, but in gen-
eral processing for each dataset involved downloading the
data at continental or larger scales and clipping the data to the
basin polygons (see Fig. 1). We also ensured that all geospa-
tial maps are provided in a regular latitude/longitude coordi-
nate system (EPSG:4326). Figure 4 provides an overview of
the geospatial data layers, using a single basin as an example.

Climate. Long-term monthly means of several climate
variables can be obtained from the WorldClim dataset (Fick
and Hijmans, 2017). The advantage over calculating these
means from gridded forcing data is WorldClim’s much
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higher spatial resolution. Available variables are the long-
term means computed from 30 years each, showing mini-
mum, mean and maximum monthly temperature, as well as
the monthly precipitation, solar radiation, wind speed and
water vapour pressure. WorldClim’s data licence does not al-
low the redistribution of their raw data but does allow the
data to be used to calculate derived statistics and to redis-
tribute those. We primarily use the WorldClim data to calcu-
late various attributes that quantify the spatial heterogeneity
in climatic conditions and include various maps of derived
variables as part of CAMELS-SPAT.

Vegetation. Process-based hydrological models typically
include explicit representations of vegetation cover in a
catchment. CAMELS-SPAT includes two datasets from
which vegetation parameters may be derived. First, we in-
cluded the time series of leaf area index (LAI) observations,
derived from MODIS satellite observations (Myneni et al.,
2021, MCDI15A2H.061). These observations are available at
an 8 d temporal resolution and cover the period 4 July 2002 to
8 October 2023. Certain models may be able to ingest these
maps directly or typical seasonal LAI patterns may be de-
rived from them. In addition, we included estimates of forest
height in 2000 and 2020 (Potapov et al., 2021, part of the
Global Land Cover and Land Use Change, 2000-2020 data).

Land cover and land use. To further assist parametrization
and classification efforts, we included three different prod-
ucts related to land cover and land use. First, the Landsat-
Derived Global Rainfed and Irrigated-Cropland Product
(LGRIP30; Thenkabail et al., 2021; Teluguntla et al., 2023)
can be used to estimate the magnitude and type of agricul-
ture practised in each basin. Second, we include a map of
International Geosphere—Biosphere Programme (IGBP) land
classes in each basin, derived from MODIS satellite obser-
vations (Friedl and Sulla-Menashe, 2022). Third, we include
high-resolution Global Land Cover and Land Use 2019 maps
(Hansen et al., 2022). This is very high-resolution data de-
rived from Landsat satellite observations, used to classify the
landscape into several broad categories (inland water, per-
manent snow and ice, cropland, built-up, terra firma and wet-
lands), with several of these consisting of subclasses based
on build-up area extent and vegetation extent and height.

Open water. We include cut-outs of the HydroLAKES data
(Messager et al., 2016) to quantify the extent, type and vol-
umes of open water bodies in each basin. These data can be
used to estimate each catchment’s open water area, retention
volumes and parametrization of reservoir and lake modules
in hydrologic and/or routing models.

Topography. The MERIT Hydro digital elevation model
(DEM) used for basin delineation (Yamazaki et al., 2019) is
also part of the maps provided for each catchment. We used
the DEM to derive separate maps of slope and aspect because
of their hydrologic relevance. For both, the DEM was first
re-projected into ESRI:102009 (NAD 1983 Lambert North
America) to ensure consistency between horizontal and verti-
cal units. We then calculated slope maps expressed as angles
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(i.e. degrees) and aspect maps in degrees indicating which di-
rection a slope faces (with 0, 90, 180 and 270° being north-
, east-, south- and west-facing slopes, respectively). Addi-
tional variables such as elevation bands may be derived from
the DEM map, but due to the subjectivity involved in decid-
ing where the boundaries between the elevation bands are, we
have not done so. The DEM data may also be useful in ap-
plying elevation-dependent lapse rates to meteorologic vari-
ables.

Soil and geology. We provide maps from three different
datasets to characterize each catchment’s subsurface. First,
SoilGrids 2.0 (Poggio et al., 2021) provides estimates of var-
ious soil properties (bulk density; percentage coarse frag-
ments; organic carbon content; and sand, silt and clay per-
centages) at six different depths (0-5, 5-15, 15-30, 30-60,
60-100 and 100-200 cm). These maps are given for mean
values but also for 5th, 50th and 95th percentiles and an
uncertainty estimate. To match the geological attributes de-
scribed later in this paragraph, we also derive porosity and
conductivity estimates from the mean sand and clay values
for each layer using the regression equations described by
Cosby et al. (1984). However, SoilGrids data are estimated
for depths up to 2 m everywhere, without taking into account
the actual depth to bedrock of any location. Thus, second,
we included maps from the Pelletier soil database (Pelletier
et al., 2016a, b). These distinguish between uplands, valley
bottoms and lowlands and provide estimates of the depths
of soil, intact regolith and sedimentary deposits above un-
weathered bedrock. These variables may be used to set more
realistic soil depths in models compared to a spatially uni-
form depth. Third, we include cut-outs from the GLHYMPS
data (Gleeson et al., 2014; Gleeson, 2018) as polygons. Con-
tained as attributes are estimates of geologic permeability
and porosity, which may be used to parametrize models.

3 Catchment attributes

Existing large-sample datasets do not provide the maps of
geospatial data that we include as part of CAMELS-SPAT
(see Sect. 2.5) and instead provide only statistical summaries
of such maps, known as catchment attributes (for example, a
dataset might include the mean catchment elevation but not
the DEM from which this mean elevation is calculated). An
informal analysis of some of the CAMELS datasets listed
in Table 1 shows that these datasets together contain close to
300 different attributes, although any given individual dataset
contains no more than 50 to slightly over 100 of those. Over-
lap between attributes provided by existing datasets is mod-
erate at best, partly as a consequence of the differences in
data products included in each individual dataset. This lack
of uniformity is compounded by a lack of unified terminol-
ogy, where different datasets may use the same terms to de-
scribe different calculations or different terms to describe the
same attribute. This is in line with findings by Tarasova et al.
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Leaf Area Index

Data: MCD15A2H.061

Original resolution: 500m

LAI estimates for 2002-07-04 to
2023-10-08 at 8-day steps.

Agriculture

Data: LGRIP30v001

Original resolution: 30m

Land use classification into rainfed,
irrigated or no agriculture.

Land cover

Data: Global Land Cover & Land Use
Original resolution: 30m

Land use classification distinguishing
primarily between cropland, urban,
wetlands and solid ground.

Topography

Data: MERIT Hydro

Original resolution: 3 arcsecond
Surface elevation, slope, aspect.

Soil properties

Data: Pelletier

Original resolution: 30 arcsecond
Estimates of soil, intact regolith
and sedimentary layer depth.
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Long-term monthly climate means
Data: WorldClim

Original resolution: 30 arcsecond

Monthly climate variable means based

on 1970-2000 data. Used to derive various
values (source data cannot be
redistributed).

Forest height

Data: Global Land Cover & Land Use Change
Original resolution: 30m

Estimated vegetation height in 2000 and 2020.

Land cover

Data: MCD12Q1.061

Original resolution: 500m

Land use classification into 17 broad
types such as deciduous broadleaf
forest, tundra and urban.

Open water

Data: HydroLAKES

Original resolution: n/a (polygon)
Various characteristics about lakes
and reservoirs.

Soil properties

Data: SOILGRIDS 2.0

Original resolution: 250m

Various soil properties at 6 depths,
including uncertainty estimates.

Geology

Data: GLHYMPS

Original resolution: n/a (polygon)
Estimates of permeability and porosity.

Figure 4. Overview of geospatial maps provided for each catchment in the CAMELS-SPAT dataset, using a transboundary basin as an
example (Canadian gauge ID: 05AD003; sub-basin outlines given in black in all data layers apart from topography). The topography layer
also shows the basin’s gauge location as a red circle, the different sub-basins with white outlines and the river network and lakes in blue.

(2024), who analyse how 742 journal articles describe the
hydroclimatic conditions of their study areas. They find that
authors use a wide variety of attributes with only occasional
verification of their attributes’ usefulness. Relevant to our
work, and in line with a cursory overview of attributes pro-
vided by the datasets listed in Table 1, they also find that the
existing literature only rarely uses catchment descriptors that
attempt to quantify the range a particular variable may cover
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in a given catchment (the CAMELS-SE dataset, Teutschbein,
2024, is a notable exception).

We thus made a necessarily subjective choice of which
attributes to calculate for the CAMELS-SPAT basins. We
aimed for overlap with existing datasets when possible and
to be mindful of the findings of Tarasova et al. (2024). In par-
ticular, in addition to the commonly provided mean attribute
values, we also selected statistics that describe the range of
an attribute’s values. Examples include the minimum, maxi-
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mum and standard deviation of vegetation height to give an
impression of the spatial variability in the forest height data
and the inclusion of monthly mean forcing variables to give
an impression of the climatic seasonality that is only super-
ficially captured by average seasonality attributes commonly
found in other datasets. A list of all 1178 attributes can be
found in Tables A1-A11, divided into five main categories:
(1) climate, (2) topography and open water, (3) vegetation
and land cover, (4) subsurface and (5) hydrology. We calcu-
late the attribute values at both the basin and the sub-basin
level (except for streamflow statistics, which are only avail-
able at the basin outlet). Further details are provided in the
following subsections, although for obvious reasons we do
not discuss every individual attribute. Instead, we focus in
the following description of the CAMELS-SPAT attributes
on providing various examples that highlight why the rec-
ommendations in Tarasova et al. (2024) are important.

3.1 Climate attributes

The climatic data used in the development of CAMELS-
SPAT, i.e. the time series of meteorological forcing variables
from RDRS and the monthly maps of mean climatic condi-
tions from WorldClim, provide a unique opportunity to char-
acterize each catchment’s climatic conditions in time and
space. From the RDRS data, we are able to determine sea-
sonal variability and its variance over multiple years. From
the WorldClim data, we are able to characterize the seasonal
variability and its variance across space. This leads to a rel-
atively large number of climatic attributes compared to other
datasets and provides some insight into the variability in time
and space of this driver of hydrologic behaviour.

Tables A1-A4 list the climatic attributes provided with
CAMELS-SPAT. These cover annual mean values of vari-
ables of interest (such as precipitation, potential evapotran-
spiration and snow) commonly found in other datasets, as
well as standard deviations for these values. We expand
upon existing datasets by also providing monthly means and
monthly standard deviations of all forcing variables, to al-
low more in-depth investigation of each catchment’s season-
ality. Figure 5 shows why going beyond annual mean values
may be important. Figure 5a and b show long-term average
aridity and the fraction of precipitation falling as snow (de-
termined on a per-time-step basis using a 0 °C threshold; see
also Sect. 4.2.8 for some further discussion about the PET es-
timates available in CAMELS-SPAT.). The broad geograph-
ical patterns seen here are not particularly surprising but are,
importantly, not necessarily representative of climatic vari-
ability on a year-to-year basis (Fig. 5c, d) or of the range of
conditions in each catchment (Fig. Se, f). For example, across
the Great Plains area and particularly in the southwestern US,
the year-to-year variability in aridity (Fig. 5c) can be quite
large, and certain catchments may fluctuate between arid and
humid states on annual timescales. The fraction of precipita-
tion falling as snow equally shows large inter-annual variabil-
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ity (Fig. 5d), with standard deviations close to 10 % across
a large part of the domain. Within-catchment variability of
aridity (Fig. 5e) seems modest in most cases but is rather
large for snowfall (Fig. 5f), highlighting why treating these
catchments in a more spatially distributed fashion may be
helpful.

3.2 Topography and open water attributes

Topography is a critical control on hydrologic behaviour at
both the large and the small scale. For example, mountains
influence precipitation patterns at the large scale, while at
the small scale, slope angles affect lateral drainage and topo-
graphic features can lead to the formation of lakes. Tables AS
and A6 provide an overview of topographic and open water
attributes, respectively. These cover various basic catchment
descriptors, such as location and area, and various statistics
about the topography and resulting drainage network. Fig-
ure 6a and b show the catchment elevation mean and stan-
dard deviation, respectively. As expected, elevation varies
strongly throughout the domain, ranging from sea level to
well over 3000 m above sea level (ma.s.l.). Elevation dif-
ferences in catchments can be very high in mountainous re-
gions, with prime examples being the northwestern US and
southwestern Canada: the within-catchment standard devia-
tions in elevation are close to 500 m here. Statistics that quan-
tify basin slope (not shown for brevity) show similar patterns,
showing that the topographic drivers of hydrologic behaviour
can be highly variable in catchments. Topographic conditions
lead to a certain amount of open water in the CAMELS-
SPAT catchments, with lakes larger than 0.1 km? being more
prevalent in the Canadian basins (Fig. 6¢) than in basins in
the US. Water storage in these can be considerable (Fig. 6d).
Stream lengths (Fig. 6e and f) vary considerably based on the
drainage area upstream of each gauge, emphasizing a need
for within-catchment routing approaches. The examples in
Fig. 6 are intended to highlight the variability of conditions in
catchments and thus emphasize the need to go beyond treat-
ing basins as lumped entities. These examples (particularly
Fig. 6a, b, e and f) also illustrate that attributes can show
high correlations, suggesting that adding more attributes to
an analysis will not necessarily increase the useful informa-
tion by the same amount. Selecting which attribute to incor-
porate in any analysis must thus be done somewhat carefully
(see also Sect. 4.2.7).

3.3 Land cover attributes

Table A7 provides an overview of vegetation and land cover
attributes. Briefly, these cover various statistics on vegeta-
tion height during specific years, monthly leaf area index
(LAI) catchment mean and standard deviation, as well as per-
catchment counts of three different land class products. We
refer the reader to the original publications that describe each
dataset for further information about the classes included.
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Figure 5. Selection of climate attributes. (a—d) Statistics derived from RDRS data, showing mean and variability in time. (e-f) Statistics
derived from WorldClim data, showing variability in each catchment.
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Figure 6. Selection of topographic attributes. Open water (¢, d) estimates are obtained from the HydroLAKES database, which uses a
threshold of 10ha (0.1 km2) for lake and reservoir identification. (e, f) Stream length statistics are derived by starting at each headwater
sub-basin upstream of a given gauge and tracing the flow path down until the gauge location is reached. From this ensemble of flow path
lengths upstream of a given gauge, the mean and standard deviation of stream lengths are calculated.
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Figure 7 provides an example of the spatial (Fig. 7a, b) and
temporal (Fig. 7c, d) variability in vegetation characteristics.
As may be expected, there is considerable variation in veg-
etation height in space, on both the continental and within-
catchment scale. Forested areas in particular exhibit large
standard deviations in vegetation height (see for example the
Pacific Northwest and western Canada). On a seasonal scale,
LAI exhibits large variability throughout the domain as a
consequence of summer and winter patterns. Vegetation is
a key control on hydrologic processes like interception and
transpiration, and these images show that mean attribute val-
ues alone do not necessarily capture the complex vegetation
patterns that may explain spatial and temporal variability in
these processes.

3.4 Subsurface attributes

Attributes describing each catchment’s subsurface character-
istics are listed in Tables A8 and A9. Figure 8a and b show
SoilGrids estimated sand content in the top layer of each
catchment and the within-catchment standard deviation of
this estimate, respectively. Sand content is often combined
with clay and silt content estimates to derive soil parameters
used in models, such as porosity and drainage rates. Within-
catchment standard deviations tend to be around 20 % of
the estimated sand content, suggesting that within-catchment
drainage properties can vary considerably. For a given depth,
the SoilGrids property of interest (here, sand content) is es-
timated with a lower bound (Q0.05), median (Q0.50) and
mean value, and upper bound (QO0.95). The prediction un-
certainty is then calculated as the ratio of the 90 % prediction
interval (Q0.95-Q0.05) and the median (Q0.50). Prediction
uncertainty (Fig. 8c) adds more variability to the sand content
estimates, although this is somewhat modest compared to the
within-basin variability of sand content estimates (Fig. 8b).
The spatial standard deviation of the uncertainty estimates
is even smaller: a couple of percentage point difference at
most (Fig. 8d). This suggests that the prediction intervals
for sand content, in this layer at least, are relatively narrow.
The main variability occurs in each catchment, further em-
phasizing that going beyond lumped representations of hy-
drologic behaviour may be useful. This is further supported
by Fig. 8e and f, showing the estimated thickness of sedi-
mentary deposits and their spatial standard deviation, respec-
tively. There are clear large-scale patterns of the catchment
mean values, where plains and flat areas show the thickest
layers. Within-catchment variability is particularly large in
catchments with sharp topographic relief (compare Fig. 6b),
showing the difference in soil structure between high steep
mountains and valley bottoms. However, soil properties are
difficult to measure and as a result can be highly uncertain.
We urge readers to consult the publications describing these
datasets to understand how these values were derived and
how they may feed into new work.
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3.5 Hydrologic signatures

Statistics that describe flow regimes, commonly called signa-
tures, are an active area of research (e.g. McMillan, 2021). As
an initial start, we provide the same signatures as provided
in the original CAMELS dataset and expand upon these in
a number of ways: (1) in addition to mean values, we pro-
vide standard deviations when applicable; (2) we provide
monthly runoff signatures to complement the monthly cli-
mate attributes; and (3) we expand the no-, low- and high-
flow duration signatures to include median, skewness and
kurtosis values. For the signatures in Table A10, we calculate
the signature per year of data first and then find the mean and
standard deviation (if applicable) across years. For the statis-
tics for the no-, low- and high-flow periods (Table Al1), we
instead use all years together and calculate the statistics from
this single longer time series.

A subset of these hydrologic signatures is shown in Fig. 9.
As expected, the signatures show strong relations to the cli-
mate attributes in Fig. 5a and b. Mean discharge (Fig. 9a)
is particularly high in non-arid areas, and the standard devia-
tion of annual mean discharge (Fig. 9b) suggests strong intra-
annual variability in the observed runoff at most gauges.
The influence of snow processes can clearly be seen in the
differences between the May and December mean runoff
values (Fig. 9c, d). Low-flow duration (Fig. 9e; defined as
days where discharge is below 20 % of the mean discharge
for the basin) emphasizes the seasonality in runoff patterns
in most of these basins. However, these mean values are
likely not particularly representative of the duration of low-
runoff events. In the majority of basins, the distributions of
low-flow durations (as well as no-flow and high-flow dura-
tions; not shown for brevity) are positively skewed (Fig. 9f).
This indicates that these distributions have heavy tails and
that the mean values may be heavily biased by a relatively
small number of events. In many basins, the median dura-
tion may provide a more representative value of the typical
no-, low- and high-flow durations. Almost all recent large-
sample datasets provide a mean duration of no-, low- and
high-flow events, but the skewness and kurtosis of the under-
lying distributions are typically not accounted for. This leads
to an overestimation of the typical duration of these events
and may hinder classification efforts. We strongly suggest
that the shape of the duration distributions is accounted for
in future work.
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Figure 7. Selection of vegetation attributes. (a, b) The mean and standard deviation of forest height in each basin are derived from the Global
Land Cover and Land Use Change dataset and are shown here for the year 2020. (¢, d) Leaf area index values are derived from the MODIS
MCDI15A2H.061 dataset and are shown here as long-term averages values for February and August.

4 Discussion
4.1 Recommendations for data providers

4.1.1 Dimension boundary information in publicly
available data

In Sect. 2.3 and 2.4, we describe the processing of stream-
flow observations and meteorological data, respectively. One
challenge here is determining the representativeness (or va-
lidity) of data values in time and space. Data can be instanta-
neous (i.e. valid at a specific point in time) or time averaged
(i.e. valid over a specific time window), and treating one as
the other leads to incorrect estimates of fluxes and thus state
changes in the system (see also the derivation of hourly flow
values in Sect. S1 in the Supplement). The same concern ap-
plies to space: values may be representative for a specific
point or averaged over a given region. Accounting for these
differences is not always straightforward, in particular be-
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cause information about the spatial and temporal validity of
publicly available data is not always easily available and may
require informal inquiries to obtain. This hampers the correct
application and interpretation of data and can lead to easily
preventable biases in analyses and modelling efforts.

A simple solution is provided by the NetCDF Climate and
Forecast (CF) metadata conventions (see Sect. 7 in Eaton
et al., 2023). These conventions describe the specification
of bounds for coordinate variables (i.e. dimensions such as
latitude, longitude and time) that indicate between which
coordinate values a given data value is considered valid.
Specific examples for spatial gridded data can be found in
Sect. 7.1 in Eaton et al. (2023), and time bounds are dis-
cussed in Example 7.5 and 7.6. The CF conventions are de-
signed for NetCDF files, but the principle of specifying di-
mension bounds in time and space between which data val-
ues are valid is widely applicable. We strongly recommend
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Figure 8. Selection of subsurface attributes. (a—d) Properties derived from the SoilGrids 2.0 dataset through spatial averaging for each
catchment. (a, b) Mean and spatial standard deviation of sand content in the top SoilGrids layer. (¢, d) Mean and spatial standard deviation

of sand content uncertainty, defined as the ratio between the 90th-percentile prediction interval and the median prediction (%) (e,
f) Mean and spatial standard deviation of sedimentary deposit thickness estimates in the Pelletier dataset.
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Figure 9. Selection of hydrologic signatures, derived from time series of daily data provided by USGS and WSC.
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that including these bounds as part of data distributions be-
comes standard practice.

4.1.2 Sub-daily flow data derivations

Process-based models can be useful for long-term water as-
sessments, provided that they are parameterized well and that
the theoretical underpinnings of the model are valid (e.g.
Kirchner, 2006; Clark et al., 2016). In the case of process-
based models, assessing a model’s physical realism requires
observations at a sub-daily resolution. In CAMELS-SPAT,
we therefore construct hourly streamflow series from time
series of instantaneous streamflow observations that are pub-
licly available. However, the phrase “streamflow observa-
tions” (although common) is somewhat misleading: in al-
most all cases, the observations are of water levels, and
streamflow values are estimated for a given water level with
rating curves. Especially at high observation frequencies,
these water levels may be subject to random fluctuations un-
related to streamflow magnitude (e.g. due to wind or small
eddies), which will translate into streamflow estimates af-
fected by this noise. A cleaner approach would be to find the
average hourly water level and estimate the average hourly
flow from this through the station’s rating curve. Develop-
ment and maintenance of rating curves is complex, however,
and rating curves tend to change through time (see for ex-
ample the description of WSC’s procedures in Gharari et al.,
2024). Computing robust sub-daily streamflow estimates will
be easier at the institutional level (not least because it re-
quires access to the rating curves), and we express the hope
that this may become standard practice.

4.2 Guidelines for practical use

Here, we outline various considerations that may be useful to
readers. Our goal with these is to set expectations for dataset
use and to highlight potential pitfalls that may not be imme-
diately obvious.

4.2.1 Summary sheets of basin conditions

Following Delaigue et al. (2024), we created summary sheets
of the conditions in each basin. These summaries are in-
tended to aid quick assessments of each basin and cover
the following elements: (1) identifier, location and long-
term statistics (i.e. mean precipitation, streamflow, temper-
ature, potential evapotranspiration, aridity and runoff ratio);
(2) various graphics showing more detailed statistics (e.g.
year-to-year variability in streamflow, mean monthly tem-
perature ranges and elevation distribution); and (3) various
maps showing the spatial variability of various key attributes
(i.e. elevation, land cover, agriculture presence, forest height,
soil class and soil depth). An example can be found in the
Supplement, Sect. S5. The full collection of summary sheets
is available on the data repository. Section S5 also contains
an example that highlights the need to apply a basin mask
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when working with the GeoTIFF maps provided as part of
the CAMELS-SPAT data: in certain cases, pixel values out-
side the basin boundaries will contain values that are within
the valid data range (for example, forest height values out-
side the basin are set to 0 m). Applying a basin mask ensures
that only values within the basin boundaries are used in any
analysis that relies on the GeoTIFF files.

4.2.2 Selection of time periods

Our aim with CAMELS-SPAT is to facilitate a wide range
of studies, and we have therefore provided as much data for
each gauge as seemed feasible. In particular, this meant that
we only excluded station observations before 1950, because
none of the forcing datasets covers this period, and we also
accepted the fact that not all forcing products are available
for the full period for a given gauge. For different purposes, it
will thus be necessary to subset the data we provide to shorter
time periods. Table 4 provides an overview of the time peri-
ods covered by the various data products that may assist in
selecting appropriate periods for specific studies.

4.2.3 Utilization of streamflow data quality flags

We retained streamflow observation quality flags provided by
the USGS and WSC during processing and stored these in
the same NetCDF files as the streamflow observations them-
selves. These flags indicate conditions affecting the stream-
flow measurement, such as the presence of river ice, back-
water effects, water levels below sensor level or equipment
malfunction. These conditions suggest that streamflow data
at these time steps may be inaccurate (even if the discharge
data at such time steps are corrected by the data provider,
large uncertainties may remain; see Gharari et al., 2024), and
this may affect analyses that use these data. For example, it
is known that differences between observed and simulated
streamflow at individual time steps may have disproportion-
ate effects on aggregated efficiency scores that are used in
modelling (e.g. Newman et al., 2015; Clark et al., 2021), and,
if one tries to match incorrect “observations”, this may nega-
tively impact the quality of the resulting model configuration.
Excluding streamflow observations from efficiency score cal-
culations based on data quality flags is a possible way to limit
the impacts of potentially erroneous streamflow values.

4.2.4 Spatial validity of meteorological forcing data

CAMELS-SPAT contains meteorological data from four dif-
ferent datasets at their original gridded resolution, as well as
averaged at the basin and sub-basin level. During this aver-
aging process, we assumed that values provided at specific
coordinates are valid for a grid cell around this point. This
is a simplistic approach, but it is somewhat difficult to jus-
tify more elaborate assumptions (such as some form of in-
terpolation), because in reality the change of meteorological
variables in space would be dependent on local topography
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Table 4. Time periods covered by the different datasets included in CAMELS-SPAT. Geospatial data not listed are static products that have

no time dimension.

Streamflow data  Resolution  Start (min)  End (max) Notes

USGS Hourly 7 Dec 1956 3 Jan 2023 Varies per gauge, see Figs. 3 and Al
USGS Daily 1Jan 1950 2 Jan 2023 Varies per gauge, see Figs. 3 and Al
WSC Hourly 1Jun2021 2 Jan 2023 Varies per gauge, see Figs. 3 and Al
WSC Daily 1Jan 1950 31 Dec 2022  Varies per gauge, see Figs. 3 and Al
Forcing data Resolution  Start End

RDRS Hourly 1Jan 1980 31 Dec 2018

Daymet Daily 1Jan 1980 31 Dec 2023

ERAS Hourly 1 Jan 1950 3 Jan 2023

EM-Earth Hourly 1Jan 1950 31 Dec 2019

Geospatial data ~ Resolution  Start End

MODIS LAI 8-daily 4 Jul 2002 8 Oct 2023

Forest height 20-yearly 1Jan 2000 1 Jan 2020

at scales smaller than the typical forcing data grid cell. In-
terpolation methods may yield more realistic sub-basin and
basin-averaged values, but it is beyond the scope of this paper
to investigate these.

4.2.5 Combing soil depth and soil property estimates

CAMELS-SPAT contains both estimates of soil depth (de-
rived from the Pelletier dataset; Pelletier et al., 2016a, b) and
soil properties (derived from the SoilGrids 2.0 dataset; Pog-
gio et al., 2021). Because the SoilGrids data assume a uni-
form depth of 2.0 m everywhere, soil properties will thus be
unknown for actual soil depths greater than 2 m or incorrectly
provided for actual soil depths less than 2 m. For estimated
depths below 2 m, an appropriate approach may be to only
use the SoilGrids layers that correspond to the estimated soil
depth. For estimated soil depths greater than 2 m, recommen-
dations are more difficult to provide. Appropriate approaches
may be the derivation of pedotransfer functions or reliance on
simple assumptions that extend the available layer informa-
tion to deeper depths.

4.2.6 Modelling the Prairie Pothole Region

Model performance across the US is known to change re-
gionally, where model performance is at its worst in the
drier central regions (e.g. Newman et al., 2015; Towler et al.,
2023). In CAMELS-SPAT, we compound this problem by
including basins from the so-called Prairie Pothole Region.
This area covers parts of southern Alberta, Saskatchewan,
Manitoba, North Dakota, South Dakota, Minnesota and Iowa
and is colloquially known as the “graveyard of hydrologi-
cal models” (e.g. Muhammad et al., 2019; Budhathoki et al.,
2020; Ahmed et al., 2023). The landscape in the Prairie Pot-
hole Region is relatively young on a geological time scale,
and large parts of it have not yet eroded into traditional
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river networks. Surface depressions are common and typi-
cally not connected to the stream network, except through
very slow groundwater drainage and the occasional fill-and-
spill event (Hayashi et al., 2016; Clark and Shook, 2022). In
the basins we provide as part of the CAMELS-SPAT data,
all sub-basins are connected to the stream network. How-
ever, surface depressions below the resolution of the MERIT
DEM are common and will affect hydrologic behaviour in
these (sub-)basins. We recommend that users account for
these potholes in their analyses and modelling efforts, possi-
bly through the use of stand-alone models or post-processing
tools (e.g. Clark and Shook, 2022), by adapting existing
models with an appropriate landscape module (e.g. Ahmed
et al., 2023), or by adjusting their expectations of model per-
formance accordingly.

4.2.7 Selection and extension of catchment attributes

We derived various catchment attributes for the basins in
CAMELS-SPAT for ease of use and comparison with exist-
ing datasets. However, the number of attributes included in
CAMELS-SPAT is rather high, and we encourage others to
make a careful selection of which attributes to use in their
own work. Attribute values can show considerable correla-
tions, and using a greater number of attributes will not neces-
sarily add an equal amount of new information. Higher num-
bers of attributes will, however, increase computation and
analysis times for applications such as regionalization, clus-
tering and data-driven modelling. A more fruitful approach
likely relies on defining hypotheses that can be tested with
catchment attributes and deliberately selecting the right at-
tributes for these tests. If our initial attribute calculations do
not offer the right choices, new attributes can easily be de-
rived from the data products included in CAMELS-SPAT. We
refer the reader to Tarasova et al. (2024) for a deeper discus-
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sion and recommendations on the use of catchment descrip-
tors. We particularly encourage investigations that evaluate
the usefulness of our provided attributes for catchment char-
acterization purposes, in line with those recommendations.

4.2.8 Potential evapotranspiration estimates

In order to facilitate a wide range of modelling studies,
CAMELS-SPAT contains a variety of estimates of poten-
tial evapotranspiration (PET). These can be used as inputs
to certain types of models and to calculate certain climatic
attributes such as a basin’s aridity. However, there are multi-
ple ways to estimate PET depending on data availability and
purpose (McMahon et al., 2013), and this results in a cer-
tain amount of uncertainty in these PET estimates and any
values derived from them. Here we provide a brief overview
of the various PET estimates available in CAMELS-SPAT,
along with a brief assessment that may help users to decide
which data to use. Table 5 summarizes this overview.

CAMELS-SPAT contains time series of PET (variable
name mper) that are provided as an extra output of the ERAS
modelling chain (although note that this variable is not used
directly in the production of ERAS5 or the generation of
forecasts). However, these values are known to be locally
deficient in regions without low vegetation (see https:
/lconfluence.ecmwf.int/display/CKB/ERAS5%3A+data+
documentation#ER A5:datadocumentation- Knownissues,
last access: 9 May 2025, Sect. “Known Issues”, bullet
point 15). This is also reported by Clerc-Schwarzenbach
et al. (2024), who point out that PET data obtained from
ERAS5-Land must be treated carefully and may include
unrealistic values. Section S4 in the Supplement contains a
preliminary analysis that identifies where these issues are
present in the mper data included in CAMELS-SPAT. We
have kept the ERAS PET estimates as a reference for users
who wish to investigate this further but urge caution about
their use.

CAMELS-SPAT also contains time series of PET es-
timates obtained with the Penman—-Monteith method and
hourly RDRS data, as well as time series of PET estimates
obtained with the Priestley—Taylor method and daily Daymet
data. Finally, we included spatial PET estimates using the
temperature-based method in Oudin et al. (2005), applied to
monthly averaged WorldClim data. Equations for all three
approaches can be found in Sect. S2.5 in the Supplement.
We compared these to the PET estimates from Singer et al.
(2021) and their overview of mean annual PET estimates
from various products in their Fig. 1 and Table 2. Prelim-
inary analysis (see Sect. S4 in the Supplement) suggests
that our PET estimates from RDRS, Daymet and World-
Clim all exhibit similar spatial patterns to the five datasets
shown in Singer et al. (2021). Visual comparison also sug-
gests that there is some spread in the magnitude of our esti-
mates. Monthly estimates based on WorldClim data are low
compared to the other methods and data sources and compa-
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rable to those in GLEAM. Daily estimates based on Daymet
data are close to the middle of the range of estimates. Hourly
estimates based RDRS data are within the ranges of estimates
provided by the other methods and datasets, although some-
what high compared to most other products.

Due to the lack of uniformity in PET definitions and cal-
culation methods (e.g. McMahon et al., 2013), it is difficult
to say which estimates are the most accurate. For time series,
any expected systematic biases could be corrected before us-
ing the time series as a model input. Derived statistics with
clear physical interpretations, such as aridity, are more dif-
ficult. A basin may be classified as either water limited or
energy limited solely as a consequence of the data and PET
estimation method used, and this may hinder classification
and interpretation efforts. Possible ways around this may in-
volve the use of multiple estimates of PET-related attributes.
We thus recommend caution when selecting and interpreting
any PET estimates for further use.

4.3 Potential improvements

CAMELS-SPAT represents a substantial data-processing ef-
fort, but further enhancements are possible. We briefly list
these here. First, approximately 15 % of our basin outlines
have been assigned confidence ratings of medium or low. Fu-
ture efforts can focus on refining these outlines through fur-
ther manual intervention, higher resolution DEMs or both.
Second, we necessarily needed to limit the extent of our ge-
ographical domain, and this means that there is a limit to the
different types of landscapes our dataset covers. However,
apart from Daymet and RDRS, all datasets used here have
global coverage. Combination with local streamflow obser-
vations, and possibly high-quality local datasets, should al-
low for an extension of the dataset to other regions. The code
available on our GitHub repository could provide a starting
point for such efforts. Third, extending the dataset to include
observations or estimates of variables of interest other than
streamflow would help with multi-variate analysis and model
evaluation. Examples include satellite observations of snow
cover or estimates of evaporation fluxes or water storage in
the soil.

4.4 Dataset structure and size

For convenience, we divided the collection of 1426
CAMELS-SPAT gauges into various subsets. At the high-
est level, we structured the dataset with different folders
for attributes, forcing data, geospatial data, observations and
shapefiles. At the next level, we divided the dataset into
three categories of headwater and meso-scale and macro-
scale basins. Headwater basins are defined as catchments
with only a single sub-basin in our delineation (note that
for these basins, the lumped and distributed cases are iden-
tical). Meso-scale basins are basins that are not headwaters
and below a total area of 10° kmz, and macro-scale basins are
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Table 5. Overview of PET estimates in CAMELS-SPAT, how they are used in CAMELS-SPAT and a summary of how these values compare
to each other as well as the estimates from five other PET estimates listed in Singer et al. (2021).

Source data  Temporal resolution ~ PET estimation method

Used for Assessment

ERAS Hourly Energy balance assuming - Likely incorrect in locations with no or
well-watered mixed crops™ high vegetation
RDRS Hourly Penman—Monteith Climate attributes  Plausible patterns; values somewhat
high compared to most estimates
Daymet Daily Priestley—Taylor - Plausible patterns; values close to the
middle of all estimates
WorldClim  Monthly Eq. (3) in Oudin et al. (2005) Climate attributes  Plausible patterns; values on the lower

end of all estimates

* PET variable mper is derived from variable pev. For more details about the calculation of pev, see https://codes.ecmwf.int/grib/param-db/228251 (last access: 9 May 2025).

those with areas between 107 and 10* km?. Headwater basins
account for 304 out of 1426 total (mean area of approxi-
mately 60 km?), 727 basins fall into our meso-scale category
(mean area ~ 400 km?, with on average nine sub-basins) and
the remaining 446 basins are macro-scale basins (mean area
~ 3000 kmz, on average 66 sub-basins). From here we di-
vided the dataset into further subfolders when convenient.

The total size of the CAMELS-SPAT data is approxi-
mately 5.5 TB. Almost all of this is forcing data (5.4 TB) and
specifically the gridded variants of the forcing data (4.3 TB).
Basin-averaged data (summed for all four forcing datasets)
sum up to 85 GB, while distributed forcing data (i.e. aver-
aged at the sub-basin level) sum up to not quite 1.2TB. A
full overview of the size of various components of the dataset
can be found on the data repository. This overview, combined
with the overall folder structure, should allow users to fine-
tune their downloads easily. Further instructions to include
or exclude components from the download can be found on
the data repository.

5 Conclusions

This paper describes the development of the CAMELS-SPAT
dataset. Our goal is to enable a wide range of hydrologic
studies, with a particular focus on hydrologic modelling, by
performing a wide range of data-processing steps and sharing
both the code and outcomes of these. We extend the original
CAMELS data (Newman et al., 2015; Addor et al., 2017a)
in five ways to achieve this goal. First, we extend the geo-
graphical domain of the dataset beyond the contiguous US by
including Canadian basins. Second, we provide meteorolog-
ical data specifically aimed at spatially distributed physics-
based hydrologic models, in addition to the inputs needed to
run lumped conceptual models. Third, we provide stream-
flow data at both daily and hourly time steps for each basin.
Fourth, we provide maps of multiple geospatial datasets for
each basin, rather than only a selection of summary statistics
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derived from these maps. Fifth, we provide a variety of catch-
ment attributes intended to describe the spatial and temporal
range of our attributes, in addition to the more commonly
provided mean attribute values.

CAMELS-SPAT thus consists of meteorological data,
streamflow observations and geospatial data for 1426 basins
across the US and Canada. The meteorological data include a
number of variables typically associated with process-based
models, as well as potential evapotranspiration estimates that
can be used with the more conceptual model types, at hourly
time steps (daily for the Daymet data). These forcing data are
provided in a gridded format at their original resolution, as
well as spatially averaged at the sub-basin and basin level.
Streamflow observations are provided at daily time steps
and complemented with hourly observations when these are
available. Geospatial data, covering vegetation, land use, to-
pography, soil and geology, are provided as georeferenced
maps for each basin from which model inputs or summary
statistics that go beyond our provided attributes can easily be
derived. Finally, the information for each gauge (streamflow,
meteorological, geospatial data) is summarized in an exten-
sive number of catchment attributes, at both the basin and
sub-basin level.

In developing CAMELS-SPAT, we focused on providing
the necessary data for a wide variety of studies. We envision
the data being helpful for studies aimed at improving our un-
derstanding of hydrologic processes and our ability to model
those processes. By removing the need for a considerable
amount of cumbersome data processing, we hope CAMELS-
SPAT can support a wide range of hydrologic investigations
at a fraction of the effort otherwise needed.

The dataset can be accessed through the Fed-
erated Research  Data  Repository (FRDR) at
https://doi.org/10.20383/103.01306 (Knoben et al., 2025).
When using CAMELS-SPAT, please note the attribution and
licence requirements for dataset components outlined in the
“Code and data availability” section.

Hydrol. Earth Syst. Sci., 29, 5791-5833, 2025


https://codes.ecmwf.int/grib/param-db/228251
https://doi.org/10.20383/103.01306

5816

Appendix A: Streamflow data availability

Figure A1 shows streamflow data availability at a more gran-
ular level than the aggregated data in Fig. 3.
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Figure Al. Flow data availability for gauges included in CAMELS-SPAT. The period on the lower x axis refers to the period between the
first publicly available flow record for a given station and its last, with this record period given in blue for each gauge. Missing values occur
in this record period and are given here in red as a fraction of the total record length on the top x axis.
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Table A1. Climate attributes: annual statistics.
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Attribute Description Units Data source
num_years_rdrs Number of years of RDRS data used to calculate attributes years RDRS
PRO_mean Mean annual average precipitation total mm yr_1 RDRS?
PRO_std Standard deviation of annual average precipitation total mmyr~!  RDRS?
prec_mean Mean annual average precipitation total mm yrf1 WorldClim
prec_std Standard deviation of annual average precipitation total mm yr_1 WorldClim
petl_mean Mean annual average potential evapotranspiration (PET) total mm yr_1 RDRS?
petl_std Standard deviation of annual average PET total mmyr I RDRs?
pet2_mean Mean annual average potential evapotranspiration (PET) total mm yr_1 WorldClimP
pet2_std Standard deviation of annual average PET total mm yr_1 WorldClimP
TT_mean Mean of annual mean daily average temperature °C RDRS?
TT_std Standard deviation of annual mean daily average temperature °C RDRS?
tavg_mean Mean annual average temperature °C WorldClim
tavg_std Spatial standard deviation of annual average temperature °C WorldClim
aridityl_mean Mean annual aridity (PET/P) - RDRS
aridity1_std Standard deviation of annual aridity (PET/P) - RDRS
aridity2_mean Mean annual aridity (PET/P) - WorldClim
aridity2_std Standard deviation of annual aridity (PET/P) - WorldClim
seasonalityl_mean Mean precipitation seasonality compared to temperature seasonalityd - RDRS
seasonality1_std Standard deviation of precipitation seasonality compared to temperature seasonalityd - RDRS
seasonality2_mean  Mean precipitation seasonality compared to temperature seasonality® - WorldClim
seasonality2_std Standard deviation of precipitation seasonality compared to temperature seasonality®  — WorldClim
fracsnow1_mean Mean annual snow fraction (0 °C degree threshold) - RDRS
fracsnow1_std Standard deviation of annual snow fraction (0 °C degree threshold) - RDRS
fracsnow2_mean Mean annual snow fraction (0 °C degree threshold) - WorldClim
fracsnow?2_std Standard deviation of annual snow fraction (0 °C degree threshold) - WorldClim

4 For consistency, we converted the RDRS units into those used in WorldClim. b Computed using WorldClim’s srad and ravg variables and Eq. (3) in Oudin et al. (2005). ¢ For
consistency, we converted the WorldClim units into those used in RDRS. d Calculated using Eq. (14) in Woods (2009) for daily data from individual years, then finding the mean

and standard deviation across years. ¢ Calculated using Eq. (14) in Woods (2009) using monthly data, i.e. a much coarser temporal resolution than RDRS.
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Table A2. Climate attributes — continued: frequency, duration and timing of high and low precipitation and of high and low temperature
periods.

Attribute Description Units Data source
low_temp_freq Frequency of cold days (< 0°C) d yrfl RDRS
low_temp_dur_mean Mean duration of cold days (< 0°C) days RDRS
low_temp_dur_median Median duration of cold days (< 0°C) days RDRS
low_temp_dur_skew Skew of cold day durations (< 0 °C) - RDRS
low_temp_dur_kurtosis ~ Kurtosis of cold day durations (< 0 °C) - RDRS
low_temp_timing Season during which most cold days occur (< 0 °C) season RDRS
high_temp_freq Frequency of hot days (> mean daily max +5 °C)? dyr_1 RDRS
high_temp_dur_mean Mean duration of hot days (> mean daily max +5 °C) days RDRS
high_temp_dur_median =~ Median duration of hot days (> mean daily max +5 °C) days RDRS
high_temp_dur_skew Skew of hot day durations (> mean daily max +5 °C) - RDRS
high_temp_dur_kurtosis  Kurtosis of hot day durations (> mean daily max +5 °C) - RDRS
high_temp_timing Season during which most hot days occur (> mean daily max +5 °C) season RDRS
low_prec_freq Frequency of dryb days (< 1 mmd—1) dyr~!  RDRS
low_prec_dur_mean Mean duration of dry days (< 1 mm d—1 days RDRS
low_prec_dur_median Median duration of dry days (< 1 mm d—h days RDRS
low_prec_dur_skew Skew of dry day durations(< 1 mm d—1h - RDRS
low_prec_dur_kurtosis Kaurtosis of dry day durations (< 1 mm a1 - RDRS
low_prec_timing Season during which most dry days occur (< 1 mm d-h season RDRS
high_prec_freq Frequency of wet? days (> 5 times mean daily precipitation) d yr_1 RDRS
high_prec_dur_mean Mean duration of wet days (> 5 times mean daily precipitation) days RDRS
high_prec_dur_median Median duration of wet days (> 5 times mean daily precipitation) days RDRS
high_prec_dur_skew Skew of wet day durations (> 5 times mean daily precipitation) - RDRS
high_prec_dur_kurtosis  Kurtosis of wet day durations (> 5 times mean daily precipitation) - RDRS
high_prec_timing Season during which most wet days occur (> 5 times mean daily precipitation) season RDRS

4 Derived from the World Meteorological Organization’s definition of heat waves: a 5 d or longer period with maximum daily temperatures 5 °C above the “standard” daily
maximum temperature. “Standard” is defined as the mean daily max on each day, using the period 1961-1990 as a base. Here we define a hot day as a day where the maximum
temperature is at least 5 °C over the long-term daily maximum temperature. We do not have data for the period 1961-1990 for all basins and therefore use all data available
for a given basin to find the long-term daily maximum temperatures. b For consistency, we use the same definitions of dry and wet days as used in Addor et al. (2017a).
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Table A3. Climate attributes — continued: spatial and temporal variability in climatic conditions. Attributes ending in _{X} are calculated
per month, with X ranging from 0] to /2. Statistics derived from RDRS are calculated over time; statistics derived from WorldClim are
calculated across space.

Attribute Description Units Data source
PRO_mean_month_{X} Mean monthly average precipitation total mmmonth~!  RDRS?
PRO_std_month_{X} Standard deviation of monthly average precipitation total mmmonth~!  RDRS?
prec_mean_month_{X} Mean monthly average precipitation total mmmonth™!  WorldClim
prec_std_month_{X} Standard deviation of monthly average precipitation total mmmonth~!  WorldClim
petl_mean_month_{X} Mean monthly average potential evapotranspiration (PET) total mmmonth~!  RDRS?
petl_std_time_month_{X} Standard deviation of monthly average PET total mmmonth~!  RDRS?
pet2_mean_month_{X} Mean monthly average PET total mmmonth™!  WorldClimP
pet2_std_month_{X} Standard deviation of monthly average PET total mmmonth~!  WorldClim®
tdavg_mean_month_{X} Mean of monthly mean daily average temperature °C RDRS?
tdavg_std_month_{X} Standard deviation of monthly mean daily average temperature °C RDRS?
tavg_mean_month_{X} Mean monthly average temperature °C WorldClim
tavg_std_month_{X} Spatial standard deviation of monthly average temperature °C WorldClim
tdmin_mean_month_{X} Mean of monthly mean daily minimum temperature °C RDRS?
tdmin_std_time_month_{X}  Standard deviation of monthly mean daily minimum temperature =~ °C RDRS?
tmin_mean_month_{X} Mean monthly minimum temperature °C WorldClim
tmin_std_month_{X} Standard deviation of monthly minimum temperature °C WorldClim
tdmax_mean_month_{X} Mean of monthly mean daily maximum temperature °C RDRS?
tdmax_std_month_{X} Standard deviation of monthly mean daily maximum temperature  °C RDRS?
tmax_mean_month_{X} Mean monthly maximum temperature °C WorldClim
tmax_std_month_{X} Standard deviation of monthly maximum temperature °C WorldClim
FB_mean_month_{X} Mean monthly downward shortwave radiation Wm2 RDRS
FB_std_month_{X} Standard deviation of monthly downward shortwave radiation Wm2 RDRS
srad_mean_month_{X} Mean monthly downward shortwave radiation Wm?2 WorldClim®©
srad_std_month_{X} Standard deviation of monthly downward shortwave radiation Wm—2 WorldClim®

2 For consistency, we converted the RDRS units into those used in WorldClim. b Computed using WorldClim’s srad and tavg variables and Eq. (3) in Oudin et al. (2005).
¢ For consistency, we converted the WorldClim units into those used in RDRS.
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Table A4. Climate attributes — continued: spatial and temporal variability in climatic conditions. Attributes ending in _{X} are calculated
per month, with X ranging from 0/ to /2. Statistics derived from ERAS are calculated over time; statistics derived from WorldClim are

calculated across space.

Attribute Description Units Data source
FI_mean_month_{X} Mean monthly downward longwave radiation Wm—2 RDRS
FI_std_month_{X} Standard deviation of monthly downward longwave radiation Wm?2 RDRS
PO_mean_month_{X} Mean monthly surface pressure kPa RDRS*
PO_std_month_{X} Standard deviation of monthly surface pressure kPa RDRS*
vapr_mean_month_{X} Mean monthly vapour pressure kPa WorldClim
vapr_std_month_{X} Standard deviation of monthly vapour pressure kPa WorldClim
HU_mean_month_{X} Mean monthly specific humidity kg kgf1 RDRS
HU_std_month_{X} Standard deviation of monthly specific humidity kg kg_1 RDRS
HR_mean_month_{X} Mean monthly relative humidity kPakPa—! RDRS
HR_std_month_{X} Standard deviation of monthly relative humidity kPakPa~! RDRS
UVC_mean_month_{X} Mean monthly wind speed ms~! RDRS
UVC_std_month_{X} Standard deviation of monthly wind speed ms ! RDRS
wind_mean_month_{X} Mean monthly wind speed ms~! WorldClim
wind_std_month_{X} Standard deviation of monthly wind speed ms™! WorldClim
phi_mean_month_{X} Circular mean monthly wind direction ° RDRS
phi_std_month_{X} Circular standard deviation of monthly wind direction ° RDRS
aridityl_mean_month_{X} Mean monthly aridity (PET/P) - RDRS
aridity1_std_month_{X} Standard deviation of monthly aridity - RDRS
aridity2_mean_month_{X} Mean monthly aridity (PET/P) - WorldClim
aridity2_std_month_{X} Standard deviation of monthly aridity - WorldClim
fracsnow1_mean_month_{X} Mean monthly snow fraction (°C degree threshold) - RDRS
fracsnow1_std_month_{X} Standard deviation of monthly snow fraction — RDRS
fracsnow2_mean_month_{X} Mean monthly snow fraction (°C degree threshold) - WorldClim
fracsnow?2_std_month_{X} Standard deviation of monthly snow fraction - WorldClim

* For consistency, we converted the RDRS units into those used in WorldClim.
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Table AS. Topographic attributes.

Attribute Description Units Data source
centroid_lat Basin centroid latitude degrees Varies

centroid_lon Basin centroid longitude degrees Varies

gauge_lat Station latitude degrees Varies

gauge_lon Station longitude degrees Varies

basin_area Basin area km? MERIT Hydro
elev_min Minimum elevation ma.s.l. MERIT Hydro
elev_mean Mean elevation ma.s.l. MERIT Hydro
elev_max Maximum elevation ma.s.l. MERIT Hydro
elev_std Standard deviation of elevation ma.s.l. MERIT Hydro
slope_min Minimum slope degrees*  MERIT Hydro
slope_mean Mean slope degrees ~ MERIT Hydro
slope_max Maximum slope degrees MERIT Hydro
slope_std Standard deviation of slope degrees MERIT Hydro
aspect_min Minimum aspect degreesb MERIT Hydro
aspect_mean Mean aspect degrees MERIT Hydro
aspect_max Maximum aspect degrees MERIT Hydro
aspect_std Standard deviation of aspect degrees MERIT Hydro
stream_length_min Minimum length from headwater to gauge km MERIT Hydro Basins
stream_length_mean  Mean length from headwaters to gauge km MERIT Hydro Basins
stream_length_max  Maximum length from headwater to gauge km MERIT Hydro Basins
stream_length_std Standard deviation of length from headwaters to gauge km MERIT Hydro Basins
stream_length_total Total stream length km MERIT Hydro Basins
stream_order_max Stream order at gauge - MERIT Hydro Basins
stream_density Ratio of total stream length and area km~! Derived
elongation_ratio Ratio of diameter of circle with same size as basin and longest stream  — Derived

 Slope angle. b Azimuth that slopes are facing, with 0° indicating north-facing slopes, 90° east-facing, 180° south-facing and 270° west-facing.
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Table A6. Open water attributes. For basins with no identified open water bodies or reservoirs, these attributes will be 0 and NaN.

W. J. M. Knoben et al.: CAMELS-SPAT dataset

Attribute Description Units  Data source

open_water_number Number of open water bodies larger than 10ha  — HydroLAKES
known_reservoirs Number of water bodies identified as reservoirs — HydroLAKES
open_water_area_min Minimum open water area km? HydroLAKES
open_water_area_mean Mean open water area km? HydroLAKES
open_water_area_max Maximum open water area km? HydroLAKES
open_water_area_std Standard deviation of open water area km? HydroLAKES
open_water_area_total Total open water area km? HydroLAKES
open_water_volume_min Minimum open water volume km? HydroLAKES
open_water_volume_mean Mean open water volume km? HydroLAKES
open_water_volume_max  Maximum open water volume km? HydroLAKES
open_water_volume_std Standard deviation of open water volume km? HydroLAKES
open_water_volume_total ~ Total open water volume km? HydroLAKES
reservoir_area_min Minimum reservoir area km? HydroLAKES
reservoir_area_mean Mean reservoir area km? HydroLAKES
reservoir_area_max Maximum reservoir area km? HydroLAKES
reservoir_area_std Standard deviation of reservoir area km? HydroLAKES
reservoir_area_total Total reservoir area km? HydroLAKES
reservoir_volume_min Minimum reservoir volume km?2 HydroLAKES
reservoir_volume_mean Mean reservoir volume km? HydroLAKES
reservoir_volume_max Maximum reservoir volume km? HydroLAKES
reservoir_volume_std Standard deviation of reservoir volume km? HydroLAKES
reservoir_volume_total Total reservoir volume km? HydroLAKES

Table A7. Vegetation and land cover attributes. Attributes ending in _{X/ are calculated per month, with X ranging from 01 to 12. Attributes
ending in _{Y/ are calculated for specific years. Attributes ending in _{Z} are categorical attributes, where Z varies between different datasets.

Attribute Description Units Data source
lai_mean_month_{X} Mean monthly leaf area index m?m~2  MCDI5A2H.061
lai_std_month_{X} Standard deviation of monthly leaf area index m?m~2  MCDI5A2H.061
forest_height_{Y}_min Minimum forest height in year 2000/2020 m GLCLUC 2000-2020
forest_height_{Y}_mean Mean forest height in year 2000/2020 m GLCLUC 2000-2020
forest_height_{Y}_max  Maximum forest height in year 2000/2020 m GLCLUC 2000-2020
forest_height_{Y}_std Standard deviation of forest height in year 2000/2020 m GLCLUC 2000-2020
Ic1_{Z}_fraction Fraction of land cover class present in the basin - GLCLU 2019
1c2_{Z} _fraction Fraction of land cover class present in the basin - MCD12Q1.061
Ic3_{Z}_fraction Fraction of land cover class present in the basin - LGRIP30
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Table A8. Subsurface attributes.
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Attribute Description Units  Data source
regolith_thickness_min Minimum upland and hillslope regolith thickness m Pelletier?
regolith_thickness_mean Mean upland and hillslope regolith thickness m Pelletier
regolith_thickness_max Maximum upland and hillslope regolith thickness m Pelletier
regolith_thickness_std Standard deviation of upland and hillslope regolith thickness m Pelletier
soil_thickness_min Minimum upland and hillslope soil thickness m Pelletier
soil_thickness_mean Mean upland and hillslope soil thickness m Pelletier
soil_thickness_max Maximum upland and hillslope soil thickness m Pelletier
soil_thickness_std Standard deviation of upland and soil regolith thickness m Pelletier
sedimentary_thickness_min Minimum upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
sedimentary_thickness_mean  Mean upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
sedimentary_thickness_max  Maximum upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
sedimentary_thickness_std Standard deviation of upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
average_thickness_min Minimum average soil and sedimentary deposit thicknesses m Pelletier
average_thickness_mean Mean average soil and sedimentary deposit thicknesses m Pelletier
average_thickness_max Maximum average soil and sedimentary deposit thicknesses m Pelletier
average_thickness_std Standard deviation of average soil and sedimentary deposit thicknesses m Pelletier
porosity_min Minimum porosity - GLHYMPS
porosity_mean Mean porosity - GLHYMPS
porosity_max Maximum porosity - GLHYMPS
porosity_std Standard deviation of porosity - GLHYMPS
log_permeability_min Minimum permeabilityb m? GLHYMPS
log_permeability_mean Mean permeability m? GLHYMPS
log_permeability_max Maximum permeability m? GLHYMPS
log_permeability_std Standard deviation of permeability m? GLHYMPS

2 For definitions and user notes, see https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html (last access: 6 March 2024). b Note that permeability k in the GLHYMPS
database is given as log 10(k), due to the many decimal places otherwise needed.
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Table A9. Subsurface attributes — continued: properties derived from the SoilGrids data. Attributes are provided at six depths {D}: 0-5, 5-15,
15-30, 30-60, 60—100 and 100-200 cm and for the SoilGrids mean (abbreviated in the table as {M}) and uncertainty ({U} in the table) data
fields. The mean values may be seen as expected values for a given grid cell, while the uncertainty is defined as the 90 % prediction interval

divided by the median value for the cell?.

Attribute Description Units Data source
bdod_{M/U}_{D}_min Minimum bulk density of fine earth cg cem™3 SoilGrids
bdod_{M/U}_{D}_mean Mean bulk density of fine earth cg cm™3 SoilGrids
bdod_{M/U}_{D}_max Maximum bulk density of fine earth cg cm™3 SoilGrids
bdod_{M/U}_{D}_std Standard deviation of bulk density of fine earth cg cm™3 SoilGrids
cfvo_{M/U}_{D}_min Minimum volumetric content of fragments > 2 mm em3dm=3  SoilGrids
ctvo_{M/U}_{D}_mean Mean volumetric content of fragments > 2 mm em3dm™3  SoilGrids
cfvo_{M/U}_{D}_max Maximum volumetric content of fragments > 2 mm ecm3dm™3  SoilGrids
cfvo_{M/U}_{D}_std Standard deviation of volumetric content of fragments > 2 mm em3dm—3  SoilGrids
clay_{M/U}_{D}_min Minimum clay fraction gkg 1 SoilGrids
clay_{M/U}_{D}_mean Mean clay fraction gkg_1 SoilGrids
clay_{M/U}_{D}_max Maximum clay fraction gkg_l SoilGrids
clay_{M/U}_{D}_std Standard deviation of clay fraction gkg 1 SoilGrids
sand_{M/U}_{D}_min Minimum sand fraction g kg71 SoilGrids
sand_{M/U}_{D}_mean Mean sand fraction gkg_l SoilGrids
sand_{M/U}_{D}_max Maximum sand fraction gkg 1 SoilGrids
sand_{M/U}_{D}_std Standard deviation of sand fraction gkg 1 SoilGrids
silt_{M/U}_{D}_min Minimum silt fraction g kg_] SoilGrids
silt_{M/U}_{D}_mean Mean silt fraction gkg 1 SoilGrids
silt_{M/U}_{D}_max Maximum silt fraction gkg 1 SoilGrids
silt_{M/U}_{D}_std Standard deviation of silt fraction gkg_1 SoilGrids
soc_{M/U}_{D}_min Minimum organic carbon content dg kg_1 SoilGrids
soc_{M/U}_{D}_mean Mean organic carbon content dg kg_1 SoilGrids
soc_{M/U}_{D}_max Maximum organic carbon content dg kgfl SoilGrids
soc_{M/U}_{D}_std Standard deviation of organic carbon content dg kg_1 SoilGrids
porosity_{M}_{D}_min Minimum soil porosity - SoilGrids
porosity_{M}_{D}_mean Mean soil porosity - SoilGrids
porosity_{M}_{D}_max Maximum soil porosity - SoilGrids
porosity_{M}_{D}_std Standard deviation of soil porosity - SoilGrids
conductivity_{M}_{D}_min Minimum soil conductivity cmh™! SoilGrids
conductivity_{M}_{D}_mean Harmonic mean of soil conductivityb cmh™! SoilGrids
conductivity_{M}_{D}_max Maximum soil conductivity cmh™! SoilGrids
conductivity_{M}_{D}_std Standard deviation of soil conductivityb’C cmh™! SoilGrids

a See https://www.isric.org/explore/soilgrids/fag-soilgrids (last access: 7 March 2024). b Following Addor et al. (2017a). © Note that no harmonic equivalent of a
standard deviation exists, and this is a regular standard deviation.
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Table A10. Hydrologic signatures. Note that streamflow observations have been converted from m3s~! to mmd~! using the basin areas of

our newly delineated basin outlines. Please note the uncertainty in these area estimates (Fig. 2). For each signature, we calculated a sequence
of yearly values and then found the mean and standard deviation across all years for which data were available.

Attribute Description Units Data source
num_years_hyd Years of daily data used to calculate signatures years -
daily_discharge_mean Mean daily discharge mmd~! USGS/WSC
daily_discharge_std Standard deviation of daily discharge mmd~! USGS/WSC
daily_discharge_mean_month_{X} Mean daily discharge for month X mmd~! USGS/WSC
daily_discharge_std_month_{X} Standard deviation of average daily discharge in month X mmd~! USGS/WSC
runoff_ratio_mean Ratio of mean daily discharge to mean daily precipitation - USGS/WSC, RDRS
runoff_ratio_std Ratio of mean daily discharge to mean daily precipitation - USGS/WSC, RDRS
streamflow_elasticity Streamflow sensitivity to changes in precipitation® - USGS/WSC, RDRS
slope_fdc_mean Slope of the log-transformed flow duration curve (33th to 66th  — USGS/WSC

percentile)®
slope_fdc_std Standard deviation of the log-transformed flow duration curve®  — USGS/WSC
bfi_mean Mean baseflow index (ratio of mean daily baseflow® to mean - USGS/WSC

daily discharge)
bfi_std Standard deviation of baseflow index - USGS/WSC
hfd_mean Circular mean half-flow date® day of year USGS/WSC
hfd_std Circular standard deviation of half-flow dates days USGS/WSC
q{Y}_meand Mean Y % flow quantile, where ql are low flows mmd~! USGS/WSC
q{Y}_stdd Standard deviation of Y % flow quantiles mmd~! USGS/WSC

@ Calculated as described in Eq. (7) of Sankarasubramanian et al. (2001), with the modification described in Table 3 in Addor et al. (2017a). b Calculated from time series of baseflow
derived using the Eckhardt (2005) digital filter method, as recommended and implemented by Xie et al. (2020). ¢ Calculated as the day when cumulative flow in a water year passes half
the total flow for that water year. dy is one of [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90. 0.95, 0.99]. € In cases with zero flows, 0.1 % of the mean flow is added to prevent issues with
calculating the logarithm. Time steps with missing flow observations are removed from the calculation.

Table A11. Hydrologic signatures — continued: frequency, duration and timing of high- and low-flow events.

Attribute Description Units Data source
no_flow_freq Frequency of no-flow days dyrf1 USGS/WSC
no_flow_dur_mean Mean duration of no-flow days days USGS/WSC
no_flow_dur_median Median duration of no-flow days days USGS/WSC
no_flow_dur_skew Skew of no-flow day durations - USGS/WSC
no_flow_dur_kurtosis Kurtosis of no-flow day durations - USGS/WSC
no_flow_timing Season during which most no-flow days occur season  USGS/WSC
low_flow_freq Frequency of low-flow days (< 0.2 times the mean daily flow)* dyr_1 USGS/WSC
low_flow_dur_mean Mean duration of low-flow days (< 0.2 times the mean daily flow) days USGS/WSC
low_flow_dur_median Median duration of low-flow days (< 0.2 times the mean daily flow) days USGS/WSC
low_flow_dur_skew Skew of low-flow day durations (< 0.2 times the mean daily flow) - USGS/WSC
low_flow_dur_kurtosis Kaurtosis of low-flow day durations (< 0.2 times the mean daily flow) - USGS/WSC
low_flow_timing Season during which most low-flow days occur (< 0.2 times the mean daily flow)  season = USGS/WSC
high_flow_freq Frequency of high-flow days (> 9 times the median daily flow)* d yr_1 USGS/WSC
high_flow_dur_mean Mean duration of high-flow days (> 9 times the median daily flow) days USGS/WSC
high_flow_dur_median =~ Median duration of high-flow days (> 9 times the median daily flow) days USGS/WSC
high_flow_dur_skew Skew of high-flow day durations (> 9 times the median daily flow) - USGS/WSC
high_flow_dur_kurtosis  Kurtosis of high-flow day durations (> 9 times the median daily flow) - USGS/WSC
high_flow_timing Season during which most high-flow days occur (> 9 times the median daily flow) season ~USGS/WSC

* For consistency, we use the same definitions of dry and wet days as used in Addor et al. (2017a).
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Code and data availability. The complete CAMELS-SPAT dataset
can be accessed through the Federated Research Data Reposi-
tory (FRDR) at https://doi.org/10.20383/103.01306 (Knoben et al.,
2025). Code needed to reproduce the CAMELS-SPAT data prepara-
tion is available on GitHub at https://github.com/ch-earth/camels_
spat (Knoben, 2025). Data sources used in the preparation of this
paper are listed below, separated into data used but not redistributed
and data that are redistributed. These data products are provided un-
der a variety of licences. Please see the individual licences for detail,
and note that attribution is in almost all cases mandatory. We have
provided a data_citation.bib file available on the CAMELS-SPAT
data repository and ask users to cite each separate dataset that we
redistribute in any publications that use CAMELS-SPAT. Elements
in CAMELS-SPAT not covered below (processing code, attributes)
are provided under a CC-BY-NC 4.0 licence.

Data (redistributed). Listed here are details of each of the
datasets used in the creation of the CAMELS-SPAT data and partly
reproduced in the CAMELS-SPAT data.

1. Meteorological data. Meteorological forcing fields were ob-
tained from the Daymet v4.1 dataset (Thornton et al.,
2021, 2022), which is openly shared, without restric-
tion, in accordance with the NASA Earth Science Data
and Information System (ESDIS) Project Data Use Policy.
For licence terms, see https://www.earthdata.nasa.gov/learn/
use-data/data-use-policy (last access: 24 May 2024).
Meteorological forcing fields were obtained from the
ERAS dataset (Hersbach et al., 2020, 2017, 2023) un-
der the Copernicus data licence. For licence terms,
see https://cds.climate.copernicus.eu/api/v2/terms/static/
licence-to-use-copernicus-products.pdf (last access: 18 De-
cember 2023; link since deprecated, see here for archived
version: https://object-store.os-api.cci2.ecmwf.int/cci2-prod-
catalogue/licences/). Redistributed ERAS data were generated
using Copernicus Climate Change Service information [2023]
in the case of the gridded forcing files. CAMELS-SPAT
also contains modified Copernicus Climate Change Service
information [2023] in the case of the (sub-)basin-averaged
forcing files. Neither the European Commission nor ECMWF
is responsible for any use that may be made of the Copernicus
information or data it contains.

Meteorological forcing fields were obtained from the
Deterministic EM-Earth dataset (Tang et al, 2022a;
Tang et al, 2022b) under a CC-BY 4.0 licence
(https://doi.org/10.20383/102.0547; Tang et al., 2022a).
Meteorological forcing fields were obtained from the RDRS
v2.1 dataset (Gasset et al., 2021, data source: Environment and
Climate Change Canada) under the Environment and Climate
Change Canada Data Server End-Use Licence version 2.1.
For licence terms, see https://eccc-msc.github.io/open-data/
licence/readme_en/ (last access: 7 February 2025).

2. Basin outlines. Sub-basin polygons were obtained from the
MERIT Basins dataset (Lin et al., 2019, http://hydrology.
princeton.edu/data/mpan/MERIT_Basins/, last access: 10 Oc-
tober 2025). No formal licence is stated in the paper, but data
have since been moved elsewhere (https://www.reachhydro.
org/home/params/merit-basins, last access: 7 February 2025)
and are available there under a CC-BY-NC-SA 4.0 licence.
Reference shapefiles for the basins in the US were obtained
from the CAMELS dataset (Newman et al., 2015; Addor
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et al., 2017a, https://doi.org/10.5065/D6MW2F4D). The
source of these shapefiles is the U.S. Geological Survey
HCDN-2009 dataset (Lins, 2012) and therefore is consid-
ered to be in the public domain (see https://www.usgs.gov/
information-policies-and-instructions/copyrights-and-credits,
last access: 21 March 2024).

The first set of reference shapefiles for the basins in
Canada were obtained from the national hydrometric
network basin polygons dataset (Environment and Cli-
mate Change Canada, 2020b, https://open.canada.ca/data/en/
dataset/Oc121878-ac23-46f5-95df-eb9960753375), available
under the Open Government Licence — Canada (https:/
open.canada.ca/en/open-government-licence-canada, last ac-
cess: 21 March 2024).

The second set of reference shapefiles for the basins
in Canada were obtained from the Reference Hydro-
metric Basin Network (Government of Canada, 2022,
https://www.canada.ca/en/environment-climate-change/
services/water-overview/quantity/monitoring/survey/
data-products-services/reference-hydrometric- basin-network.
html, last access: 18 August 2022), available under an
unknown licence.

. Streamflow data. Daily flow data for the basins in the US

were obtained from the Daily Values Service, courtesy
of the U.S. Geological Survey (https:/nwis.waterservices.
usgs.gov/docs/dv-service/daily-values-service-details/,

last access: 21 March 2024). Data are considered to
be in the public domain (see https://www.usgs.gov/
information-policies-and-instructions/copyrights-and-credits,
last access: 21 March 2024)

Hourly flow data for the basins in the US were derived
from the high-resolution Instantaneous Values Service
(U.S. Geological Survey, https://nwis.waterservices.usgs.
gov/docs/instantaneous-values/instantaneous- values-details/,
last access: 21 March 2024). Data are considered to
be in the public domain (see https://www.usgs.gov/
information-policies-and-instructions/copyrights-and-credits,
last access: 21 March 2024).

Daily flow data for the basins in Canada were ob-
tained from the HYDAT database version 20230505,
courtesy of the Water Survey of Canada (https:
/Iwww.canada.ca/en/environment-climate-change/
services/water-overview/quantity/monitoring/survey/
data-products-services/national-archive-hydat.html, last
access: 21 March 2024). Data are considered public informa-
tion (see https://wateroffice.ec.gc.ca/disclaimer_info_e.html
for full terms and details, last access: 21 March 2024). Note
that the HYDAT database gets continuously updated and
superseded versions are not publicly available.

Hourly flow data for the basins in Canada were derived from
the high-resolution data available online from the Government
of Canada (Water Survey of Canada, https://collaboration.
cmc.ec.gc.ca/cmc/hydrometrics/www/UnitValueData/, last ac-
cess: 31 March 2025). Data are considered public in-
formation (see https://wateroffice.ec.gc.ca/disclaimer_info_e.
html for full terms and details, last access: 21 March 2024).

. Geospatial data. Forest height grids were obtained from

the Global Land Cover and Land Use Change, 2000-2020
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dataset (Potapov et al., 2021) under a CC-BY licence (https:
//glad.umd.edu/dataset/GLCLUC2020/, last access: 16 Octo-
ber 2023).

Leaf area index grids were
MCD15A2H.061  dataset (Myneni et al,
https://doi.org/10.5067/ MODIS/MCD15A2H.061).
Data can be redistributed with no restriction. See
https://lpdaac.usgs.gov/data/data-citation-and- policies/

(last access: 17 October 2023).

Agriculture grids were obtained from the LGRIP30
dataset (Thenkabail et al., 2021; Teluguntla et al., 2023,

obtained from the
2021,

https://doi.org/10.5067/COMMUNITY/LGRIP/LGRIP30.001).

Data can be redistributed with no restriction. See
https://Ipdaac.usgs.gov/data/data-citation-and-policies/

(last access: 17 October 2023).

Land cover and land use grids were obtained from the
MCD12Q1.061 dataset (Friedl and Sulla-Menashe, 2022,
https://doi.org/10.5067/MODIS/MCD12Q1.061). Data can be
redistributed with no restriction. See https://lpdaac.usgs.gov/
data/data-citation-and-policies/ (accessed: 17 October 2023).
Land cover and land use grids were obtained from the Global
Land Cover and Land Use 2019 dataset (Hansen et al., 2022)
under a CC-BY 4.0 licence (https://glad.umd.edu/dataset/
global-land-cover-land-use-v1, last access: 16 October 2023).
Lake polygons were obtained from the HydroLAKES dataset
(Messager et al., 2016) under a CC-BY 4.0 licence (https://
www.hydrosheds.org/products/hydrolakes, last access: 16 Oc-
tober 2023).

Digital elevation model grids were obtained from the MERIT
Hydro Adjusted Elevations dataset (Yamazaki et al., 2019)
under CC-BY-NC 4.0 or ODbL 1.0 licences (http://hydro.iis.
u-tokyo.ac.jp/~yamadai/MERIT_Hydro/, last access: 10 Octo-
ber 2023).

Soil property grids were obtained from the SoilGrids 2.0
dataset (Poggio et al., 2021) under a CC-BY-NC 4.0 licence
(https://soilgrids.org/, last access: 10 October 2023).

Soil property grids were obtained from the Pelletier dataset
(Pelletier et al., 2016b, a, https://daac.ornl.gov/SOILS/guides/
Global_Soil_Regolith_Sediment.html). Data can be redis-
tributed with no restriction. See https://www.earthdata.nasa.
gov/learn/use-data/data-use-policy (last access: 18 Decem-
ber 2023).

Geology polygons were obtained from the GLHYMPS dataset
(Gleeson et al., 2014; Gleeson, 2018) under a CC-BY 4.0 li-
cence (https://doi.org/10.5683/SP2/DLGXYO).

Data (not redistributed). Listed here are details of each of the
datasets used in the creation of the CAMELS-SPAT data but not
distributed as part of the CAMELS-SPAT data.

1. Basin delineation. Flow direction grids were obtained from the

MERIT Hydro Adjusted Elevations dataset (Yamazaki et al.,
2019) under CC-BY-NC 4.0 or ODbL 1.0 licences (http://
hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/, last access:
10 October 2023).
Flow accumulation grids were obtained from the MERIT Hy-
dro Adjusted Elevations dataset (Yamazaki et al., 2019) un-
der CC-BY-NC 4.0 or ODbL 1.0 licences (http://hydro.iis.
u-tokyo.ac.jp/~yamadai/MERIT_Hydro/, last access: 10 Octo-
ber 2023).
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2. Geospatial data. Climate grids were obtained from the World-
Clim dataset (Fick and Hijmans, 2017, https://www.worldclim.
org/data/worldclim21.html, last access: 22 October 2023).
WorldClim data were used to calculate high-resolution climate
attributes and derive a number of maps. The source data cannot
be redistributed.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-29-5791-2025-supplement.
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