Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4133-2025
https://doi.org/10.5194/hess-29-4133-2025
Technical note
 | 
08 Sep 2025
Technical note |  | 08 Sep 2025

Technical note: Image processing for continuous river turbidity monitoring – full-scale tests and potential applications

Domenico Miglino, Seifeddine Jomaa, Michael Rode, Khim Cathleen Saddi, Francesco Isgrò, and Salvatore Manfreda

Related authors

OLIGOTREND, a global database of multi-decadal chlorophyll a and water quality time series for rivers, lakes, and estuaries
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025,https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
Changes in water quality and ecosystem processes at extreme summer low flow of 2018 with high-frequency sensors
Jingshui Huang, Dietrich Borchardt, and Michael Rode
EGUsphere, https://doi.org/10.5194/egusphere-2025-656,https://doi.org/10.5194/egusphere-2025-656, 2025
Short summary
HESS Opinions: Towards a common vision for the future of hydrological observatories
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025,https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024,https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary

Cited articles

Abdullah, L. M., Tahir, N. M., and Samad, M.: Video stabilization based on point feature matching technique, IEEE Control and System Graduate Research Colloquium, 303–307, IEEE, Shah Alam, Selangor, Malaysia, 16–17 July 2012, https://doi.org/10.1109/ICSGRC.2012.6287181, 2012. 
Ahmed, U., Mumtaz, R., Anwar, H., Mumtaz, S., and Qamar, A. M.: Water quality monitoring: from conventional to emerging technologies, Water Supp., 20, 28–45, https://doi.org/10.2166/ws.2019.144, 2020. 
Constantin, S., Doxaran, D., and Constantinescu, Ș.: Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data, Cont. Shelf Res., 112, 14–30, https://doi.org/10.1016/j.csr.2015.11.009, 2016. 
Daniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., and Maes, W. H.: Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging, Remote Sens., 15, 2909, https://doi.org/10.3390/rs15112909, 2023. 
Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., and Knaeps, E.: A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters, Remote Sens. Environ., 156, 157–168, https://doi.org/10.1016/j.rse.2014.09.020, 2015. 
Download
Short summary
Turbidity is a key factor for water quality monitoring. Here, an image-based procedure is tested in a full-scale river monitoring experiment using digital cameras. This approach can enhance our understanding of the real-time status of waterbodies, overcoming the spatial and temporal resolution limitations of existing methods. It also facilitates early-warning systems, advances water research through increased data availability and reduces operating costs.
Share