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Abstract. The development of continuous river turbidity
monitoring systems is essential since this is a critical water
quality metric linked to the presence of organic and inorganic
suspended matter. Current monitoring practices are mainly
limited by low spatial and temporal resolutions and costs.
This results in the huge challenge of providing extensive and
timely water quality monitoring at the global scale. In this
work, we propose an image analysis procedure for river tur-
bidity assessment using different camera systems (i.e. fixed-
trap camera, camera on board an uncrewed aerial vehicle
and a multispectral camera). We explored multiple types of
camera installation setups during a river turbidity event ar-
tificially re-created on site. The outcomes prove that pro-
cessed digital-camera data can properly represent the turbid-
ity trends. Specifically, the experimental activities revealed
that single-band values were the most reliable proxy for tur-
bidity monitoring in the short term, more so than band ra-
tios and indexes. The best camera positioning, orientation
and lens sensitivity, as well as daily and seasonal changes
in lightning and river flow conditions, may affect the accu-
racy of the results. The reliability of this application will be
tested under different hydrological and environmental condi-
tions during our next field experiments. The final goal of the
work is the implementation of this camera system to support

existing techniques and to help in finding innovative solu-
tions to water resource monitoring.

1 Introduction

Nowadays, compliance with the European Water Framework
Directive and World Health Organization (WHO) guidelines
for water quality is becoming more and more challenging
(Santos et al., 2021; WHO chronicle, 2011) since human-
related activities and climate change are heavily impacting
water resources. Therefore, freshwater will be a more and
more valuable resource which deserves to be properly mon-
itored, exploiting all available techniques, and also wisely
managed (Manfreda et al., 2024). In this context, turbidity
is a key factor for water quality monitoring and an optical
property often used as an indicator of suspended particles and
floating pollutants (Stutter et al., 2017; Tomperi et al., 2022).
In inland waterbodies, turbidity level and trophic state can
strongly change with seasonality (Jalén-Rojas et al.,2015),
soil erosion, extreme events and farming activities (Lu et al.,
2023). Despite expensive costs for instruments and person-
nel, conventional in situ monitoring techniques, using reg-
ular but not frequent sampling, return information too poor
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to properly characterise the temporal trends and spatial vari-
ability of hydrological and environmental conditions in river
basins (Guo et al.,2020), usually underestimating the real
loads (Gippel,1995).

In the last few years, several innovations have been intro-
duced into hydrological monitoring which exploit satellites,
uncrewed aerial vehicles (UAVs) or fixed camera systems
in combination with image-processing and machine learn-
ing techniques (Manfreda et al., 2018; Manfreda and Ben
Dor, 2023). These methods offer the opportunity to provide
large-scale and detailed information on specific hydrologi-
cal processes with relatively low costs. Within this context,
many remote sensing applications for water quality applica-
tions have been developed (Ritchie et al., 2003; Ahmed et al.,
2020), exploring the potential information coming from the
water spectral signatures (Gholizadeh et al., 2016) and in-
vestigating the dynamics of riverine ecosystems (Zhao et al.,
2019; Lama et al., 2021).

Many of these studies developed turbidity estimation algo-
rithms using satellite products, mainly for very large rivers,
reservoirs (Potes et al., 2012; Constantin et al., 2016; Garg
et al., 2020; Hossain et al., 2021) and coastal areas (Dogliotti
et al., 2015). Unfortunately, satellite spatial resolution can-
not provide distributed estimations of water turbidity (WT)
along the entire river network (Sagan et al., 2020), and the
frequency of data collection is limited by the satellite revisit
period, usually 5-10 d for Sentinel-2 and Landsat 8 (Jia et al.,
2024). Recent studies are starting to investigate the perspec-
tive of using digital cameras and low-cost optical sensors
for river turbidity monitoring (Gao et al., 2022; Droujko and
Molnar, 2022). However, no studies have focused on the po-
tential of image analysis applied in a real riverine environ-
ment yet. Such an application could definitively grant con-
tinuous high-frequency data across inland waterbodies even
without spatial resolution issues. Moreover, latest advances
in computer vision techniques can certainly help us in ex-
tracting water quality information from images. The present
study explores the use of an image-based monitoring proce-
dure for river turbidity estimation. It was carried out within a
real river where an artificial perturbation of the water turbid-
ity has been used to find the optimal configuration for camera
systems, the best-performing band and the range of applica-
bility of the procedure. This paper contains a short introduc-
tion, along with the background used; the field experiment
and methods are illustrated in Sect. 2, and, finally, the results
are discussed, providing our final remarks.

1.1 RGB image acquisition and interpretation

The use of digital cameras in river monitoring activities can
increase our knowledge of the real status of waterbodies,
solving the above-mentioned cost and data resolution prob-
lems of the existing techniques. The challenge of image-
based procedures is the proper red, green and blue (RGB)
signal interpretation and processing. Goddijn-Murphy et al.
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Figure 1. Light behaviour within shallow (b) and non-shallow wa-
ter (a): the solar irradiance (IR) passes through the water, whose re-
flectance (Ry) is influenced by the background (Ry,) and suspended-
particle (Rs) presence, by varying the water level (H). Finally, the
total water reflectance (Ry) signal is caught by the digital camera
that produces an image with different pixel intensities of red, green
and blue values (RGB).

(2009) affirm that cameras can be seen as three-band ra-
diometers, able to measure the water-leaving spectral re-
sponse. The actual water upwelling light Ry, that reaches the
camera lens, schematically shown in Fig. 1, is the sum of var-
ious reflectance components of the suspended particles (Ry),
the riverbed background (Rp) and the water itself. One com-
ponent could prevail over the others, depending on the vari-
ability of hydrological (water level, flow velocity, etc.) and
environmental (suspended-solid concentration, floating pol-
lutants, etc.) characteristics of the river. Digital cameras re-
ceive these inputs and return a signal in terms of RGB pixel
intensity values.

1.2 Turbidity image-based measurements

In the literature, there is a robust relationship between digital-
camera output and water quality indicators. Each of these
methods requires specific solutions to provide trustable re-
sults based on the absolute water colour estimation under
changing light conditions. For instance, Goddijn and White
(2006) fixed a pipe around the camera lens to avoid ex-
ternal reflections for adjusting the image data collection.
Leeuw and Boss (2018) developed an innovative smartphone
app called “Hydrocolor” using images of the sky and a
grey card near the camera’s view field as radiometric refer-
ences for turbidity estimation from the pictures of the wa-
ter. Nevertheless, the reliability of their results strongly de-
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pends on the quality of the unsupervised image data com-
ing from the citizens and the environmental conditions, re-
sulting in inaccurate estimates for water surface roughness
and changing weather conditions. More recently, Ghorbani
et al. (2020) provided a continuous monitoring camera tool
for suspended-sediment concentrations (SSCs) and turbidity
by using image analytic methods and machine learning tech-
niques. They found evidence of a correlation between SSCs
and camera images in their experiments under laboratory-
controlled conditions.

In real riverine environments, there are many more vari-
ables to consider. The image reflectance can be strongly in-
fluenced by several factors regarding river flow and light con-
dition variability. Moreover, different bands could provide
several information about the water status considering both
single bands and their combinations. Nechad et al. (2010)
demonstrated that single bands in the red and NIR (near-
infrared) spectral ranges give a robust outcome in mapping
total suspended matter in coastal turbid waters using several
satellite data sources. However, the choice of single bands
or their combination is dictated by the concentration of the
suspended solids and the type of floating pollutants, as well
as the water depth and riverbed background. In addition, the
accuracy of the estimates is certainly influenced by the cam-
era positioning and orientation with respect to the examined
river section.

1.3 River turbidity monitoring field campaigns

In Fig. 2, the preliminary results of our long-term monitoring
data of 2022 are shown. We conducted a field experiment
directly on the river. The installation setup was very simple:
only one trap camera installed beside the river, a radiometric
calibration panel installed on the other side and turbidimeter
measurements, as described in detail by Miglino et al. (2022).

The trap camera data were compared with the sensor mea-
sures. The data collected during the night and under poor
light conditions were not considered. We selected from the
literature (Lacaux et al., 2007) the normalised difference tur-
bidity index (NDTI) derived from RGB imagery as the most
representative index for the camera results. Image data were
also standardised by hour of the day to account for long-
term variability in sunlight conditions, ensuring comparabil-
ity across months.

We can already observe a clear correspondence between
the variables, especially for the two main turbidity events of
February 2022, but also conflicting results for the other low—
moderate turbidity peaks.

This first field experience provided us the knowledge
needed to design a proper experimental setup in the further
studies. In light of these results, we felt the need to investi-
gate the factors influencing the monitored process by design-
ing the short-term experiment of February 2023, proposed in
this work.
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Our analysis involved the installation of a trap camera
(TC), a multispectral camera (MSC) and an uncrewed aerial
vehicle (UAV) in order to examine the best spectral response
of red, blue, green and NIR bands and their combinations, as
well as the best camera installation setup.

The purpose of the field campaigns was to conduct tests on
the potential practical applications of the image processing
for river turbidity monitoring. This tool can promote the de-
velopment of early-warning networks at the river basin scale,
moving water research forward thanks to a large increase
in the data on waterbodies and a reduction in operating ex-
penses.

2 Materials and methods
2.1 Full-scale experiment

The field experiment took place in February 2023 at the
monitoring station of Meisdorf, Germany, better described
in Miglino et al. (2022). The selected river section was the
Selke River, within the TERENO (TERrestrial ENvironmen-
tal Observatories) global change exploratory catchment man-
aged by the Helmholtz Association, Germany (Wollschldger
et al., 2017). Recently, the Bode basin has gone through pro-
longed droughts, from 2015 to 2019, resulting in changes in
land use and water quantity and quality. This could poten-
tially also impact the suspended-solid load and the pollutant
concentration. In this experiment, a synthetic turbidity event
was recreated by adding kaolin clay into the water, upstream
enough from the monitored river cross-section to ensure the
complete mixing of the tracer (Fig. 3). Kaolin is usually ex-
ploited to prepare turbidity standard solutions. In addition,
it is a harmless, easy-to-handle and cheap mineral, which is
also a common silicate in natural soils and sediments.

We conducted the tracer experiment on 14 February 2023,
adding 50kg of kaolin tracer, evenly distributed, to the
whole stream cross-section 700 m upstream from the mon-
itored river section at 12:05 local time (UTC+01:00). The
mean flow velocity was 0.47 ms~!, the flow discharge was
2.3m3 s~!, the water level was 0.54 m, and the width of the
river section was 9 m. The turbidity level started to artificially
increase after 12:20, the peak was reached around 12:30, and
the event ended after 13:00.

Several monitoring instruments were used during the
experiment: three low-cost trap cameras (TCs, Ceyomur
CY50), one multispectral camera (MSC, Tetracam ADC
Snap) and one uncrewed aerial vehicle (UAV, DJI Mavic 2
Enterprise Dual); these were placed in different positions.
By looking at Fig. 4, the MSC, in red, was installed on the
bridge, and the square in red represents its field of view. Two
TCs were installed on the left riverbank (LRB) and the right
riverbank (RRB), while the third TC was fixed on the bridge.
The last camera was on the UAV, which ensured a zenithal
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Figure 2. Comparison of turbidimeter measurements (““x
long-term monitoring from February to April 2022.

symbols in black) and trap camera NDTTI index (‘“*” symbols in red) during

Figure 3. View of the Selke River before (a) and during (b) the synthetic turbidity peak in the field experiment.

field of view on the river section, indicated by the light-blue
square. The flight height of the UAV was 5 m.

The collected data could be affected by sunglint, shadows
and other external light sources. For these reasons, it is es-
sential to find the optimum camera installation design for
minimising the uncertainties from water images. The camera
data were compared to the measurements of the turbidime-
ters installed underwater in the river cross-section (Fig. 5).
They were located at a distance of 2m from the right and
from the left stream bank for ensuring the detection of the
complete mixing of the suspended solids.

The frame set in Fig. 6 displays all of the camera’s fields
of view along the stream during the experiment. The region
of interest (ROI) was selected, making sure that it included
only the water surface area. The mean of the pixel values in-
side the ROI was considered to be the representative value
for the turbidity level for each single picture. Moreover, a
radiometric calibration panel (RCP) was installed within the
picture area, close to the investigated water surface. This con-
sisted of a waterproof plastic laminated panel containing the
reference RGB colour values for the image-processing steps
below.

Hydrol. Earth Syst. Sci., 29, 4133-4151, 2025

2.2 Image-processing procedure

This work defines and tests an image-based method that
takes into account variables occurring within time- and site-
specific riverine environments. It is important to build a ro-
bust procedure since the acquired camera data cannot pro-
vide information as they are because they are not yet compa-
rable to physically meaningful units. Herein, our workflow
(Fig. 7) sets out the general algorithm of image processing
for WT analysis, starting from a correct image extraction and
stabilisation. Then, the steps of radiometric calibration and
binarisation allowed us to homogenise and select the rele-
vant features from the image data. Finally, the WT indexes
were defined from processed signals and validated by field
measurements to train the model and to quantify the river
turbidity level.

2.2.1 Image extraction and stabilisation

The image data were stored as time lapses with a set frame
rate depending on the type of camera. The number and the
format of the extracted images were fixed for each time lapse
frame — also collecting frequencies — to ensure the correct
comparison between cameras and measurement data.

https://doi.org/10.5194/hess-29-4133-2025
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Figure 5. Optical measurements of turbidity using two turbidimeters installed on the right and the left riverbed sides during the experiment.
The colour schemes used in this figure are accessible to persons with colour vision deficiencies.

The image sequences were involved in the image stabilisa-
tion process because the position of the objects in the scene
could be shifted by environmental factors and camera insta-
bility. The image stabilisation techniques performed an auto-
matic detection and matching of features within the selected
image area close to the RCP (Fig. 8). In particular, we used

https://doi.org/10.5194/hess-29-4133-2025

the Harris—Stephens corner detection algorithm to identify
feature points and to remove apparent movements and jitter
within the field of view in the videos (Harris and Stephens,
1988; Abdullah et al., 2012). This step was necessary to grant
the correct detection of the RCP and ROI location required
for the following image analysis processes.

Hydrol. Earth Syst. Sci., 29, 4133-4151, 2025
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Figure 7. Image-processing procedure.

2.2.2 Radiometric calibration

For absolute radiometric correction in monitoring activities
where the distance between the ground and the camera is less
than 100 m, it is assumed that the atmosphere does not in-
fluence the light signal. Nevertheless, other site-specific and
meteorological variables can still affect the camera measure-
ment (Daniels et al., 2023). The radiometric signal of an ob-
ject is influenced by the geometry of the measurements, de-
pending on the relative positions of the sun, the measured ob-
ject and the optical sensor. The direct—diffuse ratio, the atmo-
sphere absorption and scattering of the solar radiation in the

Hydrol. Earth Syst. Sci., 29, 4133-4151, 2025
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Figure 8. Stabilisation of the RCP coordinates for each extracted

frame. The yellow lines show the panel shift during a camera mon-
itoring period of 2 months.

space from the object to the sensor, as well as the camera sen-
sitivity, are all significant factors influencing the natural illu-
mination conditions. Using reference targets or recognised
radiometric standards within the scene is necessary to con-
vert the uncalibrated image pixel intensity (PI) values, also
called digital numbers (DNs), into radiometrically meaning-
ful units such as reflectance or radiance (Guo et al., 2019;
Kinch et al., 2020). In this experiment, we chose a simplified
design of the radiometric calibration panel, with the assumed
reference values (RVy ) of the maximum PIs of red, green

https://doi.org/10.5194/hess-29-4133-2025
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and blue for all of the images (Fig. 9b) being considered to
be the mean of the respective single-band values of the pixels
inside the panel squares.

The image PI values were reassigned considering the RCP
reference values frame by frame, for each band, as follows:

Plrc = {1, PI/RV,.}, (D

where RV is the panel reference value of red, green and
blue for the radiometric calibration process.

PI value ranges for each band go from 0 to 255, but we
considered normalised values between 0 and 1. Once the ra-
diometric signal is correctly calibrated, the effect of changes
in light conditions on the image information is substantially
reduced. Therefore, some image areas could still be affected
by sun glare and overly intense shadow. These pixels must be
removed by binarisation because they do not contain useful
information about the water reflectance.

2.2.3 Image binarisation

Image binarisation techniques convert images into binary
representations, typically applying predetermined thresholds
to grey-scale or RGB values. Here, the adopted procedure
follows Otsu’s approach (Otsu, 1975). The global threshold
was defined separately for each band and for each frame as
a result of the minimisation of the weighted variance of two
clusters. All of the values above this threshold are replaced
with 1, while the other values are replaced with 0. The proce-
dure involves iterations through every image pixel and counts
the occurrence of each intensity. In this way, only the actual
water reflectance information can be retrieved from the pic-
tures.

In more detail, looking at Fig. 10, we obtained a perfect
binary masking from the starting RGB image. Thanks to the
right combination of the binarised bands, we managed to re-
move the pixels with signal distortions due to the effect of
sun glare; shadows; and also external objects such as the
branches that fall inside the camera ROI, bordered by the red
line in the figure. Moreover, this step of the procedure high-
lights the importance of the information contained in each
band. For example, the blue band is not effective in turbid-
ity estimation, but it allows us to isolate and remove critical
parts of the image.

2.2.4 Water turbidity camera index

All the information coming from the camera bands could be
properly considered for getting information on WT level in
the monitored river site. We selected the most representative
remote sensing applications for each band and index, as ex-
plained in Table 1.

Single green and red bands were considered to be the most
representative signals for identifying the turbidity. The NIR
band is also effective in detecting very high turbidity lev-
els. Some ratios between these bands were taken into account

https://doi.org/10.5194/hess-29-4133-2025
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Table 1. Camera band combinations selected for on-site river tur-
bidity remote measurements.

Band Single  Camera Reference
combination  band type
Red/green TC, MSC, UAV  Wang et al. (2006)
NDTI TC, MSC, UAV  Lacaux et al. (2007)
NDWI MSC McFeeters (1996)
Red TC, MSC, UAV  Leeuw and Boss (2018)
Green TC,MSC, UAV  Khorram et al. (1991)
NIR MSC Zhu et al. (2020)

too. We selected from the literature the ratio between red and
green, the normalised difference turbidity index (NDTI) de-
rived from RGB imagery, and the normalised difference wa-
ter index (NDWI) that combines NIR and green bands.

3 Results

Our experiments highlighted the capability of digital cameras
to detect variations in WT level. We observed that digital-
camera results are influenced by several factors, such as the
type of sensor adopted and the camera sensitivity, position
and orientation. In particular, the MSC results in Fig. 11 de-
scribe distinct behaviours of the single bands. Red and green
bands can capture turbidity increases above the measured
value of 20 NTU, while the NIR-band spectral response is
much lower. Since the NIR band is totally absorbed by the
water surface, its substantial changes can be detected only
for very high concentrations of suspended particles. If we
consider the NDWI, the correlation between the camera and
turbidimeter data becomes more consistent; this is also the
case for red and green bands.

Trap camera outcomes are reported in Fig. 12, where it is
possible to observe different patterns depending on the in-
stallation position. Red- and green-band signals, from the
TCs installed on the LRB and RRB, follow the measurement
curve for the entire monitoring period, while the TC installed
on the bridge seems to be influenced by the variation in the
light conditions during the first part of the experiment before
exceeding turbidity values higher than 50 NTU. Moreover,
all of the TC results show the same intensity values, in cor-
respondence with the turbidity peak, except those from the
LRB, matching the measures but with lower PI signals. The
most reliable TC band ratios and indexes were those from the
RRB position (Table 2).

The UAV camera returned partial data (Fig. 13) due to
the loss of signal that caused a break in the recordings
for 5min immediately after reaching the measured turbid-
ity peak. Therefore, there is good correspondence between
the UAV band signal and the turbidimeter data. In the second
part of the recording, we can observe that the band signals
are lower than those during the peak, but they do not exactly
fit the measurements’ decreasing curve. This is because the

Hydrol. Earth Syst. Sci., 29, 4133-4151, 2025
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Figure 9. Example of radiometric calibration procedure applied to a TC image using the reference mean RGB values (a) of the radiometric

calibration panel (b) installed within the camera field of view (c).

white balance setting of the camera was on, and this resulted
in a discrepancy in terms of the intensity of the starting sig-
nals but not in terms of variations.

3.1 Performance metrics

Table 2 summarises the performance in terms of linear and
quadratic R-squared correlation coefficients, considering the
different camera types, bands, view angles and installation
setups selected for the field tests.

Single red and green bands can describe turbidity varia-
tions better than band ratios and indexes for all of the cameras
used in this short-term experiment. Moreover, the MSC in-
stallation allowed us to understand the potential uses of bands
beyond the visible spectrum. The NIR band seems to show
good performance for a high concentration of suspended par-
ticles that reflect a consistent part of its radiation. In fact, con-
sidering combined MSC bands, the best performance comes
from the NDWI index that involves the NIR and green bands.

Hydrol. Earth Syst. Sci., 29, 4133—4151, 2025

4 Discussion

To enable a proper comparison of all of the variables, we
decided to normalise them, as shown in Fig. 14, since the
data came from several sources, such as turbidity sensors and
camera bands. The min—-max normalisation was chosen as
the most suitable technique for our analysis because it scales
the variables to a common range from O to 1, enabling di-
rect comparison of their trends despite differences in units
and ranges. This helps to highlight correlations between the
turbidity sensor readings and camera outputs during the tur-
bidity event, preserving the shape of the original distributions
and maintaining relative relationships between data points.
Within Fig. 14, the mean of all of the normalised camera
band values is also reported in red. The normalisation made it
easier to assess camera performances in relation to the mea-
surements of turbidity. Additionally, it enables a consistent
comparison among different camera types, avoiding the is-
sue of the Bayer pattern, as used in digital cameras, which
provides us with RGB values already interpolated, unlike the
multispectral camera that measures pure bands.

https://doi.org/10.5194/hess-29-4133-2025
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Table 2. Linear and quadratic correlation coefficients R? of the camera bands compared to turbidity measurements, considering different

camera types and installation points selected for the experiment.

Bridge ‘ Zenithal view ‘ Left bank ‘ Right bank

MS camera ‘ Trap camera ‘ UAV camera ‘ Trap camera ‘ Trap camera

Lin. Quad. | Lin. Quad. | Lin. Quad. | Lin. Quad. | Lin. Quad.

R? R | R? R | R? R* | R? R*> | R? R?

Single band  Red 0.89 091 | 0.25 0.31 | 0.76 0.88 | 0.82 0.85 | 0.89 0.89

Green 0.91 092 | 0.27 0.31 | 0.83 0.90 | 0.82 0.85 | 0.88 0.88

Band ratio Red/green  0.12 0.16 | 0.01 0.06 ‘ 0.01 0.34 ‘ 0.59 0.64 | 0.37 0.38

Index NDTI 0.11 0.15 | 0.01 0.07 | 0.01 0.34 | 0.58 0.63 | 0.38 0.39
NDWI 0.52 0.65

Figure 15 describes the performance during the synthetic
turbidity event of February 2023, focusing on the preci-
sion and accuracy of the normalised variables. The preci-
sion refers to the absolute difference between the turbidime-
ter measures and the camera data, while the accuracy is this
difference divided by the measures, representing the percent-
age of the error. In particular, Fig. 15a shows the precision
of the mean of the normalised camera bands. The red dots
in this picture show the lower discrepancy between the mea-

Hydrol. Earth Syst. Sci., 29, 4133-4151, 2025

sures and the image data, pointing out higher reliability of the
camera data in reflecting the turbidity levels during the peak
time, from 12:29 to 12:39, for the actual increase in turbidity
(NTU > 20). Figure 15b describes the normalised red-band
values for the five different cameras over the entire turbidity
event. The results show that most cameras exhibit relatively
similar means and ranges of values, except for the LRB TC,
presenting lower values, though these are still aligned with
the measures. Figure 15c—e highlight again the lower range
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Figure 13. (a) Comparison between turbidimeter measurements and data from the UAV camera. (b) Scatter plot of the variables. The colour
schemes used in this figure are accessible to persons with colour vision deficiencies.

of variability and the best matching of the camera data with
the turbidity sensor readings during the peak time rather than
over the entire event. Figure 15f illustrates the behaviour of
normalised red-band values of the different camera types dur-
ing the turbidity peak time. It shows notable variability be-
tween the cameras. On the one hand, MSC results display
the largest spread, indicating lower accuracy than TCs. On
the other hand, the MSC boxplot, together with the LRB TC,
is the only one without outliers and points standing on the
whiskers, explaining this strong correlation with measure-
ments reported in Table 2.

Overall, the results from both the short- and long-term
data suggest to us that the camera lens sensibility is not the
only factor to consider. Camera orientation, installation se-
tups, available bands and also the intensity of the measured
event can influence the monitoring performance.

Regarding the experimental setup, the presence of the sub-
merged turbidimeters in both river sides (Fig. 4) ensured the
quantification of the horizontal variability of the turbidity
level along the river cross-section. The vertical variability of
turbidity on the water column is not so significant for a river
as small as the Selke, with a registered maximum water level
of 1 m. However, the proposed image-based procedure will
also apply for bigger rivers since cameras capture the light
from the entire water column until a middle to high turbidity
level is reached. Once this threshold is reached (see Fig. 3b),
only the water surface can be investigated by the camera.
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Interesting results were observed for all three RGB bands
since we used a white clay to increase the turbidity level. Fur-
ther experiments with multiple tracers as inputs, changing the
colours and particle concentrations, will help to gauge the ef-
fectiveness of the procedure. What we expect from a gener-
alised application of the procedure, in light of this and past
field test experiences (Miglino et al., 2022), is the greater re-
liability of the red band for variable suspended-particle char-
acteristics and better performances in terms of band ratios
and indexes for long-term monitoring under different hydro-
logical conditions.

4.1 Range of applications

The comparison of all experimental data in Fig. 16a shows
that the initial band signal responses were different for each
camera, depending on lens sensitivity, position, field of view,
angles from water surface and orientation with respect to the
sun’s apparent motion axis. One way to homogenise these
results is to consider the increment of band signals, starting
from a band signal for clear-water conditions, referred to as
the image frame with a minimum measured NTU value. Fig-
ure 16b shows the increments between the red-band signals
(red) for each frame and for the clear-water conditions (redp).
Since the UAV data were split into two distinct videos, some
of the primary turbidity event occurred during the pause be-
tween the two recordings; hence, it was excluded. In addi-
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tion, the UAV camera was the only one with a pre-set auto-
matic light balance, making it impossible to integrate these
data with the others.

It is worthwhile to observe how there is a better overlap for
the red-red( increment curves than for the single red-band
signal curves. In fact, the identification of the PI for the clear
water could remove the mismatches between the initial PIs
detected by the camera due to both changes in light and cam-
era lens sensitivity. Future experiments will face this issue,
especially for shallow-water conditions, where the visibility
of the riverbed background could become a reference value
of water clarity, regardless of site- and time-specific variabil-
ities.

4.2 TImplications in river monitoring practices

Prior to this work, image analysis for water turbidity was pre-
dominantly conducted using satellite data for large rivers or
through the use of camera data and specific optical sensors
in the laboratory. The added value of our study lies in the
development of a monitoring procedure that can be directly
implemented on site. This allowed us to test the method un-
der real conditions and to optimise the camera installation for
future applications in various environments.

The proposed image-processing procedure offers signifi-
cant advances in river monitoring practices by providing a
near-real-time, continuous and automated system for water
turbidity assessment. This approach can complement current
monitoring practices, addressing their limitations in terms
of data availability and resolution, especially for small or
inaccessible rivers where existing methods are impractica-
ble. Furthermore, the use of remote sensing technology min-
imises environmental disturbance, aligning with sustainable
monitoring practices. The dissemination of this procedure
could significantly increase the amount of available informa-
tion on water status at the basin scale, thereby enhancing our
understanding of the ecohydrological dynamics involved in
river processes.

4.3 Spatial variability and active pixel count within the
region of interest

In our investigations, only the mean of the active pixels
within the ROI is considered as a proxy for turbidity. For
active pixels, we refer to the processed pixels with informa-
tion on the actual water reflectance. The image-processing
procedure allowed us to minimise the misinformation from
the images, reducing the effect of changing light conditions
with radiometric calibration and removing saturated pixels
or strongly shaded areas with binarisation. Nevertheless, the
spatial variability of the pixel intensities and the availability
of active pixels within the ROI of a single image could be
critical factors that need to be analysed.
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Figures 17-20 describe the variability of the standard de-
viation and the active pixel count for both the MSC and TC
during the field experiment of February 2023.

It is worthwhile to observe that the active pixel count is
directly proportional to the turbidity level for both the MSC
(Fig. 17) and trap camera (Fig. 19). These results show that
the resolution of the camera and its distance from the water
must be considered to ensure a minimum number of active
pixels for less sensitive cameras, such as the trap camera,
especially when the water is clear.

In Figs. 18 and 20, it is evident that the image-filtering pro-
cedure of the camera data significantly reduces the standard
deviations of the ROI pixel intensity, particularly for low to
moderate turbidity conditions, where its spatial variability is
particularly high for the unfiltered data. Finally, these figures
confirm the effectiveness of the procedure in enhancing the
overall river turbidity level using cameras, even if the shown
PI standard deviation values are still non-negligible.

5 Conclusions

The experimental activities revealed that single-band val-
ues were the most reliable proxy for turbidity monitoring in
short-term observations, even more so than band ratios and
indexes. The opposite could be true for long-term observa-
tions since single-band signals tend to be more influenced by
the variability of light and flow conditions. The advantages
of using this procedure are multiple. Field tests proved that
cameras, even the cheap models, can produce reliable tur-
bidity estimates continuously in time. Moreover, they can be
easily installed in greater numbers than turbidimeters with-
out the burden of cost along the river network, providing a
comprehensive knowledge of the river basin status.

On-site tests are still on-going in two different case stud-
ies. In particular, in the Bode River, a trap camera is pro-
viding continuous long-term monitoring of actual turbidity
events. This will allow us to acquire a significant set of data,
covering many environmental and hydrological conditions,
to fully understand how to optimise the characteristics of the
camera and the installation setups for real monitoring ap-
plications. Moreover, another camera has been installed in
the Sarno River section, within the scope of our RiverWatch
research project activities. This is a relevant case study to
outline innovative and effective guidelines for water quality
monitoring and water pollution prevention, with the study
site being one of the most polluted rivers in Europe, di-
rectly involving us. The practical application of this image-
based procedure could create an innovative early-warning
network that is not limited to turbidity but also proves to
be of great potential for other water-quality- (e.g. chloro-
phyll a) and water-related (e.g. macroplastics) monitoring
applications (Manfreda et al., 2024), advancing and support-
ing the existing river monitoring techniques. The next natu-
ral step is the involvement of these water quality estimation
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algorithms in a citizen science approach. Within this con-
text, our research group is developing a smartphone app for
river monitoring (https://sites.google.com/view/riverwatch/
home-page?authuser=0, last access: 1 September 2025), fo-
cusing, in particular, on macroplastics and turbidity, which
constitute the most easy to capture water quality information
collectable by the people. The real implementation of a con-
tinuous image-based river monitoring network like this can
offer new options to water resource management strategies
and the preservation of aquatic ecosystems.
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data during the short-term experiment of February 2023.

Appendix A: List of abbreviations

Abbreviation Description

LRB Left riverbank

MSC Multispectral camera

NTU Nephelometric turbidity unit

RCP Radiometric calibration panel

RGB Red, green and blue: colour
representation model used on the digital
screen

ROI Region of interest

RRB Right riverbank

TC Trap camera

UAV Uncrewed aerial vehicle

WT Water turbidity

DN Digital number (-)

PI Pixel intensity (-)

IR Solar irradiance (W m~2)

NDTI Normalised difference turbidity index (—)

NDWI Normalised difference water index (-)

NIR Near-infrared radiation band (0.78-3 um)

Ry Reflectance of the riverbed background
)

Redp-red Band value for clear-water condition (-)

RV RGB band reference value of
the radiometric calibration panel (-)

Ry Reflectance of the suspended particles
)

Ry, Reflectance of the water (-)

SSC Suspended-sediment concentration

(gL™h

https://doi.org/10.5194/hess-29-4133-2025


https://sites.google.com/view/riverwatch/home-page?authuser=0
https://sites.google.com/view/riverwatch/home-page?authuser=0

D. Miglino et al.: Image processing for continuous river turbidity monitoring

Data availability. The experiment dataset can be found at the link
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