Articles | Volume 29, issue 9
https://doi.org/10.5194/hess-29-2167-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2167-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interdecadal cycles in Australian annual rainfall
Tobias F. Selkirk
CORRESPONDING AUTHOR
Department of Infrastructure Engineering, University of Melbourne, Parkville, 3052, Australia
Andrew W. Western
Department of Infrastructure Engineering, University of Melbourne, Parkville, 3052, Australia
J. Angus Webb
Department of Infrastructure Engineering, University of Melbourne, Parkville, 3052, Australia
Related authors
No articles found.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021, https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
Chinchu Mohan, Andrew W. Western, Yongping Wei, and Margarita Saft
Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, https://doi.org/10.5194/hess-22-2689-2018, 2018
Short summary
Short summary
To ensure a sustainable supply of groundwater, scientific information about what is going into the system as recharge and what is taken out of the system via pumping is essential. This study identified the most influential factors in groundwater recharge and developed an empirical global recharge model. The meteorological and vegetation factors were the most important factors, and the long-term global average recharge was 134 mm per year. This model will aid in groundwater policy-making.
Shabnam Saffarpour, Andrew W. Western, Russell Adams, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, https://doi.org/10.5194/hess-20-4525-2016, 2016
Short summary
Short summary
A variety of threshold mechanisms influence the transfer of rainfall to runoff from catchments. Some of these mechanisms depend on the occurrence of intense rainfall and others depend on the catchment being wet. This article first provides a framework for considering which mechanisms are important in different situations and then uses that framework to examine the behaviour of a catchment in Australia that exhibits a mix of both rainfall intensity and catchment wetness dependent thresholds.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci., 19, 2821–2836, https://doi.org/10.5194/hess-19-2821-2015, https://doi.org/10.5194/hess-19-2821-2015, 2015
Z. Lu, Y. Wei, H. Xiao, S. Zou, J. Xie, J. Ren, and A. Western
Hydrol. Earth Syst. Sci., 19, 2261–2273, https://doi.org/10.5194/hess-19-2261-2015, https://doi.org/10.5194/hess-19-2261-2015, 2015
Short summary
Short summary
This paper quantitatively analyzed the evolution of human-water relationships in the Heihe River basin over the past 2000 years by reconstructing the catchment water balance. The results provided the basis for investigating the impacts of human societies on hydrological systems. The evolutionary processes of human-water relationships can be divided into four stages: predevelopment, take-off, acceleration, and rebalancing. And the transition of the human-water relationship had no fixed pattern.
J. F. Costelloe, T. J. Peterson, K. Halbert, A. W. Western, and J. J. McDonnell
Hydrol. Earth Syst. Sci., 19, 1599–1613, https://doi.org/10.5194/hess-19-1599-2015, https://doi.org/10.5194/hess-19-1599-2015, 2015
Short summary
Short summary
Groundwater surface mapping is used as an independent data set to better estimate groundwater discharge to streamflow. The groundwater surfaces indicated when other techniques likely overestimated the groundwater discharge component of baseflow. Groundwater surfaces also identified areas where regional groundwater could not be contributing to tributary streamflow. This method adds significant value to water resource management where sufficient groundwater monitoring data are available.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-10515-2014, https://doi.org/10.5194/hessd-11-10515-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Theory development
Synchronization frequency analysis and stochastic simulation of multi-site flood flows based on the complicated vine copula structure
Phosphorus transport in a hotter and drier climate: in-channel release of legacy phosphorus during summer low-flow conditions
Guiding community discussions on human–water challenges by serious gaming in the upper Ewaso Ngiro River basin, Kenya
Levee system transformation in coevolution between humans and water systems along the Kiso River, Japan
Reframing water demand management: a new co-governance framework coupling supply-side and demand-side solutions toward sustainability
HESS Opinions: The unsustainable use of groundwater conceals a “Day Zero”
Water productivity is in the eye of the beholder: benchmarking the multiple values produced by water use in the Phoenix metropolitan area
HESS Opinions: Drought impacts as failed prospects
Drought intensity–duration–frequency curves based on deficit in precipitation and streamflow for water resources management
Uncertainty in three dimensions: the challenges of communicating probabilistic flood forecast maps
To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research
Power and empowerment in transdisciplinary research: a negotiated approach for peri-urban groundwater problems in the Ganges Delta
A socio-hydrological framework for understanding conflict and cooperation with respect to transboundary rivers
A review of the applicability of the motivations and abilities (MOTA) framework for assessing the implementation success of water resources management plans and policies
Social dilemmas and poor water quality in household water systems
The limits to large-scale supply augmentation: exploring the crossroads of conflicting urban water system development pathways
Structural gaps of water resources knowledge in global river basins
Water sharing policies conditioned on hydrologic variability to inform reservoir operations
Characteristics of droughts in Argentina's core crop region
Quantifying the impacts of compound extremes on agriculture
Comparison of published palaeoclimate records suitable for reconstructing annual to sub-decadal hydroclimatic variability in eastern Australia: implications for water resource management and planning
Unraveling intractable water conflicts: the entanglement of science and politics in decision-making on large hydraulic infrastructure
A Water-Energy-Food Nexus approach for conducting trade-off analysis: Morocco's phosphate industry in the Khouribga region
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
Role-play simulations as an aid to achieve complex learning outcomes in hydrological science
Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions
Geostatistical interpolation by quantile kriging
Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience
Challenges to implementing bottom-up flood risk decision analysis frameworks: how strong are social networks of flooding professionals?
Socio-hydrological spaces in the Jamuna River floodplain in Bangladesh
An improved method for calculating the regional crop water footprint based on a hydrological process analysis
How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers
An alternative approach for socio-hydrology: case study research
HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change
Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain
Towards systematic planning of small-scale hydrological intervention-based research
Geoscience on television: a review of science communication literature in the context of geosciences
A "mental models" approach to the communication of subsurface hydrology and hazards
Review and classification of indicators of green water availability and scarcity
Socio-hydrological water balance for water allocation between human and environmental purposes in catchments
Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields
Complex network theory, streamflow, and hydrometric monitoring system design
Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts
Linked hydrologic and social systems that support resilience of traditional irrigation communities
Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use
A new framework for resolving conflicts over transboundary rivers using bankruptcy methods
Quantifying the human impact on water resources: a critical review of the water footprint concept
Endogenous change: on cooperation and water availability in two ancient societies
Socio-hydrology and the science–policy interface: a case study of the Saskatchewan River basin
Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025, https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Short summary
This study introduces a new method to simplify complex vine copula structures by reducing dimensionality while retaining essential data. Applied to Shifeng Creek, the vine copula built with this method captured critical spatial–temporal relationships, indicating high synchronization probabilities and flood risks. Notably, it was found that increasing structure complexity does not always improve accuracy. This method offers an efficient tool for analyzing and simulating multi-site flows.
Christine L. Dolph, Jacques C. Finlay, Brent Dalzell, and Gary W. Feyereisen
Hydrol. Earth Syst. Sci., 28, 5249–5294, https://doi.org/10.5194/hess-28-5249-2024, https://doi.org/10.5194/hess-28-5249-2024, 2024
Short summary
Short summary
“Legacy phosphorus” is the accumulation of phosphorus (P) in soils and sediments due to past inputs from fertilizer, manure, urban runoff, and wastewater. The release of this P from where it is stored in the landscape can cause poor water quality. Here, we examined whether legacy P is being released from stream and river channels in summer across a large number of watersheds, and we examined what factors (such as climate, land use, and soil types) might be driving that release.
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024, https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human–water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increased active participation, knowledge gain, and use of plural pronouns. We observed decreased individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
Hydrol. Earth Syst. Sci., 28, 2329–2342, https://doi.org/10.5194/hess-28-2329-2024, https://doi.org/10.5194/hess-28-2329-2024, 2024
Short summary
Short summary
The formation of levee systems is an important factor in determining whether a society fights or adapts to floods. This study presents the levee system transformation process over the past century, from the indigenous levee system to modern continuous levees, and its impacts on human–flood coevolution in the Kiso River basin, Japan, and reveals the interactions between levee systems and human–water systems involving different scales and water phenomena.
Yueyi Liu, Hang Zheng, and Jianshi Zhao
Hydrol. Earth Syst. Sci., 28, 2223–2238, https://doi.org/10.5194/hess-28-2223-2024, https://doi.org/10.5194/hess-28-2223-2024, 2024
Short summary
Short summary
Global climate change is causing some previously arid regions to become more humid. Economic downturns in these areas are leading to a decrease in water demand. These factors are further leading to a certain level of under-utilization of existing water supply projects in the area. This study finds that actively releasing ecological water increases the sustainability of these water supply projects. The cost of ecological water supply can be recovered by investment in water-related businesses.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024, https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Short summary
This opinion paper reflects on the risks of overusing groundwater savings to supply permanent water use requirements. Using novel data recently developed for Chile, we reveal how groundwater is being overused, causing ecological and socioeconomic impacts and concealing a Day Zero
scenario. Our argument underscores the need for reformed water allocation rules and sustainable management, shifting from a perception of groundwater as an unlimited source to a finite and vital one.
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024, https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary
Short summary
This study finds that bedroom cities show higher water productivity based on the standard efficiency benchmark of gallons per capita, but core cities that host large businesses show higher water productivity using a basket of economic values like taxes, payroll, and business revenues. Using a broader basket of water productivity benchmarks that consider more of the community’s socio-economic values and goals could inform more balanced and equitable water allocation decisions by policymakers.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Valérie Jean, Marie-Amélie Boucher, Anissa Frini, and Dominic Roussel
Hydrol. Earth Syst. Sci., 27, 3351–3373, https://doi.org/10.5194/hess-27-3351-2023, https://doi.org/10.5194/hess-27-3351-2023, 2023
Short summary
Short summary
Flood forecasts are only useful if they are understood correctly. They are also uncertain, and it is difficult to present all of the information about the forecast and its uncertainty on a map, as it is three dimensional (water depth and extent, in all directions). To overcome this, we interviewed 139 people to understand their preferences in terms of forecast visualization. We propose simple and effective ways of presenting flood forecast maps so that they can be understood and useful.
Franciele Maria Vanelli, Masato Kobiyama, and Mariana Madruga de Brito
Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022, https://doi.org/10.5194/hess-26-2301-2022, 2022
Short summary
Short summary
We conducted a systematic literature review of socio-hydrological studies applied to natural hazards and disaster research. Results indicate that there is a wide range of understanding of what
socialmeans in socio-hydrology, and monodisciplinary studies prevail. We expect to encourage socio-hydrologists to investigate different disasters using a more integrative approach that combines natural and social sciences tools by involving stakeholders and broadening the use of mixed methods.
Leon M. Hermans, Vishal Narain, Remi Kempers, Sharlene L. Gomes, Poulomi Banerjee, Rezaul Hasan, Mashfiqus Salehin, Shah Alam Khan, A. T. M. Zakir Hossain, Kazi Faisal Islam, Sheikh Nazmul Huda, Partha Sarathi Banerjee, Binoy Majumder, Soma Majumder, and Wil A. H. Thissen
Hydrol. Earth Syst. Sci., 26, 2201–2219, https://doi.org/10.5194/hess-26-2201-2022, https://doi.org/10.5194/hess-26-2201-2022, 2022
Short summary
Short summary
Transdisciplinary water research involves the co-creation of knowledge between various stakeholders to advance science and resolve complex societal problems. In this paper, we describe challenges and responses to address power and politics as part of transdisciplinary research. This is done based on a project that combined known principles for transdisciplinary research with a negotiated approach to support groundwater management in peri-urban villages in India and Bangladesh.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
John Conallin, Nathan Ning, Jennifer Bond, Nicholas Pawsey, Lee J. Baumgartner, Dwi Atminarso, Hannah McPherson, Wayne Robinson, and Garry Thorncraft
Hydrol. Earth Syst. Sci., 26, 1357–1370, https://doi.org/10.5194/hess-26-1357-2022, https://doi.org/10.5194/hess-26-1357-2022, 2022
Short summary
Short summary
Implementation failure is well known to be a major barrier to the success of water resource plans and policies. The motivations and abilities (MOTA) approach attempts to address this barrier, by providing a multi-stakeholder, multilevel tool to assess triggers, motivations and abilities supporting the implementation feasibility of plans. We review existing MOTA applications in various water management contexts and propose several complementary add-in applications to complement the approach.
Gopal Penny, Diogo Bolster, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 1187–1202, https://doi.org/10.5194/hess-26-1187-2022, https://doi.org/10.5194/hess-26-1187-2022, 2022
Short summary
Short summary
In residential areas with a high housing density, septic contamination of private wells raises multiple health concerns. Often, few regulations exist to ensure good water quality in such systems, and water quality is often left to the homeowner. To address the potential obstacles to effective management, we identify situations where misplaced economic incentives hinder effective policy to support water quality in such systems.
Jonatan Godinez Madrigal, Nora Van Cauwenbergh, Jaime Hoogesteger, Pamela Claure Gutierrez, and Pieter van der
Zaag
Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, https://doi.org/10.5194/hess-26-885-2022, 2022
Short summary
Short summary
Urban water systems are facing an increasing pressure on their water resources to guarantee safe and sufficient water access. Water managers often use tried and tested strategies like large supply augmentation infrastructure to address water problems. However, these projects do not address key problems and cause water conflicts. We conducted transdisciplinary research to show how water conflicts can change the development pathway of urban water systems by implementing alternative solutions.
Shuanglei Wu, Yongping Wei, and Xuemei Wang
Hydrol. Earth Syst. Sci., 25, 5381–5398, https://doi.org/10.5194/hess-25-5381-2021, https://doi.org/10.5194/hess-25-5381-2021, 2021
Short summary
Short summary
Using publications indexed in the Web of Science, we investigated water resources knowledge development at the river basin scale since 1900 and found that legacy-driven knowledge structures, increasingly homogenized management issues, and largely static cross-disciplinary collaborations dominated highly researched river basins. A structural shift of water resources knowledge development to cope with the rapidly changing hydrological systems and associated management issues is urgently needed.
Guang Yang and Paul Block
Hydrol. Earth Syst. Sci., 25, 3617–3634, https://doi.org/10.5194/hess-25-3617-2021, https://doi.org/10.5194/hess-25-3617-2021, 2021
Short summary
Short summary
There is a clear trade-off between reservoir hydropower generation and the variability in reservoir water release, which can be used to derive water-sharing policies and provide critical insights during riparian negotiations regarding downstream flows supplementing during drought conditions. This type of water-sharing policy can effectively mitigate the water use conflicts between upstream and downstream countries, especially during drought periods.
Leandro Carlos Sgroi, Miguel Angel Lovino, Ernesto Hugo Berbery, and Gabriela Viviana Müller
Hydrol. Earth Syst. Sci., 25, 2475–2490, https://doi.org/10.5194/hess-25-2475-2021, https://doi.org/10.5194/hess-25-2475-2021, 2021
Short summary
Short summary
This study advances the understanding and impacts of drought on wheat, corn, and soybean yields over Argentina's main crop region, where crop production is more intense and represents the main contribution to the country's gross domestic product. Our analysis focuses on drought properties, including the magnitude, frequency at different timescales, duration, and severity. This new approach can be helpful for regional decision-making and planning by water managers and in agricultural contexts.
Iman Haqiqi, Danielle S. Grogan, Thomas W. Hertel, and Wolfram Schlenker
Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, https://doi.org/10.5194/hess-25-551-2021, 2021
Short summary
Short summary
This study combines a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics focusing on corn in the United States during the 1981–2015 period. The findings suggest that metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes.
Anna L. Flack, Anthony S. Kiem, Tessa R. Vance, Carly R. Tozer, and Jason L. Roberts
Hydrol. Earth Syst. Sci., 24, 5699–5712, https://doi.org/10.5194/hess-24-5699-2020, https://doi.org/10.5194/hess-24-5699-2020, 2020
Short summary
Short summary
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there was agreement about the timing of wet and dry epochs in the pre-instrumental period (1000–1899). The results show that instrumental records (~1900–present) underestimate the full range of rainfall variability that has occurred. When coupled with projected impacts of climate change and growing demands, these results highlight major challenges for water resource management and infrastructure.
Jonatan Godinez-Madrigal, Nora Van Cauwenbergh, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 24, 4903–4921, https://doi.org/10.5194/hess-24-4903-2020, https://doi.org/10.5194/hess-24-4903-2020, 2020
Short summary
Short summary
Our research studies whether science depoliticizes water conflicts or instead conflicts politicize science–policy processes. We analyze a water conflict due to the development of large infrastructure. We interviewed key actors in the conflict and replicated the results of water resources models developed to solve the conflict. We found that knowledge produced in isolation has no positive effect in transforming the conflict; instead, its potential could be enhanced if produced collaboratively.
Sang-Hyun Lee, Amjad T. Assi, Bassel Daher, Fatima E. Mengoub, and Rabi H. Mohtar
Hydrol. Earth Syst. Sci., 24, 4727–4741, https://doi.org/10.5194/hess-24-4727-2020, https://doi.org/10.5194/hess-24-4727-2020, 2020
Short summary
Short summary
Proper water availability for the right place and time in a changing climate requires analysis of complex scientific, technical, socioeconomic, regulatory, and political issues. A Water-Energy-Food Nexus Phosphate (WEF-P) Tool, based on integrating supply chain processes, transportation, and water–energy footprints could assess the various scenarios to offer an effective means of ensuring sustainable management of limited resources to both agricultural areas and the phosphate industry.
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Short summary
Watershed classification can identify regions expected to respond similarly to disturbance. Methods should extend beyond hydrology to include other environmental questions, such as ecology and water quality. We developed a classification for the Canadian Prairie and identified seven classes defined by watershed characteristics, including elevation, climate, wetland density, and surficial geology. Results provide a basis for evaluating watershed response to land management and climate condition.
Arvid Bring and Steve W. Lyon
Hydrol. Earth Syst. Sci., 23, 2369–2378, https://doi.org/10.5194/hess-23-2369-2019, https://doi.org/10.5194/hess-23-2369-2019, 2019
Short summary
Short summary
Hydrology education strives to teach students both quantitative ability and complex professional skills. Our research shows that role-play simulations are useful to make students able to integrate various analytical skills in complicated settings while not interfering with traditional teaching that fosters their ability to solve mathematical problems. Despite this there are several potential challenging areas in using role-plays, and we therefore suggest ways around these potential roadblocks.
Jin-Young Hyun, Shih-Yu Huang, Yi-Chen Ethan Yang, Vincent Tidwell, and Jordan Macknick
Hydrol. Earth Syst. Sci., 23, 2261–2278, https://doi.org/10.5194/hess-23-2261-2019, https://doi.org/10.5194/hess-23-2261-2019, 2019
Short summary
Short summary
This study applies a two-way coupled agent-based model (ABM) with a river-reservoir management model (RiverWare) to analyze the role of risk perception in water management decisions using the Bayesian inference mapping joined with the cost–loss model. The calibration results capture the dynamics of historical irrigated area and streamflow changes and suggest that the proposed framework improves the representation of human decision-making processes compared to conventional rule-based ABMs.
Henning Lebrenz and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 1633–1648, https://doi.org/10.5194/hess-23-1633-2019, https://doi.org/10.5194/hess-23-1633-2019, 2019
Short summary
Short summary
Many variables, e.g., in hydrology, geology, and social sciences, are only observed at a few distinct measurement locations, and their actual distribution in the entire space remains unknown. We introduce the new geostatistical interpolation method of
quantile kriging, providing an improved estimator and associated uncertainty. It can also host variables, which would not fulfill the implicit presumptions of the traditional geostatistical interpolation methods.
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
Short summary
Do experts attach the same meaning as laypeople to terms often used in hydrology such as "river", "flooding" and "downstream"? In this study a survey was completed by 34 experts and 119 laypeople to answer this question. We found that there are some profound differences between experts and laypeople: words like "river" and "river basin" turn out to have a different interpretation between the two groups. However, when using pictures there is much more agreement between the groups.
James O. Knighton, Osamu Tsuda, Rebecca Elliott, and M. Todd Walter
Hydrol. Earth Syst. Sci., 22, 5657–5673, https://doi.org/10.5194/hess-22-5657-2018, https://doi.org/10.5194/hess-22-5657-2018, 2018
Short summary
Short summary
Decision-making for flood risk management is often the collective effort of professionals within government, NGOs, private practice, and advocacy groups. Our research investigates differences among flood experts within Tompkins County, New York (USA). We explore how they differ in their perceptions of flooding risk, desired project outcomes, and knowledge. We observe substantial differences among experts, and recommend formally acknowledging these perceptions when engaging in flood management.
Md Ruknul Ferdous, Anna Wesselink, Luigia Brandimarte, Kymo Slager, Margreet Zwarteveen, and Giuliano Di Baldassarre
Hydrol. Earth Syst. Sci., 22, 5159–5173, https://doi.org/10.5194/hess-22-5159-2018, https://doi.org/10.5194/hess-22-5159-2018, 2018
Short summary
Short summary
Socio-hydrological space (SHS) is a concept that enriches the study of socio-hydrology because it helps understand the detailed human–water interactions in a specific location. The concept suggests that the interactions between society and water are place-bound because of differences in social processes and river dynamics. This would be useful for developing interventions under disaster management, but also other development goals. SHS provides a new way of looking at socio-hydrological systems.
Xiao-Bo Luan, Ya-Li Yin, Pu-Te Wu, Shi-Kun Sun, Yu-Bao Wang, Xue-Rui Gao, and Jing Liu
Hydrol. Earth Syst. Sci., 22, 5111–5123, https://doi.org/10.5194/hess-22-5111-2018, https://doi.org/10.5194/hess-22-5111-2018, 2018
Short summary
Short summary
At present, the water footprint calculated by the quantitative method of crop production water footprint is only a field-scale water footprint, which does not contain all the water consumption of the crop growth process, so its calculated crop production water footprint is incomplete. In this study, the hydrological model SWAT was used to analyze the real water consumption in the course of crop growth, so that the actual water consumption of the crops could be more accurately reflected.
Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu
Hydrol. Earth Syst. Sci., 22, 2795–2809, https://doi.org/10.5194/hess-22-2795-2018, https://doi.org/10.5194/hess-22-2795-2018, 2018
Short summary
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
Erik Mostert
Hydrol. Earth Syst. Sci., 22, 317–329, https://doi.org/10.5194/hess-22-317-2018, https://doi.org/10.5194/hess-22-317-2018, 2018
Short summary
Short summary
This paper argues for an alternative approach for socio‒hydrology: detailed case study research. Detailed case study research can increase understanding of how society interacts with hydrology, offers more levers for management than coupled modelling, and facilitates interdisciplinary cooperation. The paper presents a case study of the Dommel Basin in the Netherlands and Belgium and compares this with a published model of the Kissimmee Basin in Florida.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Songjun Han, Fuqiang Tian, Ye Liu, and Xianhui Duan
Hydrol. Earth Syst. Sci., 21, 3619–3633, https://doi.org/10.5194/hess-21-3619-2017, https://doi.org/10.5194/hess-21-3619-2017, 2017
Short summary
Short summary
The history of the co-evolution of the coupled human–groundwater system in Cangzhou (a region with the most serious depression cone in the North China Plain) is analyzed with a particular focus on how the groundwater crisis unfolded and how people attempted to settle the crisis. The evolution of the system was substantially impacted by two droughts. Further restoration of groundwater environment could be anticipated, but the occurrence of drought still remains an undetermined external forcing.
Kharis Erasta Reza Pramana and Maurits Willem Ertsen
Hydrol. Earth Syst. Sci., 20, 4093–4115, https://doi.org/10.5194/hess-20-4093-2016, https://doi.org/10.5194/hess-20-4093-2016, 2016
Short summary
Short summary
The effects of human actions in small-scale water development initiatives and the associated hydrological research activities are basically unspecified. We argue that more explicit attention helps to design more appropriate answers to the challenges faced in field studies. A more systematic approach is proposed that would be useful when designing field projects: two sets of questions on (1) dealing with surprises and (2) cost–benefits of data gathering.
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016, https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary
Short summary
To help geo-scientists prepare for TV appearances, we review the scientific literature on effective science communication related to TV. We identify six main themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We provide a detailed case study as illustration for each theme.
Hazel Gibson, Iain S. Stewart, Sabine Pahl, and Alison Stokes
Hydrol. Earth Syst. Sci., 20, 1737–1749, https://doi.org/10.5194/hess-20-1737-2016, https://doi.org/10.5194/hess-20-1737-2016, 2016
Short summary
Short summary
This paper provides empirical evidence for the value of using a psychology-based approach to communication of hydrology and hazards. It demonstrates the use of the "mental models" approach to risk assessment used in a regional geoscience context to explore the conceptions of the geological subsurface between experts and non-experts, and how that impacts on communication.
J. F. Schyns, A. Y. Hoekstra, and M. J. Booij
Hydrol. Earth Syst. Sci., 19, 4581–4608, https://doi.org/10.5194/hess-19-4581-2015, https://doi.org/10.5194/hess-19-4581-2015, 2015
Short summary
Short summary
The paper draws attention to the fact that green water (soil moisture returning to the atmosphere through evaporation) is a scarce resource, because its availability is limited and there are competing demands for green water. Around 80 indicators of green water availability and scarcity are reviewed and classified based on their scope and purpose of measurement. This is useful in order to properly include limitations in green water availability in water scarcity assessments.
S. Zhou, Y. Huang, Y. Wei, and G. Wang
Hydrol. Earth Syst. Sci., 19, 3715–3726, https://doi.org/10.5194/hess-19-3715-2015, https://doi.org/10.5194/hess-19-3715-2015, 2015
V. Ernstsen, P. Olsen, and A. E. Rosenbom
Hydrol. Earth Syst. Sci., 19, 3475–3488, https://doi.org/10.5194/hess-19-3475-2015, https://doi.org/10.5194/hess-19-3475-2015, 2015
M. J. Halverson and S. W. Fleming
Hydrol. Earth Syst. Sci., 19, 3301–3318, https://doi.org/10.5194/hess-19-3301-2015, https://doi.org/10.5194/hess-19-3301-2015, 2015
A. F. Van Loon, S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. A. J. Van Lanen
Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, https://doi.org/10.5194/hess-19-1993-2015, 2015
Short summary
Short summary
Hydrological drought types in cold climates have complex causing factors and impacts. In Austria and Norway, a lack of snowmelt is mainly related to below-normal winter precipitation, and a lack of glaciermelt is mainly related to below-normal summer temperature. These and other hydrological drought types impacted hydropower production, water supply, and agriculture in Europe and the US in the recent and far past. For selected drought events in Norway impacts could be coupled to causing factors.
A. Fernald, S. Guldan, K. Boykin, A. Cibils, M. Gonzales, B. Hurd, S. Lopez, C. Ochoa, M. Ortiz, J. Rivera, S. Rodriguez, and C. Steele
Hydrol. Earth Syst. Sci., 19, 293–307, https://doi.org/10.5194/hess-19-293-2015, https://doi.org/10.5194/hess-19-293-2015, 2015
X. C. Cao, P. T. Wu, Y. B. Wang, and X. N. Zhao
Hydrol. Earth Syst. Sci., 18, 3165–3178, https://doi.org/10.5194/hess-18-3165-2014, https://doi.org/10.5194/hess-18-3165-2014, 2014
K. Madani, M. Zarezadeh, and S. Morid
Hydrol. Earth Syst. Sci., 18, 3055–3068, https://doi.org/10.5194/hess-18-3055-2014, https://doi.org/10.5194/hess-18-3055-2014, 2014
J. Chenoweth, M. Hadjikakou, and C. Zoumides
Hydrol. Earth Syst. Sci., 18, 2325–2342, https://doi.org/10.5194/hess-18-2325-2014, https://doi.org/10.5194/hess-18-2325-2014, 2014
S. Pande and M. Ertsen
Hydrol. Earth Syst. Sci., 18, 1745–1760, https://doi.org/10.5194/hess-18-1745-2014, https://doi.org/10.5194/hess-18-1745-2014, 2014
P. Gober and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1413–1422, https://doi.org/10.5194/hess-18-1413-2014, https://doi.org/10.5194/hess-18-1413-2014, 2014
H. Chang, P. Thiers, N. R. Netusil, J. A. Yeakley, G. Rollwagen-Bollens, S. M. Bollens, and S. Singh
Hydrol. Earth Syst. Sci., 18, 1383–1395, https://doi.org/10.5194/hess-18-1383-2014, https://doi.org/10.5194/hess-18-1383-2014, 2014
Cited articles
Adderley, E. E. and Bowen, E. G.: Lunar Component in Precipitation Data, Science, 137, 749–750, https://doi.org/10.1126/science.137.3532.749, 1962.
Amonkar, Y., Doss-Gollin, J., and Lall, U.: Compound Climate Risk: Diagnosing Clustered Regional Flooding at Inter-Annual and Longer Time Scales, Hydrology, 10, 67, https://doi.org/10.3390/hydrology10030067, 2023.
Australian Bureau of Meteorology: Weather station networks and details, Australian Bureau of Meteorology [data set], http://www.bom.gov.au/climate/data/lists_by_element/alphaAUS_139.txt, last access: 8 September 2022.
Baker, R. G. v.: Exploratory Analysis of Similarities in Solar Cycle Magnetic Phases with Southern Oscillation Index Fluctuations in Eastern Australia, Geogr. Res., 46, 380–398, https://doi.org/10.1111/j.1745-5871.2008.00537.x, 2008.
Barbieri, C. and Rampazzi, F. (Eds.): Earth-Moon Relationships: Proceedings of the Conference held in Padova, Italy at the Accademia Galileiana di Scienze Lettere ed Arti, 8–10 November 2000, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-010-0800-6, 2001.
Borowiak, A., King, A., and Lane, T.: The Link Between the Madden–Julian Oscillation and Rainfall Trends in Northwest Australia, Geophys. Res. Lett., 50, e2022GL101799, https://doi.org/10.1029/2022GL101799, 2023.
Bowen, E. G.: Kidson's relation between sunspot number and the movement of high pressure systems in Australia, NTRS Author Affiliations: Australian Embassy, NTRS Document ID: 19760007444NTRS Research Center: Legacy CDMS (CDMS), https://ntrs.nasa.gov/citations/19760007444 (last access: 1 August 2022), 1975.
Briffa, K. R.: Grasping At Shadows? A Selective Review of the Search for Sunspot-Related Variability in Tree Rings, in: The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate, edited by: Nesme-Ribes, E., Springer, Berlin, Heidelberg, 417–435, https://doi.org/10.1007/978-3-642-79257-1_26, 1994.
Burroughs, W. J.: Weather Cycles: Real or Imaginary?, 2nd edn., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511841088, 2003.
Camuffo, D.: Lunar Influences on Climate, in: Earth-Moon Relationships, edited by: Barbieri, C. and Rampazzi, F., Springer Netherlands, Dordrecht, 99–113, https://doi.org/10.1007/978-94-010-0800-6_10, 2001.
Chowdhury, R. K. and Beecham, S.: South Australian rainfall – trends and climate drivers, in: Water and Climate: Policy Implementation Challenges, Proceedings of the 2nd Practical Responses to Climate Change Conference, Water and Climate: Policy Implementation Challenges, Canberra, Australia, 1 May 2012, ISBN 9780858259119, 2012.
Cook, E. R., Meko, D. M., and Stockton, C. W.: A New Assessment of Possible Solar and Lunar Forcing of the Bidecadal Drought Rhythm in the Western United States, J. Climate, 10, 1343–1356, https://doi.org/10.1175/1520-0442(1997)010<1343:ANAOPS>2.0.CO;2, 1997.
CSIRO and Bureau of Meteorology: State of The Climate 2022, ©Gov. Aust., https://www.csiro.au/en/research/environmental-impacts/climate-change/State-of-the-Climate/Previous/State-of-the-Climate-2022 (last access: 10 June 2023), 2022.
Currie, R. G.: Detection of 18.6 year nodal induced drought in the Patagonian Andes, Geophys. Res. Lett., 10, 1089–1092, https://doi.org/10.1029/GL010i011p01089, 1983.
Currie, R. G.: Luni-solar 18.6- and solar cycle 10–11 year signals in Chinese dryness-wetness indices, Int. J. Climatol., 15, 497–515, https://doi.org/10.1002/joc.3370150503, 1995a.
Currie, R. G.: Luni-solar and solar cycle signals in lake Saki varves and further experiments, Int. J. Climatol., 15, 893–917, https://doi.org/10.1002/joc.3370150805, 1995b.
Currie, R. G.: Variance Contribution of Mn and Sc Signals to Nile River Data over a 30–8 Year Bandwidth, J. Coastal Res., 29–38, https://www.jstor.org/stable/25735621 (last access: 1 August 2022), 1995c.
Currie, R. G. and Vines, R. G.: Evidence For Luni–Solar Mn And Solar Cycle Sc Signals In Australian Rainfall Data, Int. J. Climatol., 16, 1243–1265, https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1243::AID-JOC85>3.0.CO;2-E, 1996.
Dai, Z., Du, J., Tang, Z., Ou, S., Brody, S., Mei, X., Jing, J., and Yu, S.: Detection of Linkage Between Solar and Lunar Cycles and Runoff of the World's Large Rivers, Earth Space Sci., 6, 914–930, https://doi.org/10.1029/2018EA000541, 2019.
Davi, N. K., Jacoby, G. C., Curtis, A. E., and Baatarbileg, N.: Extension of drought records for central Asia using tree rings: West-central Mongolia, J. Climate, 19, 288–299, https://doi.org/10.1175/JCLI3621.1, 2006.
Deloitte Touche Tohmatsu Limited: The new benchmark for catastrophe preparedness in Australia: A review of the insurance industry's response to the 2022 floods in South East Queensland and New South Wales (CAT221), Insurance Council of Australia (ICA), https://insurancecouncil.com.au/wp-content/uploads/2023/10/Deloitte-CAT221-Review_Embargoed-12.01am-Tuesday-31-October_The-new-benchmark-for-catastrophe-preparedness-in-Australia_Oct-2023.pdf (last access: 4 May 2024), 2023.
van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res., 49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
Farge, M.: Wavelet Transforms and Their Applications to Turbulence, Annu. Rev. Fluid Mech., 24, 395–458, https://doi.org/10.1146/annurev.fl.24.010192.002143, 1992.
Fernandes, R. C., Wanderley, H. S., Carvalho, A. L. D., and Frigo, E.: Relationship Between Extreme Rainfall Occurrences and Galactic Cosmic Rays over Natal/RN, Brazil: A Case Study, An. Acad. Bras. Ciênc., 95, e20211188, https://doi.org/10.1590/0001-3765202320211188, 2023.
Flack, A. L., Kiem, A. S., Vance, T. R., Tozer, C. R., and Roberts, J. L.: Comparison of published palaeoclimate records suitable for reconstructing annual to sub-decadal hydroclimatic variability in eastern Australia: implications for water resource management and planning, Hydrol. Earth Syst. Sci., 24, 5699–5712, https://doi.org/10.5194/hess-24-5699-2020, 2020.
Heinrich, I., Weidner, K., Helle, G., Vos, H., Lindesay, J., and Banks, J. C. G.: Interdecadal modulation of the relationship between ENSO, IPO and precipitation: insights from tree rings in Australia, Clim. Dynam., 33, 63–73, https://doi.org/10.1007/s00382-009-0544-5, 2009.
Ho, M., Kiem, A. S., and Verdon-Kidd, D. C.: A paleoclimate rainfall reconstruction in the Murray–Darling Basin (MDB), Australia: 2. Assessing hydroclimatic risk using paleoclimate records of wet and dry epochs, Water Resour. Res., 51, 8380–8396, https://doi.org/10.1002/2015WR017059, 2015.
Hossain, I., Rasel, H. M., Imteaz, M. A., and Mekanik, F.: Long-term seasonal rainfall forecasting: efficiency of linear modelling technique, Environ. Earth Sci., 77, 280, https://doi.org/10.1007/s12665-018-7444-0, 2018.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environ. Modell. Softw., 16, 309–330, https://doi.org/10.1016/S1364-8152(01)00008-1, 2001.
Keeling, C. D. and Whorf, T. P.: Possible forcing of global temperature by the oceanic tides, P. Natl. Acad. Sci. USA, 94, 8321–8328, https://doi.org/10.1073/pnas.94.16.8321, 1997.
Kiem, A. S., Franks, S. W., and Kuczera, G.: Multi-decadal variability of flood risk, Geophys. Res. Lett., 30, 1035, https://doi.org/10.1029/2002GL015992, 2003.
Kohyama, T. and Wallace, J. M.: Rainfall variations induced by the lunar gravitational atmospheric tide and their implications for the relationship between tropical rainfall and humidity, Geophys. Res. Lett., 43, 918–923, https://doi.org/10.1002/2015GL067342, 2016.
Krieger, S., Freij, N., Brazhe, A., Torrence, C., and Compo, G. P.: PyCWT: v0.3.0a22, GitHub [code], https://github.com/regeirk/pycwt (last access: 10 April 2023), 2023.
Leamon, R. J., McIntosh, S. W., and Marsh, D. R.: Termination of Solar Cycles and Correlated Tropospheric Variability, Earth Space Sci., 8, e2020EA001223, https://doi.org/10.1029/2020EA001223, 2021.
Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., and O'Leary, A.: PyWavelets: A Python package for wavelet analysis, J. Open Source Softw., 4, 1237, https://doi.org/10.21105/joss.01237, 2019a.
Lee, G. R., Gommers, R., Wohlfahrt, K, Wasilewski, F., O'Leary, A., Nahrstaedt, H., Hurtado, D. M., Sauvé, A., Arildsen, T., Oliveira, H., Pelt, D. M. Agrawal, A., Lan, S., Pelletier, M., Brett, M., Yu, F., Choudhary, S., Tricoli, D., and Craig, L. M.: PyWavelets/pywt: v1.1.1, Zenodo [code], https://doi.org/10.5281/zenodo.3510098, 2019b.
Lough, J. M.: Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century, Paleoceanography, 26, PA2201, https://doi.org/10.1029/2010PA002050, 2011.
McMahon, G. M. and Kiem, A. S.: Large floods in South East Queensland, Australia: Is it valid to assume they occur randomly?, Australas. J. Water Resour., 22, 4–14, https://doi.org/10.1080/13241583.2018.1446677, 2018.
Meneghini, B., Simmonds, I., and Smith, I. N.: Association between Australian rainfall and the Southern Annular Mode, Int. J. Climatol., 27, 109–121, https://doi.org/10.1002/joc.1370, 2007.
Murumkar, A. R. and Arya, D. S.: Trend and Periodicity Analysis in Rainfall Pattern of Nira Basin, Central India, Am. J. Clim. Change, 03, 60–70, https://doi.org/10.4236/ajcc.2014.31006, 2014.
Nicholls, N., Drosdowsky, W., and Lavery, B.: Australian rainfall variability and change, Weather, 52, 66–72, https://doi.org/10.1002/j.1477-8696.1997.tb06274.x, 1997.
Nisancioglu, K. H.: Plio-Pleistocene Glacial Cycles and Milankovitch Variability, in: Encyclopedia of Ocean Sciences, 2nd edn., edited by: Steele, J. H., Academic Press, Oxford, 504–513, https://doi.org/10.1016/B978-012374473-9.00702-5, 2009.
Noble, J. C. and Vines, R. G.: Fire Studies In Mallee (Eucalyptus Spp.) Communities Of Western New South Wales: Grass Fuel Dynamics And Associated Weather Patterns, Rangeland J., 15, 270–297, https://doi.org/10.1071/rj9930270, 1993.
Ormaza-González, F. I., Espinoza-Celi, M. E., and Roa-López, H. M.: Did Schwabe cycles 19–24 influence the ENSO events, PDO, and AMO indexes in the Pacific and Atlantic Oceans?, Global Planet. Change, 217, 103928, https://doi.org/10.1016/j.gloplacha.2022.103928, 2022.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Peng, D., Hill, E. M., Meltzner, A. J., and Switzer, A. D.: Tide Gauge Records Show That the 18.61-Year Nodal Tidal Cycle Can Change High Water Levels by up to 30 cm, J. Geophys. Res.-Oceans, 124, 736–749, https://doi.org/10.1029/2018JC014695, 2019.
Qu, W., Zhao, J., Huang, F., and Deng, S.: Correlation between the 22 year solar magnetic cycle and the 22 year quasicycle in the earth's atmospheric temperature, Astron. J., 144, 6, https://doi.org/10.1088/0004-6256/144/1/6, 2012.
Rashid, Md. M., Beecham, S., and Chowdhury, R. K.: Assessment of trends in point rainfall using Continuous Wavelet Transforms, Adv. Water Resour., 82, 1–15, https://doi.org/10.1016/j.advwatres.2015.04.006, 2015.
Roberts, J. and Roberts, T. D.: Use of the Butterworth low-pass filter for oceanographic data, J. Geophys. Res.-Oceans, 83, 5510–5514, https://doi.org/10.1029/JC083iC11p05510, 1978.
Royal Observatory of Belgium: Daily total sunspot number since 1818 (taches solaires), SILSO [data set], Royal Observatory of Belgium, Brussels, https://data.opendatasoft.com/explore/embed/dataset/daily-sunspot-number@datastro/table/?sort=-column_4, last access: 8 February 2024.
Santos, C. and Morais, B.: Identification of precipitation zones within São Francisco River basin (Brazil) by global wavelet power spectra, Hydrol. Sci. J., 58, 789–796, https://doi.org/10.1080/02626667.2013.778412, 2013.
Sarachik, E. S. and Cane, M. A.: The El Niño–Southern Oscillation Phenomenon, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511817496, 2010.
Sauvé, A. and Nowacki, D.: scaleogram: v0.9.5, GitHub [code], https://github.com/alsauve/scaleogram (last access: 31 October 2022), 2023.
Scientific Information for Land Owners (SILO): SILO Climate Data, Department of Environment, Science and Innovation, Queensland Government [data set], https://www.longpaddock.qld.gov.au/silo/view-point-data/ (last access: 29 September 2022), 2022.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and Statistical Modeling with Python, Python in Science Conference, Austin, Texas, 28 June–3 July 2010, 92–96, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Simmonds, I. and Hope, P.: Persistence Characteristics of Australian Rainfall Anomalies, Int. J. Climatol., 17, 597–613, https://doi.org/10.1002/(SICI)1097-0088(199705)17:6<597::AID-JOC173>3.0.CO;2-V, 1997.
Sorokhtin, O. G., Chilingar, G. V., Sorokhtin, N. O., Liu, M., and Khilyuk, L. F.: Jupiter's effect on Earth's climate, Environ. Earth Sci., 73, 4091–4097, https://doi.org/10.1007/s12665-014-3694-7, 2015.
Stéphane, M. (Ed.): A Wavelet Tour of Signal Processing, 3rd edn., Academic Press, Boston, https://doi.org/10.1016/B978-0-12-374370-1.50001-9, 2009.
Sun, F. and Yu, J.-Y.: A 10–15-Yr Modulation Cycle of ENSO Intensity, J. Climate, 22, 1718–1735, https://doi.org/10.1175/2008JCLI2285.1, 2009.
Svoboda, M., Hayes, M., and Wood, D. A.: Standardized Precipitation Index User Guide, WMO-No. 1090, World Meteorological Organization, Geneva, ISBN 978-92-63-11091-6, https://library.wmo.int/viewer/39629 (last access: 6 October 2023), 2012.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Tozer, C. R., Risbey, J. S., Monselesan, D. P., Pook, M. J., Irving, D., Ramesh, N., Reddy, J., and Squire, D. T.: Impacts of ENSO on Australian rainfall: what not to expect, J. South. Hemisphere Earth Syst. Sci., 73, 77–81, https://doi.org/10.1071/ES22034, 2023.
Treloar, N. C.: Luni-solar tidal influences on climate variability, Int. J. Climatol., 22, 1527–1542, https://doi.org/10.1002/joc.783, 2002.
Trewin, B., Braganza, K., Fawcett, R., Grainger, S., Jovanovic, B., Jones, D., Martin, D., Smalley, R., and Webb, V.: An updated long-term homogenized daily temperature data set for Australia, Geosci. Data J., 7, 149–169, https://doi.org/10.1002/gdj3.95, 2020.
Ukkola, A. M., Roderick, M. L., Barker, A., and Pitman, A. J.: Exploring the stationarity of Australian temperature, precipitation and pan evaporation records over the last century, Environ. Res. Lett., 14, 124035, https://doi.org/10.1088/1748-9326/ab545c, 2019.
VanderPlas, J.: Python Data Science Handbook, O'Reilly Media, Inc., ISBN 9781491912058, 2016.
Vines, R. G.: Australian rainfall patterns and the southern oscillation. 2. A regional perspective in relation to Luni-solar (Mn) and Solar-cycle (Sc) signals, Rangeland J., 30, 349–359, https://doi.org/10.1071/RJ07025, 2008.
Vines, R. G., Noble, J. C., and Marsden, S. G.: Australian rainfall patterns and the southern oscillation. 1. A continental perspective, Pac. Conserv. Biol., 10, 28–48, https://doi.org/10.1071/pc040028, 2004.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Williams, A. P., Anchukaitis, K. J., Woodhouse, C. A., Meko, D. M., Cook, B. I., Bolles, K., and Cook, E. R.: Tree Rings and Observations Suggest No Stable Cycles in Sierra Nevada Cool-Season Precipitation, Water Resour. Res., 57, e2020WR028599, https://doi.org/10.1029/2020WR028599, 2021.
World Meteorological Organization (WMO): Guidelines on the Definition and Characterization of Extreme Weather and Climate Events, WMO-No. 1310, Geneva, ISBN 978-92-63-11310-8, https://digitallibrary.un.org/record/4012890?v=pdf (last access: 25 July 2023), 2023.
Yasuda, I.: The 18.6 year period moon-tidal cycle in Pacific Decadal Oscillation reconstructed from tree-rings in western North America, Geophys. Res. Lett., 36, L05605, https://doi.org/10.1029/2008GL036880, 2009.
Yasuda, I.: Impact of the astronomical lunar 18.6 yr tidal cycle on El-Niño and Southern Oscillation, Sci. Rep., 8, 15206, https://doi.org/10.1038/s41598-018-33526-4, 2018.
Short summary
This study investigated rainfall in eastern Australia to search for patterns that may aid in predicting flood and drought. The current popular consensus is that such cycles do not exist. We analysed 130 years of rainfall using a very modern technique for identifying cycles in complex signals. The results showed strong evidence of three clear cycles of 12.9, 20.4 and 29.1 years with a confidence of 99.99 %. When combined, they showed an 80 % alignment with years of extremely high and low rainfall.
This study investigated rainfall in eastern Australia to search for patterns that may aid in...