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Abstract. Extremes of Australian rainfall have profound
economic, ecological and societal impacts; however, the
current forecast horizon is limited to a few months. This
study investigates interdecadal periodicity in annual rainfall
records across eastern Australia. Wavelet analysis was con-
ducted on rainfall data from 347 sites covering 130 years
(1890–2020). Prominent cycles were extracted from each
site and clustered using a Gaussian mixture model. This re-
vealed three principal cycles centred around 12.9, 20.4 and
29.1 years that were highly significant over red noise using a
t test (p < 0.0001). Overall, the three cycles combined had a
mean contribution to the total rainfall variance (R2) of 13 %
across all of the sites, but this was up to 29 % at individual
sites. Both the 12.9- and 20.4-year cycles were detected at
over 95 % of the sites. The strength of each cycle varied over
time, and this amplitude modulation of the signal showed a
systematic movement across the area investigated. Eighty-six
percent of extremely wet years fell within the positive phase
of the combined reconstruction, with 80 % of extremely dry
years falling in the negative phase. These results indicate un-
derlying periodicity in annual rainfall across eastern Aus-
tralia, with the potential to build this into long-term forecasts.
This concept has been suggested in the past but has not been
rigorously tested. These findings open new paths for research
into rainfall patterns in Australia and internationally. They
also have broad implications for the management of water
resources across all sectors.

1 Introduction

The peaks and troughs of Australian annual rainfall are
known to be formidable (Nicholls et al., 1997). The highs can
lead to extreme downpours like the 2022 floods that resulted
in 5000 uninhabitable homes and USD 6 billion in insured

damages across eastern Australia (Deloitte Touche Tohmatsu
Limited, 2023). The lows can extend for multiple years, as
with the Millennium drought (2001–2009), the true agricul-
tural, economic and ecological impacts of which are still dif-
ficult to quantify accurately (van Dijk et al., 2013).

Are these extreme peaks and troughs random? Or could
they be cyclical? Several researchers have searched for
decadal patterns in precipitation with the goal of extending
the limited forecast horizon of approximately 3 months (Hos-
sain et al., 2018). Research over the past century into period-
icity has predominantly focused on lunisolar influence (Cur-
rie and Vines, 1996; Noble and Vines, 1993), though more
recent studies have moved towards alignment with climate
drivers or a reluctance to name the source of the patterns ob-
served (Rashid et al., 2015; Williams et al., 2021).

The lunisolar influence is generally thought to arise from
either the 18.6-year lunar nodal cycle (LNC) or the ∼ 11-
year sunspot cycle. Findings have been intriguing, with
some studies claiming that up to 85 % of extreme flood and
drought events in the world’s major rivers occur in resonance
with lunisolar cycles (Dai et al., 2019). Correlations have
been found in South America (Currie, 1983), North Amer-
ica (Cook et al., 1997), China (Currie, 1995a), Mongolia
(Davi et al., 2006), Egypt (Currie, 1995c) and Russia (Cur-
rie, 1995b). These studies have generally faced criticism for
a lack of statistical rigour (Briffa, 1994; Burroughs, 2003)
and have failed to gain wide acceptance.

In Australia, it has been estimated that 19 % of the total
rainfall variance can be attributed to the LNC and sunspot
cycle (Currie and Vines, 1996). Noble and Vines (1993) used
these two cycles to project forward annual rainfall in the
Mallee (New South Wales – NSW) through to the end of
the century, accurately predicting the Millennium drought 7
years before it began. Follow-up studies on the state capitals
(Vines et al., 2004), district averages in eastern Australia and
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the Southern Oscillation Index (Vines, 2008) developed this
concept further but lacked an objective statistical metric to
support the findings.

The interdecadal signals in these earlier studies were iso-
lated using a series of custom bandpass filters (Bowen,
1975), followed by maximum entropy spectrum analysis
(MESA). The resultant waveforms showed both amplitude
and frequency modulation, which is not uncommon in or-
bital drivers of natural phenomena such as the Milankovitch
cycles (Nisancioglu, 2009). However, matching to the un-
derlying rainfall data required a phase change (i.e. inver-
sion) of the 18.6-year LNC approximately every 100 years.
Furthermore, the timing of this phase inversion was said to
move slowly southward down the country (Currie and Vines,
1996). The authors attempted to visualise this migration us-
ing a series of polarity maps that tracked wet and dry align-
ments with the LNC peak, but they could provide no expla-
nation for the phenomenon.

The lack of a plausible mechanism for the phase change
was a challenge to the lunisolar interpretation of rainfall pat-
terns and possibly a contributor to this work not being more
influential. The influence of the LNC on rainfall was gen-
erally theorised to act through additional gravitational pull
on the oceans and atmosphere (Noble and Vines, 1993). At-
mospheric tides are known to affect air pressure, which has
subtle implications for wind fields, precipitation variations,
thunderstorm frequency and temperature (Barbieri and Ram-
pazzi, 2001). Calculations of solar and lunar tidal power have
estimated that they could account for more than half of that
required for vertical mixing in the ocean, with the upwelling
of cold water periodically causing changes in sea surface
temperature (SST) in the Pacific Ocean. SST has an estab-
lished relationship with rainfall in eastern Australia (Keeling
and Whorf, 1997; Treloar, 2002).

The relationship between cooling of SST in the eastern
equatorial Pacific and rainfall in eastern Australia through
the El Niño–Southern Oscillation (ENSO) is well estab-
lished (Sarachik and Cane, 2010). Studies have also sug-
gested that the 18.6-year LNC has a predictive capacity for
ENSO events extending back to AD 1704 (Yasuda, 2018).
Kiem et al. (2003) suggested that ENSO was the dominant
driver of flood risk in NSW, with some modulation from
the Interdecadal Pacific Oscillation (IPO). Later studies sug-
gested that 80 % of large floods across most of eastern Aus-
tralia fall in 20- to 40-year cycles modulated by ENSO and
IPO (McMahon and Kiem, 2018).

This paper revisits the concept of interdecadal cycles in
eastern Australian annual rainfall with the aim of resolving
some of these disparate earlier findings. A larger and more
complete dataset was drawn on than in previous research,
covering 130 years of gauged rainfall across 347 stations.
Wavelet analysis was used to identify the variations in cy-
cle amplitude and frequency. Automated extraction of domi-
nant frequencies allows for the analysis and aggregation of a
large number of sites in the search for common cycles, freed

from the assumptions of potential drivers proposed by the
earlier research noted above. Moreover, clustering analysis
was used to statistically verify the observed cycles, with three
dominant cycles identified in the rainfall records. Visualising
the spatial and temporal changes in these cycles across all of
the sites provides an explanation for the previously described
phase change.

2 Study area and data

A comprehensive list of 17 740 Australian weather sta-
tions was obtained from the Bureau of Meteorology Climate
Data Online web portal (Australian Bureau of Meteorology,
2022). These stations were filtered to maximise the length of
the record (> 120 years, continuous up to 2022) and quality
(> 90% the local record). This filtering was aimed at collect-
ing the highest-quality gauged data to minimise uncertainty
from using reconstructed rainfall. Few sites across western
and central Australia met these criteria (< 15% of the to-
tal), driving the decision to focus on eastern Australia (lat-
itude: −8° to −45° S; longitude: 133° to 155° E). This re-
sulted in a list of 355 sites then used to access the infilled
daily station data from 1889 to 2022 via the SILO database
hosted by the Queensland Department of Environment and
Science (Jeffrey et al., 2001). Eight sites were not available
from SILO, reducing the total to 347. The daily rainfall data
were summed by calendar year to give the total annual rain-
fall for each station.

3 Materials and methods

The method of analysis was broken down into three main sec-
tions to test specific characteristics (Fig. 1): Fig. 1a identifies
prominent cycles by cluster analysis of the wavelet global
mean amplitude spectrum peaks over the full time series,
Fig. 1b visualises the temporal and spatial variation of the
dominant cycle by decade and Fig. 1c reconstructs the promi-
nent cycles for validation and assessment of contributions to
rainfall.

3.1 Identifying prominent cycles: cluster analysis of
global wavelet spectrum peaks

Wavelet analysis was used to find all prominent cycles at
each site across the full 130-year time series, and Gaussian
mixture models (GMMs) were used to cluster the results
across all 347 sites. Wavelet analysis is a time–frequency rep-
resentation of a signal in the time domain and is frequently
used in the exploration of periodicity in rainfall (Chowdhury
and Beecham, 2012; Murumkar and Arya, 2014; Santos and
Morais, 2013; Williams et al., 2021). It has advantages over
traditional wave decomposition techniques, such as Fourier
transform, in that it allows for the analysis of non-stationary
processes and could therefore accommodate the frequency
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Figure 1. A flow diagram summary of the method for each of the main sections.

and magnitude modulation of cycles observed by previous
researchers (Currie and Vines, 1996; Vines et al., 2004). It is
also computationally efficient and allows for easy visualisa-
tion of cycle power across the spectrum, which can deepen
the understanding of how certain cycles may be interacting
to produce an observed effect.

Three separate wavelet packages were used within the
Python language, each with specific strengths. The Py-
Wavelets package (Lee et al., 2019a) was used for decompos-
ing the signal, the scaleogram package for clear visualisation
of the wavelet transform and PyCWT for significance testing
of each extracted periodicity over white (random) and red
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(random with AR(1) autocorrelation) noise. In all instances,
we used the standard Morlet wavelet function which is de-
fined by Eq. (1) (Torrence and Compo, 1998):

ψ0(η)= π
−1/4eiω0ηe−η

2/2, (1)

where η is a dimensionless time parameter and ω0 is a non-
dimensional frequency used to eliminate units of measure-
ment, generally taken as 6 (Farge, 1992). This essentially
defines a complex-plane sinusoidal function with a Gaus-
sian envelope. PyWavelets allows for the parameterisation of
wavelet bandwidth, which defines the width of this envelope
in the time domain. A balance needs to be struck between
time and frequency localisation, with wider bandwidths pro-
viding increased accuracy of frequency estimation but low-
ered temporal resolution. In the initial extraction of cycles
from the wavelet, a higher premium was placed on capturing
more precise frequency values by setting the bandwidth to
6. We used a continuous wavelet transform, where a scaled
and translated version of the function ψ0(η) is created by a
discrete sequence of xn (Torrence and Compo, 1998):

Wn(s)=
∑N−1

n′=0
xn′ψ∗

[
(n′− n)δt

s

]
, (2)

where (∗) is the complex conjugate. The wavelet spectrum is
generated by varying the scale (s) and translation along the
localised time index (n). This allows estimation and visual-
isation of how the amplitude and frequency of each compo-
nent cycle in the raw data develop over the time series. For
scale, we used the inverse of frequency to create cycle peri-
ods from 1 to 40 years, in 0.1-year increments, to provide a
clear resolution of the wavelet spectrum. Any finer resolution
would have increased computational requirements without a
noticeable improvement in accuracy.

The upper limit of 40 years was informed by the cone of
influence (COI). The wavelet function may extend past the
limit of the analysed time series as it approaches the bound-
ary. This overhang is generally padded with zeros, and the
magnitude of the spectrum within this region may be less re-
liable. For a Morlet function, the COI shortening at each end
of the series is proportional to the period by a factor of

√
2

(Torrence and Compo, 1998). Accordingly, for a time series
of 130 years, a 40-year period will only achieve a single cy-
cle within the COI, and this can be seen as the practical upper
limit of this technique for a time series of this length.

To automate the extraction of prominent cycles from the
wavelet results, we generated a global mean amplitude spec-
trum. This was achieved by averaging the absolute value of
the wavelet coefficients for each frequency scale over the full
time series and plotting the magnitude against the cycle pe-
riod. Averaging was used to smooth out variations and pro-
vide a clearer representation of the spectral data. We then
used the SciPy Signal module Find Peaks to automate the
listing of all cycle periods found at that site (Virtanen et al.,
2020). This process was repeated for each station to give a

complete account of all cycles between 1 and 40 years in
eastern Australia from 1889 to 2022.

We took this complete list of cycles and ran a GMM to
find significant clusters. We used the GaussianMixture object
developed by scikit-learn (Pedregosa et al., 2011) to investi-
gate which cycle periods were most prominent. GMMs are a
form of unsupervised learning that assume that the dataset is
a mixture of a finite number of Gaussian distributions with
unknown parameters that can then be used to identify clus-
ters. This approach has an advantage over “hard” clustering
techniques in its ability to generate a probability distribution
for each group. The package of scikit-learn also allowed for
the optimum number of clusters to be independently deter-
mined by a Bayesian information criterion (BIC) rather than
having to be defined by the user. This BIC value was used
to define the ideal number of clusters in the full list of cy-
cles. The default package method of initialising the weight
was kept (kmeans), but the number of random seeds was in-
creased to 500. GMMs can sometimes miss the globally op-
timal solution, and thus a high number of random initiali-
sations can help to overcome this issue (VanderPlas, 2016).
The 0.1-year resolution of the wavelet analysis is more pre-
cise than can be achieved realistically using this method, and
hence a Gaussian distribution of µ± 2σ was used to capture
the possible range for each cluster.

To test the statistical significance of the clustering, we
used a standard t test to compare each prominent cycle clus-
ter with its randomly generated equivalent. The Statsmodels
Time Series Analysis (TSA) Autoregressive Integrated Mov-
ing Average (ARIMA) package was used to calculate the first-
order autoregressive AR(1) parameter (α) and standard devi-
ation (σ ) for each station time series (Seabold and Perktold,
2010). This allowed for the generation of a custom red noise
time series for every site. Lag-1 autocorrelation of annual
rainfall over eastern Australia is relatively small (α < 0.13)
and not significantly different from zero at the 95 % confi-
dence level (Simmonds and Hope, 1997). However, it can
be higher at individual sites, and the use of red noise was
thought to provide a more robust test. The wavelet analysis
and peak extraction above were then repeated using the ran-
domly generated data for all 347 sites, followed by GMM
clustering.

The t test was constructed to assess the central tendency
of each cluster compared to red noise (Fig. 1a). The null hy-
pothesis was that there would be no significant difference in
the spread of periods between the two groups, indicating a
random distribution of periods across all of the sites. The ab-
solute residual was calculated by subtracting each data point
(i.e. station) within a cluster from the cluster mean for both
the annual rainfall data (group1) and randomly generated
data (group2). We adopted a highly conservative type-1 error
rate of 0.0001, given the length of the dataset. Calculations
were done using the SciPy Statsttest_ind module (Virtanen
et al., 2020).
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We further sought to control for the influence of any trend
in rainfall. Strong trends can introduce harmonic distortion
and artefacts into the higher frequencies of the wavelet spec-
trum analysis (Stéphane, 2009). Measuring the effect of cli-
mate change on annual rainfall in eastern Australia is com-
plicated, but some regional and seasonal trends have been
identified in recent years (CSIRO and Bureau of Meteorol-
ogy, 2022). Despite the well-established trend in surface air
temperature (Trewin et al., 2020), analysis of annual Aus-
tralian rainfall suggests that there is no strong evidence of
non-stationary rainfall for 90.5 % of the land area over the
past century (Ukkola et al., 2019). To check for a trend in
the SILO rainfall stations used in this study, we applied an
augmented Dickey–Fuller (ADF) test for stationarity. We re-
peated the wavelet analysis and GMM clustering, having re-
moved a linear least-squares fit trend from all of the station
data using SciPy detrend (Virtanen et al., 2020), and com-
pared the two sets of results.

3.2 Visualising spatial and temporal changes in the
dominant cycle

Previous authors have noted spatial and temporal variability
in cycle influence, which is reflected in amplitude modula-
tion of the signal. For example, the timing of the 18.6-year
LNC “phase inversion” was said to move slowly south from
1860 to 1930 (Currie and Vines, 1996). To investigate this ef-
fect over time, the full wavelet spectra for each site were seg-
mented into 10-year increments from 1890 to 2020. We used
a Butterworth bandpass filter to focus solely on the range
containing the significant cycles obtained from the GMM.

The Butterworth bandpass filter is commonly used in sig-
nal processing and climate analysis due to minimal distor-
tion of the transmitted frequencies that pass through the filter
(Roberts and Roberts, 1978; Sun and Yu, 2009). Selecting a
wide band of cycle periods from 9 to 28 years with a gentle
roll-off (order= 3) allowed us to repeat the test with a focus
solely on the range of frequencies under investigation and
minimise artefacts.

Running wavelet analysis on the bandpass-filtered data,
we generated a mean amplitude spectrum for each decade
and once again used the Find Peaks module to extract the
dominant cycle, defined as the peak with the highest mag-
nitude. This allowed us to visualise the changes in all 347
wavelet spectra together over time by plotting the dominant
cycle at each site in 13 time steps of 10 years over the full
130-year time frame.

Significance testing was also completed for each extracted
cycle, over each decade, using the PyCWT package. The null
hypothesis of this method assumes that the time series has
a mean power spectrum defined by an AR(1) time series of
100 000 Gaussian white noise (α = 0) or red noise (α > 0)
iterations. A peak in the normalised wavelet power spectrum
that is significantly above this background level can be as-
sumed to be a true feature (Torrence and Compo, 1998). For

each site, the wavelet spectrum was also generated using the
PyCWT package, but in this case the unfiltered annual rainfall
data were used as the input, with the default bandwidth of 1.5
providing higher time localisation accuracy. Each extracted
cycle from the mean amplitude spectrum of the bandpass-
filtered data was tested against these results for its signifi-
cance over white and red noise. This method was developed
to test the presence of each cycle, independent of distortions
introduced by trend, filtering or individual package settings.

3.3 Reconstruction of the prominent cycles and
contributions to rainfall

To quantify the influence of prominent cycles found using the
GMM, we reconstructed the waveforms by extracting three
fixed cycles from the wavelet transform of each site. The
mean value of each significant GMM cluster was used rather
than the individual peak extracted from the global mean am-
plitude spectrum at that site. This is because, if we assume
that the cycles each represent some fixed and enduring nat-
ural driver, then we are interested in the total influence of
that specific frequency at each site. The distribution observed
for each cycle may represent variance in the accuracy of the
wavelet transform relative to the noise, in which case the
middle frequency is the best estimate. Wavelet analysis re-
turns an array of coefficients corresponding to the continu-
ous wavelet transform of the input signal for the frequency
scales selected. We extracted the real component from this
array for each selected frequency to visualise the waveform
of that cycle over the full time series, including the modu-
lated amplitude.

We evaluated the coefficient of determination (R2) be-
tween each cycle waveform and the annual rainfall anomaly.
Since we are looking at cycles of between 10 and 40 years,
the R2 value may be excessively penalised by the large inter-
annual variance of Australian rainfall. Therefore, as an addi-
tional measure of signal to noise, we recorded the maximum
amplitude of the waveform and expressed this as a percent-
age of the standard deviation for each station (amplitude/σ ).
Adding together the time series of all three cycles gave a
combined reconstruction for which the R2 was also calcu-
lated. To account for the edge effects of the COI, all R2 val-
ues were only calculated between 1910 and 2000.

We sought to test the alignment of these cycles with years
of extremely high or low rainfall at each station as a mea-
sure of their relationship with flood and drought. We used the
Annual Standardised Precipitation Index (SPI-12) to char-
acterise extreme rainfall years (World Meteorological Orga-
nization, 2023). The gamma package from SciPy Stats was
used to calculate the shape, location and scale of a gamma
distribution from the raw annual rainfall record at each site.
This distribution was then transformed into a normal dis-
tribution with a mean of zero, with values above or below
±2σ defined as extreme (Svoboda et al., 2012). This gave us
a threshold value for extremely wet years (SPI> 2) or ex-
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Figure 2. Results for the extraction of cycles from 1 to 40 years using wavelet analysis for all 347 sites in eastern Australia. The filled
light-grey histogram represents the cumulative number of sites for each cycle length. The histogram outline shows the results of the same
method using generated red noise. There are nine distributions shown from the GMM, with the mean (µ) and standard distribution (σ )
for each cluster listed above. The p value represents the results of the t test compared to the red noise for each cluster. The three cycles
centred at 12.9, 20.4 and 29.1 years that were highly significant are coloured in blue, red and green, respectively. The non-significant cluster
distributions are coloured in grey.

tremely dry years (SPI<−2) at each station. If the annual
rainfall exceeded either threshold value, it was counted and
compared to the phase of the combined reconstruction. For
example, if an extremely dry year (SPI<−2) fell within the
negative phase of the combined reconstruction, it was said to
be in alignment.

4 Results

The results are separated into the three major sections de-
scribed in the “Materials and methods” section. Section 4.1
explores the signals above those which could occur ran-
domly. In Sect. 4.2 we investigate how the influence of these
cycles has changed over time. Finally, in Sect. 4.3, the promi-
nent cycles are reconstructed to visually and quantitatively
confirm the results of the previous sections.

The wavelet analysis revealed three cycles present at a
large number of sites across eastern Australia (Fig. 2). These
were centred (µ±2σ ) around 12.9 (11.4–14.4 years) present
at 321 sites (93 %), 20.4 (18.3–22.5 years) present at 337
sites (97 %) and 29.1 (26.3–31.9 years) present at 104 sites
(30 %).

Another six clusters are present in the GMM results. A cy-
cle at 8.3 years was also significantly different to red noise,
but the high σ of 1.12 years relative to the mean would im-
ply a wide range of periods unlikely to represent a single

cycle (5.9–10.3 years). A cluster at 5.3 years was assumed to
represent ENSO, which shows quasi-periodicity between 2
and 7 years (Sarachik and Cane, 2010). This variation would
result in a wider distribution than observed and is not signif-
icantly different from red noise as it does not have a stable
periodicity. Similarly, the cluster at 3.1 years was indistin-
guishable from random noise. In longer time periods, there
are three clusters between 25 and 40 years. The separation
of the 33.1- and 36.5-year centred clusters from red noise is
not significant, and the number of sites exhibiting the cycle is
only slightly over what may be expected from random data.

Returning to the main clusters, the cluster at 29.1 years is
highly significant although present at less than one-third of
the sites, which is far fewer than the∼ 13- and∼ 20-year cy-
cles. Despite its reduced prevalence, it can still have a marked
influence at sites where it is present (Fig. 3). In this individ-
ual wavelet spectrum, the magnitude of the ∼ 30-year cycle
(green) suggests that it has the strongest influence over the
whole time series at this station. The global mean amplitude
spectrum (Fig. 3d) shows that, although the power is similar
for the ∼ 13- and ∼ 20-year cycles, the timing of their influ-
ence in the wavelet spectra (Fig. 3c) is staggered. From 1890
to 1950 the 19.5-year cycle is dominant, but it then changes
to the 12.4-year cycle.
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Figure 3. Sample of a single site analysis at Telegraph Point in NSW (SILO no. 60031, mean rainfall= 1314mmyr−1). (a) Annual rainfall
anomaly time series with the linear trend (orange), (b) station location and (c) wavelet spectrum up to 50 years showing three prominent
cycles in the 10- to 40-year range, with increasing power represented by shades of red. (d) The cycle periods extracted from the global mean
amplitude spectrum of the wavelet results, in this case the prominent cycles, are 12.4 (blue), 19.5 (red) and 30.1 years (green). The cycles
are coloured equivalently to the GMM in Fig. 2. (d, e) Removal of the linear trend had little noticeable effect on cycle lengths: the 12.4-year
cycle lengthened slightly to 12.6 years, and the 39.9-year cycle was no longer picked up by the Find Peaks module. All the others remained
unchanged.

4.1 Identifying prominent cycles: cluster analysis of
global wavelet spectrum peaks

This changing of the dominance between the ∼ 13- and
∼ 20-year cycles was observed in most of the individual
wavelet spectra. The influence of the ∼ 30-year cycle tended
to be more consistent across the time frame observed, though

this may be due to the length of the cycle within the time
frame observed and the COI. The example in Fig. 3 shows
that the magnitude of the ∼ 30-year cycle can obscure the
change in dominance between the other two cycles in the au-
tomated extraction. For this reason, along with its presence at
a limited number of sites, we chose to exclude the ∼ 30-year
cycle from the next phase of the analysis, where we visualise
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Figure 4. Three selected decades showing the migration of the dominant cycle influence over 130 years. Each point represents the location
of the analysed station; the colour defines the period of the dominant cycle in the 9- to 28-year range for that decade. The dominance of the
∼ 20-year cycle (red) moves south-west at a rate of ∼ 140km per decade. For an animation depicting the full set of decades, see Fig. S1.

the spatial and temporal changes in the ∼ 13- and ∼ 20-year
cycles.

4.2 Visualising spatial and temporal changes in the
dominant cycle

Visualising the dominant cycle at each site by decade re-
vealed a spatial pattern that developed systematically across
the 130-year record (Fig. 4). Beginning with 1900–1910, we
can see the ∼ 13-year cycle (purple) exerting a strong influ-
ence in the south-west, with the ∼ 20-year cycle (red) dom-
inating the eastern coastline. Fifty years later, from 1960 to
1970, the number of sites where the ∼ 20-year cycle is dom-
inant has expanded to most of eastern Australia. As we con-
tinue to 2000–2010, the ∼ 20-year cycle is now dominant in
the south-western part of the study area, and the ∼ 13-year
cycle has begun to re-emerge along the eastern coast. This
movement is best observed in the animation in Fig. S1 in the
Supplement. This reveals a south-westerly migration rate of
approximately 140 km per decade for the ∼ 20-year cycle.

The apparent movement of the dominant cycle results
from amplitude modulation in both cycles (Fig. 5). Figure 5a
shows the modulation of the ∼ 20-year cycle waveform iso-
lated by the bandpass filter, with its influence peaking around
1940–1980. The wavelet spectrum in Fig. 5d incorporates the
significance test developed by Torrence and Compo (1998).
Although the cycle is present over the entire time series, it
is only significantly different from red noise between 1940
and 1980 (the scale-averaged power in Fig. 5d and the region
circled in black in Fig. 5b).

Figure 6a gives a summary of the total number of sites
where the dominant cycle is considered significantly differ-
ent to the white and red noise for each separate decade. At
its peak in 1960, we can see that only one-third of the sites
cross the 95 % threshold for red noise. Figure 6b shows the
spatial coherence of these sites centred around the south of
the mainland. This clustering of significant sites can also be
seen for the ∼ 13-year cycles at the beginning and end of the
time series. For a full account of significant sites by decade,
see Fig. S2.

4.3 Reconstruction of the prominent cycles and their
contributions to rainfall

Extracting the three significant cycles found by the GMM
from the wavelet transform allowed us to visualise and quan-
tify their influence on rainfall. The R2 captured by the
combined reconstruction across all of the sites was 13 %
(range 3 % to 29 %). The amplitude/σ ratio suggests a much
stronger influence, with the combined reconstruction having
a mean of 126 % (range 55 % to 224 %).

Figure 7 shows a sample of the analysis carried out for
each individual site. At this location, the combined recon-
struction of all three cycles accounts for 9.4 % of the annual
rainfall variance (Fig. 7a), which is less than the average R2

across all of the sites. The ∼ 20-year cycle (Fig. 7e) was
dominant at this site over the whole time series, accounting
for 8.0 % of the rainfall variance and with a maximum ampli-
tude reaching 83 % of the site’s standard deviation (138 mm).
This is reflected in the wavelet spectrum (Fig. 7b), with a
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Figure 5. Sample of the PyCWT wavelet analysis of an individual site at Wilcannia in NSW (−31.5631, 143.3747) (SILO no. 81000, mean
rainfall= 261mmyr−1). Here we use two methods to illustrate the amplitude modulation of the ∼ 20-year cycle: a Butterworth bandpass
filter and the scale-averaged power of the wavelet analysis. Although the ∼ 20-year cycle is consistent across the whole time series, it only
exceeds the 95 % confidence interval (CI) limit compared to a red noise spectrum from 1940 to 1980. (a) The time series of the total annual
rainfall anomaly from 1890 to 2020 along with a Butterworth bandpass filter focused around the∼ 20-year cycle (18–23 years), which shows
clear amplitude modulation. (b) The station location. (c) The wavelet spectrum with regions above the 95 % confidence level circled in black.
(d) The global power spectrum showing the significance cut-off levels for white (dashed pale-grey line) and red (dashed black line) noise.
(e) The scale-averaged power in the same range used for the bandpass filter.

strong red band across the centre and weaker pale-blue bands
at ∼ 13 and ∼ 30 years.

The annual rainfall anomaly crosses the threshold for ex-
tremely low rainfall (SPI<−2) five times, corresponding
to major Australian droughts over the last century: 1937–
1945, 1965–1968, 1982–1983 and 1997–2009. The troughs

of the combined reconstruction align closely with each of
these events, with all 5 years falling in the negative phase of
the combined cycle (100 %). Similarly, the threshold for ex-
tremely wet years (blue line) was crossed seven times, with
nearly all falling in the positive phase (6/7= 85.7%). The
sole exception was the unusually high rainfall in 1939, when
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Figure 6. Testing of significance for the dominant cycle at individual sites for each decade. (a) The total percentage of sites where the power
of the dominant cycle is over the 95 % significance level (compared to red and white noise) for each decade from 1910 through to 1990
(truncated to account for the COI). (b) The sites circled in black are those with significant cycles over red noise. From 1960 to 1970 the
dominant cycle between 9 and 28 years was significant at 34 % of the sites. See Fig. S2 for the full set of decadal maps.

the combined cycles were approaching their nadir during the
span of an extended drought from 1937 to 1945.

Looking at another reconstruction from the far north of
Australia, we can also see a large trough in the combined
reconstruction for the 1965–1969 drought (Fig. 8a). How-
ever, the magnitude of each cycle’s influence is markedly
different here. The change in dominant cycle from the 12.8-
to 20.4-year cycles can be clearly seen occurring around
1970 (Fig. 8d and e), in agreement with the spatial pattern
observed in Fig. 4. In this case, the 29.1-year cycle has a
much stronger and more consistent influence, accounting for
10.7 % of the rainfall variance and a large peak amplitude of
76 % of the standard deviation. The contrast in cycle mag-
nitude and dominance between the two sites reflects diver-
gent rainfall patterns, such as the extensive drought of 1937–
1945 in the south (Fig. 7a), which did not occur in the north
(Fig. 8a). Further examples of the full reconstruction for the
largest (29 %), mean (13 %) and lowest (3 %) R2 can be
found in Figs. S3–S5.

Across all of the sites, the average percentage of extremely
wet years that fell into the positive phase of the combined re-
construction was 86 %, and at 160 of the sites this alignment
was 100 %. The figures for extremely dry years were similar,
with an average of 80 % across all of the sites but with fewer
in full alignment (74 sites).

TheR2 captured by the combined reconstruction across all
of the sites was 13 %, with the greatest individual contribu-
tion coming from the 20.4-year cycle (Fig. 9). The minimum

R2 for the 29.1-year cycle is zero since it is not found at all
of the sites (Fig. 9c). The values for amplitude/σ hint at a
greater influence than the coefficient of determination alone,
with the individual cycle scaling an average of 43 %–68 % of
the standard deviation in rainfall. The maximum amplitude
of the combined reconstruction often greatly exceeds σ due
to the constructive interference of the three cycles, such as in
Fig. 7a, where the troughs of all the cycles align around the
time of the Millennium drought (1997–2009).

Figure 9 also shows how the contribution of each individ-
ual cycle varies by location. The influence of the 12.9-year
cycle is particularly strong along the south-eastern coast. If
we consider the results in Fig. 4 relating to amplitude modu-
lation and spatial variance, this is not surprising as we can see
that this region has kept a single dominant cycle for most of
the last 130 years. The 20.4-year cycle shows the strongest
influence around central Victoria (latitude: −37, longitude:
145) and has the most constant contribution across all of
the sites. The 29.1-year cycle exhibits a particularly high
amplitude/σ in the northern regions that is consistent with
the results of the individual analyses (Fig. 8f).

5 Discussion and conclusions

This study found three cycles that are a prominent feature
of temporal variability in annual rainfall in eastern Australia.
Furthermore, there appears to be a consistent spatial pattern
evolving over time as a result of amplitude modulation. This
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Figure 7. An example of rainfall reconstruction by extracting the 12.9-, 20.4- and 29.1-year cycles from wavelet analysis at Rutherglen
Research station in Victoria (SILO no. 82039). (a) The combined waveform (orange) of the three cycles, the contribution of each is shown in
the column to the right (d–f). The blue horizontal line represents the threshold SPI value for extremely wet years (SPI> 2), with dry years
(SPI<−2) in red. (b) the wavelet spectrum for the site and (c) its location. (d–f) Relative contributions of each cycle with values for R2 and
amplitude.

suggests the presence of external periodic drivers and repre-
sents a significant improvement on previous findings.

Currie and Vines (1996) isolated a cycle centred at 18.3±
1.3 years in Australian rainfall, which they attributed to the
18.6-year lunar nodal cycle (LNC). They used 308 stations
with an average length of 84 years up to 1993 and excluded
15 % of sites where the cycle was not found. The rainfall data
were also unfilled and not controlled for monitoring disconti-
nuities. This may account for the ∼ 2-year discrepancy with
the current results, which used a longer and more complete
dataset. Camuffo (2001) suggested that the 18.6-year LNC
is not easily distinguished from the 19.9-year Saturn–Jupiter
cycle or the quasi-regular 22-year Hale magnetic cycle, all
of which have been suggested to influence climate (Qu et al.,
2012; Sorokhtin et al., 2015). In Fig. 10e, we compare the
alignment of the 18.6-year LNC with the rainfall anomaly

and the 20.4-year cycle. The LNC aligns well with rainfall in
the early 1900s but falls out of phase by 2006. Overall, the
R2 of the LNC of rainfall across all of the sites was < 1%.

The 12.9-year cycle found here is also slightly longer
than the 10.5± 0.7 years identified from 182 sites by Cur-
rie and Vines (1996) and ascribed to the sunspot cycle. Sim-
ilarly, if we compare the annual sunspot number to the rain-
fall anomaly (Fig. 10d), we find little agreement at this site
(R2
= 0.01%), and across all of the sites there is essentially

no correlation (mean R2 < 0.5%).
The daily sunspot data were taken from the Royal

Observatory of Belgium (https://data.opendatasoft.com/
explore/dataset/daily-sunspot-number@datastro/, last ac-
cess: 18 May 2024), averaged by calendar year and scaled
equivalently to the extracted 12.9-year cycle. This makes the
previous classification of the 18.6-year LNC and ∼ 11-year
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Figure 8. An example of rainfall reconstruction by extracting the 12.9-, 20.4- and 29.1-year cycles from wavelet analysis for an above-
average overall variance site at Trafalgar station in Queensland (SILO no. 34010). (a) The combined waveform (orange) of the three cycles.
The blue horizontal line represents the threshold SPI value for extremely wet years (> 2), with dry years (<−2) in red. (b) the wavelet
spectrum for the site and (c) its location. (d–f) relative contributions of each cycle with values for R2 and amplitude.

sunspot cycle as drivers of Australian rainfall unlikely. Fur-
thermore, the 29.1-year cycle cannot currently be accounted
for by any currently known lunar or solar driver.

The ability of wavelet analysis to view prominent cy-
cles in the time domain and map the changes spatially over
decadal increments allowed us to develop a coherent mech-
anism for what previous researchers had speculated to be a
phase change. This showed that there is indeed a change that
moves slowly south-west over time, though this is not an in-
version of cycles but an interchange of the dominant cycle.
Figure 3c illustrates this change at a single site around 1950,
with Fig. 4 showing the collective systematic movement of
the ∼ 20-year cycle. The consistency of this pattern across
130 years and nearly all of the sites makes it unlikely to be
a result of the random non-linear and feedback mechanisms
which govern weather patterns. However, it also presents a
challenge to many of the proposed mechanisms, e.g. seed-

ing from cloud formation due to sunspot influence on air
ionisation by cosmic rays (Fernandes et al., 2023), seeding
of rainfall from cosmic dust (Adderley and Bowen, 1962),
atmospheric tides (Kohyama and Wallace, 2016) and grav-
itational influence on SST via vertical mixing (Keeling and
Whorf, 1997). None of these would appear to allow for a
systematic change in the dominant frequency by latitude and
longitude over 130 years.

The movement also does not seem to be affected by known
climate drivers and climatic zones in eastern Australia. It
moves steadily through tropical, subtropical, grassland and
temperate climatic zones. The influence of ENSO on rain-
fall is generally consistent across most of eastern Australia
(Tozer et al., 2023): in the north the monsoonal rainfall is
associated with the Madden–Julian Oscillation (Borowiak
et al., 2023), and in the south the Southern Annular Mode
has a marked effect on the climate (Meneghini et al., 2007).
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Figure 9. Spatial distribution of the influence of each individual cycle as measured by the percentage variance of annual rainfall and the
cycle amplitude/σ across the entire time series. (a–d) The colour bar represents the R2 between the cycle extracted from wavelet analysis
and the annual rainfall anomaly for each site. (e–h) The colour bar represents the peak amplitude of the extracted waveform divided by the
site’s standard deviation, expressed as a percentage.

Whether the newly found cycles exist within any of these
climate drivers is an avenue for future research. Testing cor-
relations of these established climatic modes known to affect
Australian rainfall was not included in this study as this lay
outside the initial scope and space required for proper ex-
ploration. Given the unexpected finding that there were sig-
nificant decadal cycles in Australian rainfall, more emphasis
was placed on a complete description and exhaustive statis-
tical testing. Moving toward this stage prematurely would
have required sacrificing some of the evidence required to
first substantiate the claim.

Many studies have found periodic or quasi-periodic be-
haviour in the major climate drivers of lengths similar to
those described here. Cycles in the range of 18–22 years in
ENSO and the Southern Oscillation Index (SOI) have been
attributed to either the 18.6-year LNC (Yasuda, 2009, 2018)
or the ∼ 22-year Hale magnetic cycle (Baker, 2008; Lea-
mon et al., 2021; Ormaza-González et al., 2022). Amonkar
et al. (2023) found that 5- to 7-year and 12- to 14-year cycles

in Ohio River Basin streamflow were significantly correlated
with ENSO. The 2- to 7-year quasi-periodicity of ENSO
identified in our GMM analysis is well known (Sarachik and
Cane, 2010), and analysis of multi-proxy palaeo-climate data
dating back to 1650 has identified a prominent 10- to 15-year
cycle in ENSO intensity, noting that its causes are unknown
(Sun and Yu, 2009).

Accurate palaeo-climate data would be invaluable in test-
ing the stability of these cycles over time. However, records
in eastern Australia are limited in locations, and reconstruc-
tion skill is generally low (Flack et al., 2020). Reliable tree
ring data are scarce due to a lack of species with anatom-
ically distinct annual growth rings (Heinrich et al., 2009),
deep cave stalagmites can provide extended timelines but
must integrate rainfall over decadal scales (Ho et al., 2015)
and coral luminescent reconstructions from the Great Bar-
rier Reef span up to 297 years but only capture 47 % of the
rainfall variability (Lough, 2011). The lack of resolution and
variance captured, along with the amplitude modulation of
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Figure 10. An example of rainfall reconstruction by extracting the 12.9-, 20.4- and 29.1-year cycles from wavelet analysis compared to the
sunspot cycle and the 18.6-year LNC at Eden weather station (SILO no. 69015). The LNC was generated as a sinusoidal wave with the
peak aligned with the major lunar standstill in March 1969 (Peng et al., 2019) and the amplitude matched to the extracted cycle. (a) The
combined reconstruction of all three cycles from this study (orange). (b) The wavelet spectrum. (c) The station location. (d) The 12.9-year
cycle and rainfall anomaly have an R2 of 12.9 %, whereas the average annual sunspot number (black) shows a very poor correlation with
rainfall (0.014 %). (e) The 20.4-year cycle and rainfall anomaly have an R2 of 10.1 %, and the 18.6-year LNC shows early agreement but
steadily falls out of phase with an R2 of only 5.8 %.

the cycles identified in this paper, would mean that their im-
pact could easily be hidden in spectral analysis. Williams
et al. (2021) discovered a very similar 13- to 15-year cy-
cle in the Sierra Nevada district of the USA, accounting for
21 % of the precipitation variance over the last century. Ex-
tending the analysis back to 1400 BC by tree ring reconstruc-
tions showed the cycle dipping in and out of significance by
wavelet analysis. The authors noted that it was difficult to
establish whether this was due to the amplitude modulation
of the cycle or the reconstructive skill of the record, though
across the entire time series (1400–2020) spectral peaks at
12.8 and 21.3 years showed a significant (90 %) difference
from white noise.

The two cycles identified by Williams et al. (2021) are
very close to the 12.9- and 20.4-year cycles identified in

this paper, which shows the potential for using global rain-
fall data for validation rather than proxy palaeo-climate data.
The novel method developed for this paper of automating the
peak extraction from each wavelet and clustering by GMMs
has the potential benefit of allowing for the processing of
very large global datasets, as opposed to the limited and re-
gional areas for which it has traditionally been used (Chowd-
hury and Beecham, 2012; Murumkar and Arya, 2014). Fur-
thermore, the behaviour over extended geographical regions
may shed light on possible drivers of these cycles. Without
greater understanding of their origin and stability, we must be
wary of their potential use for forecasting. Although the cy-
cles align with over 80 % of the peaks and troughs of extreme
annual rainfall across all of the sites over the past 130 years,
this is no guarantee that they can currently be used to predict
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future floods and droughts. Extracting the fixed cycles from
each site for the reconstruction gives us some confidence in
their continuity over the period investigated. However, with-
out a viable mechanistic source of each cycle and its modu-
lation, we must proceed with caution.

Quantifying the scale of each cycle’s influence was also
challenging. We sought to capture three dimensions in the
metrics used: the coefficient of determination for the overall
variance, amplitude/σ as a measure of the scale and align-
ment with extreme rainfall for flood and drought. A limi-
tation of using R2 for this purpose is its sensitivity to out-
liers, meaning that irregular fluctuations in rainfall may ex-
cessively penalise the correlation values and underestimate
the cycle’s influence. It is for this reason that the amplitude/σ
metric was developed. At a single site the amplitude of the
extracted signal would be given in millimetres per year.
However, across the 347 sites there is a large difference in
mean rainfall (150–2319 mmyr−1) and standard deviation
(81–720 mm). Creating a ratio of the extracted signal ampli-
tude to the total rainfall standard deviation allowed compari-
son of the relative strength that was comparable across all of
the sites.

The concept that Australian rainfall may contain decadal
cycles has been a source of debate for many decades. This
study has found evidence of the existence of the three inter-
decadal cycles in Australian annual rainfall centred around
12.9, 20.4 and 29.1 years. Together they account for an aver-
age of 13 % (3–29) of rainfall variance across all of the sites.
The combined amplitude of the waveforms over the standard
deviation is 126 % (55–224), and they occur in alignment
with over 80 % of extremely high and low annual rainfall
over the last 130 years. This degree of influence suggests that
they may be a valuable tool in long-term forecasting of rain-
fall in eastern Australia. Further research will focus on global
datasets, climate indices and exploring potential drivers and
viable mechanisms of action.

Code availability. The PyWavelets package was used for decom-
posing the annual rainfall signal and is available though a Zen-
odo repository (https://doi.org/10.5281/zenodo.3510098, Lee et al.,
2019b). Visualisation of the wavelet spectrum was generated us-
ing scaleogram (https://github.com/alsauve/scaleogram, Sauvé and
Nowacki, 2023). Significance of cycles over red and white noise
were calculated using PyCWT (https://github.com/regeirk/pycwt,
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