Articles | Volume 29, issue 8
https://doi.org/10.5194/hess-29-2109-2025
https://doi.org/10.5194/hess-29-2109-2025
Research article
 | 
28 Apr 2025
Research article |  | 28 Apr 2025

Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds

Haifan Liu, Haochen Yan, and Mingfu Guan

Related authors

Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022,https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Exploring the utility of social media data for urban flood impact assessment in data scarce cities
Kaihua Guo, Mingfu Guan, Haochen Yan, and Faith Ka Shun Chan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-109,https://doi.org/10.5194/nhess-2022-109, 2022
Revised manuscript not accepted
Short summary
Urban surface water flood modelling – a comprehensive review of current models and future challenges
Kaihua Guo, Mingfu Guan, and Dapeng Yu
Hydrol. Earth Syst. Sci., 25, 2843–2860, https://doi.org/10.5194/hess-25-2843-2021,https://doi.org/10.5194/hess-25-2843-2021, 2021
Short summary
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019,https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary

Cited articles

Ayalew, T. B., Krajewski, W. F., and Mantilla, R.: Insights into expected changes in regulated flood frequencies due to the spatial configuration of flood retention ponds, J. Hydrol. Eng., 20, 04015010, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001229, 2015. 
Bai, P., Liu, X., Zhang, Y., and Liu, C.: Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China, Water Resour. Res., 56, e2019WR027019, https://doi.org/10.1029/2019WR027019, 2020. 
Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., and van Dam, J. C.: Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity, Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, 2010. 
Bear, J.: Dynamics of fluids in porous media. Dover Publications, New York, NY, ISBN 9780486656755, 1988. 
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, Chichester, UK, ISBN 9780470714591, 2012. 
Download
Short summary
Land changes and landscape features critically impact water systems. Studying two watersheds in China’s Greater Bay Area, we found slope strongly influences water processes in mountainous areas. However, this relationship is weak in the lower regions of steeper watersheds. Urbanization leads to an increase in annual surface runoff, while flatter watersheds exhibit a buffering capacity against this effect. However, this buffering capacity diminishes with increasing annual rainfall intensity.
Share