Articles | Volume 28, issue 7
https://doi.org/10.5194/hess-28-1477-2024
https://doi.org/10.5194/hess-28-1477-2024
Research article
 | 
03 Apr 2024
Research article |  | 03 Apr 2024

Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake

Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu

Related authors

rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024,https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Robert Ladwig, Paul C. Hanson, Hilary A. Dugan, Cayelan C. Carey, Yu Zhang, Lele Shu, Christopher J. Duffy, and Kelly M. Cobourn
Hydrol. Earth Syst. Sci., 25, 1009–1032, https://doi.org/10.5194/hess-25-1009-2021,https://doi.org/10.5194/hess-25-1009-2021, 2021
Short summary
Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method
Lele Shu, Paul A. Ullrich, and Christopher J. Duffy
Geosci. Model Dev., 13, 2743–2762, https://doi.org/10.5194/gmd-13-2743-2020,https://doi.org/10.5194/gmd-13-2743-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024,https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024,https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024,https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
A network approach for multiscale catchment classification using traits
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024,https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Multi-model approach in a variable spatial framework for streamflow simulation
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024,https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary

Cited articles

Broxton, P. D., Zeng, X., Sulla-Menashe, D., and Troch, P. A.: A Global Land Cover Climatology Using MODIS Data, J. Appl. Meteorol. Clim., 53, 1593–1605, https://doi.org/10.1175/JAMC-D-13-0270.1, 2014. a
Carter, V.: An overview of the hydrologic concerns related to wetlands in the United States., Can. J. Botany, 64, 364–374, https://doi.org/10.1139/b86-053, 1986. a
Chauvelon, P., Tournoud, M. G., and Sandoz, A.: Integrated hydrological modelling of a managed coastal Mediterranean wetland (Rhone delta, France): initial calibration, Hydrol. Earth Syst. Sci., 7, 123–132, https://doi.org/10.5194/hess-7-123-2003, 2003. a
Cobourn, K. M., Carey, C. C., Boyle, K. J., Duffy, C., Dugan, H. A., Farrell, K. J., Fitchett, L., Hanson, P. C., Hart, J. A., Henson, V. R., Hetherington, A. L., Kemanian, A. R., Rudstam, L. G., Shu, L., Soranno, P. A., Sorice, M. G., Stachelek, J., Ward, N. K., Weathers, K. C., Weng, W., and Zhang, Y.: From concept to practice to policy: modeling coupled natural and human systems in lake catchments, Ecosphere, 9, e02209, https://doi.org/10.1002/ecs2.2209, 2018. a, b
Crowe, A. S. and Schwartz, F. W.: Simulation of lake–watershed systems. I. Description and sensitivity analysis of the model, J. Hydrol., 52, 71–105, https://doi.org/10.1016/0022-1694(81)90097-4, 1981. a
Download
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.