Articles | Volume 28, issue 5
https://doi.org/10.5194/hess-28-1191-2024
https://doi.org/10.5194/hess-28-1191-2024
Research article
 | 
13 Mar 2024
Research article |  | 13 Mar 2024

Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia

Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch

Related authors

Technical note: Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe)
Julien Lerat
Hydrol. Earth Syst. Sci., 29, 2003–2021, https://doi.org/10.5194/hess-29-2003-2025,https://doi.org/10.5194/hess-29-2003-2025, 2025
Short summary
Better continental-scale streamflow predictions for Australia: LSTM as a land surface model post-processor and standalone hydrological model
Ashkan Shokri, James C. Bennett, David E. Robertson, Jean-Michel Perraud, Andrew J. Frost, and Eric A. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-805,https://doi.org/10.5194/egusphere-2025-805, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
How does the time shift between precipitation and evaporation affect annual streamflow variability? A large sample elasticity study
Vazken Andréassian, Guilherme Mendoza Guimarães, Alban de Lavenne, and Julien Lerat
EGUsphere, https://doi.org/10.5194/egusphere-2025-414,https://doi.org/10.5194/egusphere-2025-414, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary

Cited articles

Abbas, A., Boithias, L., Pachepsky, Y., Kim, K., Chun, J. A., and Cho, K. H.: AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods, Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, 2022. 
Australian Water Outlook: https://awo.bom.gov.au/, last access: February 2022. 
Bennett, J. C., Wang, Q. J., Robertson, D. E., Schepen, A., Li, M., and Michael, K.: Assessment of an ensemble seasonal streamflow forecasting system for Australia, Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, 2017. 
Choi, J., Lee, J., and Kim, S.: Utilization of the Long Short-Term Memory network for predicting streamflow in ungauged basins in Korea, Ecol. Eng., 182, 106699, https://doi.org/10.1016/j.ecoleng.2022.106699, 2022. 
Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami, N., Knoben, W. J., Tang, G., Gharari, S., Freer, J. E., Whitfield, P. H., and Shook, K. R.: The abuse of popular performance metrics in hydrologic modeling, Water Resour. Res., 57, e2020WR029001, https://doi.org/10.1029/2020WR029001, 2021. 
Download
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Share