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Abstract. A deep learning model designed for time series
predictions, the long short-term memory (LSTM) architec-
ture, is regularly producing reliable results in local and re-
gional rainfall–runoff applications around the world. Recent
large-sample hydrology studies in North America and Eu-
rope have shown the LSTM model to successfully match
conceptual model performance at a daily time step over hun-
dreds of catchments. Here we investigate how these models
perform in producing monthly runoff predictions in the rel-
atively dry and variable conditions of the Australian conti-
nent. The monthly time step matches historic data availabil-
ity and is also important for future water resources planning;
however, it provides significantly smaller training datasets
than daily time series. In this study, a continental-scale com-
parison of monthly deep learning (LSTM) predictions to
conceptual rainfall–runoff (WAPABA model) predictions is
performed on almost 500 catchments across Australia with
performance results aggregated over a variety of catchment
sizes, flow conditions, and hydrological record lengths. The
study period covers a wet phase followed by a prolonged
drought, introducing challenges for making predictions out-
side of known conditions – challenges that will intensify
as climate change progresses. The results show that LSTM
models matched or exceeded WAPABA prediction perfor-
mance for more than two-thirds of the study catchments, the
largest performance gains of LSTM versus WAPABA oc-
curred in large catchments, the LSTMs struggled less to gen-
eralise than the WAPABA models (e.g. making predictions
under new conditions), and catchments with few training ob-
servations due to the monthly time step did not demonstrate
a clear benefit with either WAPABA or LSTM.

Highlights.

– A deep learning model (single-layer LSTM) matched or ex-
ceeded the performance of a WAPABA rainfall–runoff model
in 69 % of study catchments.

– Monthly datasets contain enough information to train the
LSTMs to this level.

– Generalisation to new conditions was found to improve with
use of the LSTM, with implications for modelling under cli-
mate change.

1 Introduction

With progressively variable climate conditions and the ever-
increasing accessibility of hydrologic data, there comes the
opportunity to reconsider how available data are being used
to efficiently predict streamflow runoff on a large scale. Hy-
drological researchers are increasingly turning to emerging
machine learning techniques such as deep learning to anal-
yse this increasing volume of data, due to the relative ease
of extracting useful information from large datasets and pro-
ducing accurate predictions about future conditions without
the need for detailed knowledge about the underlying phys-
ical systems. Machine learning models have been shown to
be capable of obtaining more information from hydrologi-
cal datasets than is abstracted with traditional models, due to
their automatic feature engineering and ability to effectively
capture high-dimensional and long-term relationships (Near-
ing et al., 2021; Frame et al., 2021). The continually evolving
machine learning field will continue to offer novel opportu-
nities that can be harnessed for hydrological data analyses,
and it is important to understand how these methods relate
to classical models. Here, a basic machine learning model is
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benchmarked against a traditional conceptual model over a
large sample of catchments as a step towards a general un-
derstanding of the use of deep learning models as a tool for
the task of monthly rainfall–runoff modelling in Australian
catchments.

Deep learning models have been shown in many applica-
tions to provide accurate hydrological predictions and clas-
sifications (Shen et al., 2021; Reichstein et al., 2019; Frame
et al., 2022). These models are particularly useful to hydro-
logical studies as they provide the potential to quickly add
and remove predictors (Shen, 2018), scale to multiple catch-
ments (Kratzert et al., 2018; Lees et al., 2021), automatically
extract useful and abstract information from large datasets
(Reichstein et al., 2019; Shen, 2018), make predictions in ar-
eas with little or no data (Kratzert et al., 2019; Majeske et al.,
2022; Ouma et al., 2022; Choi et al., 2022), and extrapolate
proficiently to larger hydrologic events than are seen in the
training dataset (Li et al., 2021; Song et al., 2022).

The long short-term memory network (LSTM; Hochre-
iter and Schmidhuber, 1997) is a deep learning model that
is gaining popularity in hydrology for daily time series pre-
dictions at individual basins or groups of basins due to its
ability to efficiently and accurately produce predictions with-
out requiring assumptions about the physical processes gen-
erating the data. The LSTM is a type of recurrent neural net-
work (RNN), an extension of the multilayer perceptron that is
specifically designed for use with time series data through its
sequential consideration of input data. The LSTM further ex-
tends the RNN to incorporate gates and memory cells, allow-
ing for input data to be remembered over much longer time
periods and for unimportant data to be forgotten from the net-
work. LSTMs make predictions by taking into account both
the short and long temporal patterns in a time series as well
as incorporating information from exogenous predictors. The
data-driven detection of intercomponent, spatial, and tempo-
ral relationships by these deep learning models can be of par-
ticular benefit when attempting to represent systems in which
the physical characteristics are not well defined and the inter-
variable relationships are complex.

The increasing popularity of the LSTM network in hydrol-
ogy is due to its ability to capture the short-term interactions
between rainfall and runoff, as well as the long-term patterns
and interactions arising from longer-frequency drivers such
as climate, catchment characteristics, land use, and chang-
ing anthropogenic activity. A growing number of publica-
tions are applying LSTMs to hydrological simulations and
comparing results to process-based or conceptual modelling
results.

A gap exists in the literature concerning a comparison of
LSTMs and conceptual models at a monthly time step over a
large sample of catchments. The conditions in which LSTMs
or conceptual models may have an advantage for monthly
rainfall–runoff modelling, in a general sense, are not yet un-
derstood as most machine learning applications in hydrology
are individual-basin case studies (Papacharalampous et al.,

2019) at a daily time step or higher frequency (e.g. Li et al.,
2021; Yokoo et al., 2022). Though the LSTM has success-
fully matched conceptual model performance in some large-
sample hydrology studies at daily time steps (e.g. in the USA,
Kratzert et al., 2019, and the UK, Lees et al., 2021), it is yet
unknown how these models compare to conceptual models
for monthly runoff predictions in relatively dry conditions
such as those characterised by Australian catchments.

Monthly hydrological models are important tools for wa-
ter resources assessments as hydrologic data have historically
been recorded at a monthly or longer frequency based on
the schedule of manually collected measurements. Further-
more, the monthly time step is often the most practical for
water resources planning with many decisions requiring only
monthly streamflow predictions. With their simpler structure,
fewer parameters and lower data requirements compared to
daily models (Hughes, 1995; Mouelhi et al., 2006), monthly
models are also useful tools to investigate uncertainty in
rainfall–runoff model structure (Huard and Mailhot, 2008)
and to support probabilistic seasonal streamflow forecast-
ing systems (Bennett et al., 2017). Due to data availability,
models designed to run on monthly time steps can be used
across much larger areas, informing important large-scale
water resources decision-making. For these reasons, gener-
alisable models at monthly time steps are vital. However, the
monthly time step is traditionally a difficult one to model as it
requires extracting both short- and long-term hydrologic pro-
cesses (Machado et al., 2011). In a machine learning context,
the monthly time step differs significantly from the daily time
step as it drastically reduces the size of the dataset available
for model training (by a factor of 30). As the convergence of
machine learning algorithms typically improves with larger
datasets, a central research question of this paper is to ex-
plore the capacity of the LSTM algorithm to cope with the
reduced amount of input data imposed by the monthly time
step.

LSTMs have been used to model the rainfall–runoff rela-
tionship at a monthly time step in a limited number of lo-
calised studies, showing potential for this application on a
broader scale. Ouma et al. (2022) used monthly aggregated
data due to low data availability in three scarcely gauged
basins in the Nzoia River basin, Kenya. Majeske et al. (2022)
trained LSTMs with spatially and temporally limited data for
three sub-basins of the Ohio River basin, claiming the daily
time step was superfluous and cumbersome in some condi-
tions. Lee et al. (2020) found the LSTM network to be adept
at preserving long-term memory in monthly streamflow at
a single station on the Colorado River over a 97-year study
without any weakening of the short-term memory structure.
Yuan et al. (2018) used a novel method for parameter cali-
bration in an LSTM for monthly rainfall–runoff estimation
at a single station on the Astor River basin in northern Pak-
istan. Song et al. (2022) found that the LSTM network better
reproduced observed monthly runoff and simulated extreme

Hydrol. Earth Syst. Sci., 28, 1191–1213, 2024 https://doi.org/10.5194/hess-28-1191-2024



S. R. Clark et al.: Deep learning for monthly rainfall–runoff modelling 1193

runoff events than a physically based model at five discharge
stations in the Yeongsan River basin in South Korea.

Large-sample hydrologic studies that assess methods on
a large number of catchments are being increasingly called
for in the field of hydrology (Papacharalampous et al., 2019;
Mathevet et al., 2020; Gupta et al., 2014). Papacharalampous
et al. (2019) compared the performance of a number of sta-
tistical and machine learning methods (no LSTM) on 2000
generated time series and over 400 real-world river dis-
charge time series and determined that the machine learn-
ing and stochastic methods provided similar forecasting re-
sults. Mathevet et al. (2020) compared daily conceptual
model performance (no machine learning) for runoff pre-
diction in over 2000 watersheds, determining that perfor-
mance depended more on catchment and climate character-
istics than on model structure. Kratzert et al. (2018) found
that individual daily-scale LSTMs were able to predict runoff
with accuracies comparable to a baseline hydrological model
for over 200 differently complex catchments. Kratzert et al.
(2019) found a global LSTM trained on over 500 basins in
the United States with daily data produced better individ-
ual catchment runoff predictions than conceptual and phys-
ically based models calibrated on each catchment individu-
ally. Lees et al. (2021) produced a global LSTM to model
almost 700 catchments in Great Britain, finding that this
model outperformed a suite of benchmark conceptual mod-
els, showing particular robustness in arid catchments and
catchments where the water balance does not close. Jin et
al. (2022) compared machine learning daily rainfall–runoff
models to process-based models for over 50 catchments in
the Yellow River basin in China. Frame et al. (2021) found
that a global LSTM with climate forcing data performed sim-
ilarly or outperformed a process-based model on over 500 US
catchments, and that in catchments where hydrologic condi-
tions are not well understood the LSTM was a better choice.

This study aims to determine the ability of a simple ma-
chine learning model (a single-layer LSTM) to match or
exceed the performance of a conceptual monthly rainfall–
runoff model (the WAPABA model; Wang et al., 2011) for
predicting runoff, using inputs derived from easily acces-
sible climate variables. The goal here is not to maximise
LSTM performance to cutting-edge machine learning stan-
dards but rather to ascertain the minimum performance level
that a non-expert user might expect to obtain from basic us-
age of an LSTM with the input data regularly used in a con-
ceptual model. A frequently heard reason for hydrological
researchers not engaging with machine learning approaches
is the small data size associated with individual catchment
time series, and it is of interest to examine the lower limits
of data availability required to fit an LSTM with individual
catchment monthly datasets.

A comparison is made on almost 500 basins across Aus-
tralia, representing a wide variety of catchment types and
hydro-climate conditions and with differing amounts of his-
torical data. The prediction performance of the LSTM ma-

chine learning models is compared to the WAPABA concep-
tual models for each individual catchment. The proportion of
catchments in which the runoff prediction performance of the
conceptual model is met or exceeded by the machine learning
model is determined. Conditions under which the machine
learning models or the conceptual models may have an ad-
vantage are investigated, such as catchment size, flow level,
and length of historical record. The central questions of this
study are the following:

1. In general, do LSTMs match conceptual model predic-
tion performance on Australian catchments?

2. Is the reduced number of data points due to the monthly
time step an issue for training an LSTM?

3. Under what conditions is the LSTM of particular ben-
efit or drawback (catchment size, flow level, amount of
training data, etc.)?

The results of this large-sample analysis of LSTM per-
formance over the Australian continent will assist in un-
derstanding whether LSTMs are a justifiable alternative to
conceptual models for monthly rainfall–runoff prediction in
Australia and similar environments, including if monthly
datasets are sufficient to produce accurate predictions with
the LSTM. Building on the results of this study, further ben-
efits of deep learning could be harnessed through the cre-
ation of larger-scale models that encompass climatic, hydro-
logic, and anthropogenic patterns spanning multiple catch-
ments, allowing for the sharing of information under similar
conditions and the potential transfer of knowledge between
data-rich and data-scarce regions or models that blend con-
ceptual models into the machine learning network structure.

2 Data and methods

2.1 Data

The catchment and climate data used in this study are from
a dataset curated by Lerat et al. (2020), comprising a selec-
tion of basins across Australia. The dataset spans all main
climate regions of the continent, providing data from a va-
riety of rainfall, aridity, and runoff regimes, as described in
Table 1. Catchments where some data were marked as sus-
picious (e.g. high-flow data with large uncertainties, incon-
sistencies, suspected errors) or with more than 30 % missing
data were excluded. This left 496 catchments in the study,
with locations as shown in Fig. 1. The area of the individual
catchments ranges from approximately 5 to 120 000 km2.

Observed runoff data were collected from the Bureau of
Meteorology’s Water Data online portal (http://www.bom.
gov.au/waterdata, last access: February 2022), rainfall and
temperature data are from the Bureau of Meteorology’s
AWAP archive (Jones et al., 2009), and potential evapotran-
spiration data were computed by the Penman equation as
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Table 1. Characteristics of the study catchments, over the period 1950–2020. PET refers to potential evapotranspiration.

Variable Min Q25 Median Q75 Max

Catchment area (km2) 4 180 449 1456 119 000
Mean rainfall (mmyr−1) 237 691 887 1130 3097
Mean PET (mmyr−1) 918 1280 1500 1755 2321
Mean runoff (mmyr−1) 0.5 46 130 275 2213
Aridity index: rainfall/PET (–) 0.11 0.44 0.61 0.81 2.61
Daily rainfall skewness (–) 2.4 4.8 5.9 7.4 16.7
Runoff coeff.: runoff/rainfall (–) 0.001 0.069 0.150 0.255 0.902
Percent zero flows in daily series 0.0 0.0 3.4 23.7 74.0

Figure 1. Locations of the 496 study catchments, coloured by mean annual rainfall. The three labelled catchments, which will be used as
examples in the study, represent a wet catchment (111005 in Northern Queensland), a temperate catchment (204014 in New South Wales),
and a dry catchment (609012 in Western Australia).

part of the AWRA-L landscape model developed jointly by
CSIRO and the Bureau of Meteorology (Frost et al., 2018).
Rainfall, temperature, and evapotranspiration are averaged
from daily grids (5 km× 5km) over each of the catchments.

The runoff records begin between January 1950 and
September 1982 and end between October 2016 and June
2020. The number of runoff observations per catchment
ranges from 425 to 846 with a median dataset size of 613 ob-
servations. The rainfall and potential evapotranspiration data
cover the period from 1911 to 2020 continuously. The re-
sulting dataset consists of a set of 496 time series ranging
from 37 to 70 years in length, with a median record length of
51 years.

Training and testing data split

The dataset for each catchment is split into two portions
for modelling – in machine learning these are referred to as

“training” and “testing” sets, corresponding to the traditional
“calibration” and “validation” sets used in hydrologic mod-
elling. The training dataset runs from January 1950 (or the
start of the station’s record if later) to December 1995 for
all catchments. The testing dataset begins in January 1996
for all catchments and ends in July 2020 (or at the end of
the station’s record if sooner). This split is chosen to divide
the streamflow records into two relatively even periods but
also to distinguish an early wet period from a testing period
characterised by the Millennium Drought over south-eastern
and eastern Australia (Van Dijk et al., 2013). WAPABA and
LSTMs were trained and evaluated using the same data splits,
giving identical durations and dataset sizes.

When split into training and testing sets at the beginning
of January 1996, between 38 % and 72 % of the data from
each catchment becomes the training set. The length of the
training data record for individual catchments ranges from
14 to 47 years, with the smallest dataset used for training
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containing 172 observations. Typically in machine learning,
a portion of the training data are held back to be used dur-
ing the model fitting process to monitor for overfitting and
to signal early stopping of training if necessary. Since the
training datasets in this study are already small by machine
learning standards, this has not been done as it would reduce
the number of training observations significantly, as well as
lead to a smaller training dataset than used in the WAPABA
models. A sensitivity test has been performed to justify this
choice, and it was found that training the LSTMs with 20 %
of the training data reserved for this task (i.e. with the data
split into training (64 %), validation (16 %), testing (20 %))
produced no apparent benefit in prediction performance.

2.2 Models

2.2.1 Deep learning time series models (LSTM)

The long short-term memory network, LSTM (Hochreiter
and Schmidhuber, 1997), is an updated recurrent neural net-
work (RNN) specifically designed for deep learning with
time series data. The inclusion of gates and memory cells in-
creases the length of time series the LSTM is able to process;
three gates (input, output, and forget gates) regulate the flow
of information into and out of the memory cell, determining
which information from the past is to be retained and which
can be forgotten. In this way, each member of the LSTM
output becomes a function of the relevant input at previous
time steps.

The LSTM network consists of an input layer, one or more
hidden layers, and an output layer. The layers are connected
by a set of updatable weights, with the same weights ap-
plying to all time steps of the data. Memory cells shadow
each node on the hidden layer, retaining important informa-
tion over long time periods. Each node of the input layer rep-
resents a variable of the input dataset. Observations are fed
into the network along with a pre-specified number of predic-
tor values from previous time steps (known as the lookback
length or lag) which are cycled sequentially through the net-
work. Network weights are updated by back-propagating the
gradient of the error between the modelled and observed out-
puts. For detailed information on the mathematical function-
ing of the LSTM, see Goodfellow et al. (2016) and Kratzert
et al. (2018).

In this study, a separate LSTM is trained for each catch-
ment. Input to the LSTMs are monthly averaged measure-
ments of rainfall depth (P ), potential evapotranspiration (E),
average maximum daily temperature over the month, and net
monthly (effective) rainfall (P ∗) computed for month t by
summing daily effective rainfall, as shown here:

P ∗t =

d=days(t)∑
d=0

max(0,Pd −Ed). (1)

Standard scaling of the input data is performed per catchment
as follows:

X̃t =
Xt −µx

σx
, (2)

where Xt is an input variable for month t , µx is its mean,
and σx is its standard deviation over the training period. The
target variable for LSTM training is monthly average runoff.
Observed runoff values are scaled by taking the square root
and then transforming to the range [−1,1] per catchment, as
follows:

Yt = 2
√
Qt −Y0

Y1−Y0
− 1, (3)

where Qt is the observed runoff for month t , and Y0 and
Y1 are the minimum and maximum square-root-transformed
flows over the training period, respectively. The square root
transform is chosen to be conceptually consistent with the
objective function of the WAPABA model calibration (as de-
scribed below, mean absolute error of the square roots of
flows). Note that the same scaling constants (µx,σx,Y0,Y1)
used during LSTM training are also applied to LSTM inputs
and targets for the testing period. Using scaling constants
only derived from the training data ensures that the training
process is not incorporating any information from the testing
dataset.

The loss function used for training the LSTM is the mean
absolute error (MAE) performed on the transformed runoff,
as follows:

L=
∑
t

|Yt − Ŷt |, (4)

where Ŷt is the output of the network for month t , and Yt is
the transformed runoff for the same month.

Hyperparameters or parameters controlling the LSTM
training algorithm were selected after a grid search (over
1016 separate runs) on a randomly selected catchment
(14207) with a good length data record and tested on a
small additional subset of catchments. As the purpose of
this study was not to optimise catchment-specific predic-
tions results, a more comprehensive hyperparameter search
by catchment was deemed unnecessary. The hyperparame-
ter space searched was the following: initial learning rate δ0
(1×10−3 to 1×10−4), sequence (lookback or lag) length (6,
9, 12, 15, 18, 21, 24 months), and number of hidden nodes
(10, 20, 30, 40, 50, 60). The hyperparameter set that per-
formed the best predictions over the training period was se-
lected for use in all LSTMs: 10 nodes on a single hidden
layer, run with a sequence length of 6 months, and an initial
learning rate δ0 of 0.0001. Subsequent to this hyperparam-
eter search, the effect of raising the initial learning rate for
faster convergence while using input and recurrent dropout to
prevent overfitting was investigated on all catchments. Em-
pirically, and counter to our intuition, this never improved
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Figure 2. WAPABA conceptual model schematic.

training performance, and so the initial learning rate δ0 of
0.0001 was retained. The learning rate was allowed to vary
during training with a patience of three epochs without im-
provement before multiplying by a factor of 0.2 to obtain
a new learning rate. The dataset was divided into 400 steps
per epoch for training; data were sent through the model in
batches with a weight update after each (an epoch, or it-
eration, is concluded when the entire dataset has been run
through the model once). The LSTM training was imple-
mented using a gradient descent algorithm run for a max-
imum of 100 epochs. Training was set to stop early if the
training error failed to decrease over five consecutive epochs.
The LSTMs were implemented with TensorFlow in Python,
using numeric seeds to ensure reproducible outcomes.

2.2.2 WAPABA rainfall–runoff models

The WAPABA model is a conceptual monthly rainfall–runoff
model introduced by Wang et al. (2011). The model is an
evolution of the Budyko framework proposed by Zhang et
al. (2008) where water fluxes are partitioned using param-
eterised curves. The model uses two inputs, mean monthly
rainfall and potential evapotranspiration, and operates in five
stages. First, input rainfall is split between effective rainfall
that will eventually leave the catchment and catchment con-
sumption that replenishes soil moisture and evaporates. Sec-
ond, catchment consumption is portioned between soil mois-
ture replenishment and actual evapotranspiration. Third, ef-
fective rainfall is partitioned between surface water (fast) and
groundwater (slow) stores. Fourth, the groundwater store is
drained to provide a baseflow contribution. Fifth, the sur-
face water and baseflow are added to obtain the final sim-
ulated runoff for the month. The model has five parameters
described in Table 2 which interact as depicted in Fig. 2.

A separate WAPABA model is run for each study catch-
ment. The WAPABA models were trained (calibrated) and
tested (validated) over the same periods as the LSTMs: 1950
to 1995 inclusive for training and 1996 to June 2020 for
testing. The model was calibrated with a warm-up period of
2 years to avoid possible bias associated with initial values.
WAPABA parameters were optimised over the training pe-
riod using the “shuffle complex evolution” algorithm (Duan
et al., 1993) with the Swift software package (Perraud et al.,

2015). The objective function used for the WAPABA models
is the same as the one used for LSTM, i.e. the mean absolute
error (MAE) on the square root of runoff (see Eq. 4).

2.3 Performance evaluation

Predictions from the conceptual (WAPABA) and machine
learning (LSTM) models for all catchments are compared to
observed runoff, assessing each model’s predictive capabili-
ties on the set of catchments. Runoff prediction performance
is reported here using the following metrics.

The Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970) is the most often used performance metric in hydrol-
ogy. It can be considered a normalised form of mean squared
error (MSE) and is defined as

NSE= 1−

∑
t

(
Qt

obs−Q
t
mod

)2∑
t

(
Qt

obs−µobs
)2 = 1−

E

V
, (5)

where Qt
obs and Qt

mod are the observed and modelled dis-
charges for month t , respectively, and µobs is the average
observed discharge over the training or testing period. The
ratio of the sum of squared errors, E =

∑
t (Q

t
obs−Q

t
mod)

2,
to the variance, V =

∑
t (Q

t
obs−µobs)

2, is subtracted from
a maximum score of 1. An NSE closer to 1 indicates bet-
ter predictive capability of the model, and an NSE less than
0 indicates the model mean squared error is larger than the
observation variance.

The NSE metric alone cannot provide an accurate descrip-
tion of model performance due to its focus on the high-flow
regime (Schaefli and Gupta, 2007). The reciprocal NSE fo-
cuses the error metric on low flows (Pushpalatha et al., 2012)
by comparing the reciprocals of the observed and modelled
flows. It is calculated as

RecipNSE= 1−

∑
t

(
1(

Qt
obs+ 1

) − 1(
Qt

mod+ 1
))2

∑
t

(
1(

Qt
obs+ 1

) − 1(
µobs+ 1

))2 . (6)

The Kling–Gupta efficiency (KGE; Gupta et al., 2009)
provides an alternative to metrics based on sum of squared
error, such as the two previous ones, by equally weighting
measures of bias of the mean, variability, and correlation into
a single metric as follows:

KGE= 1−

√(
1−

µsim

µobs

)2

+

(
1−

σsim

σobs

)2

+ (1− ρ)2, (7)

where µX and σX are the mean and the standard deviation,
respectively, and ρ is the Pearson correlation coefficient be-
tween the simulated and observed data.

Finally, “Bias” is a measure of consistent under-
forecasting or over-forecasting of the mean, defined as

Bias=
µsim−µobs

µobs
. (8)
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Table 2. WAPABA model parameters.

Name Description Unit Minimum Maximum

alpha1 Exponent of the catchment consumption/effective rainfall curve dimensionless 1.0 10.0
alpha2 Exponent of the soil moisture storage/evapotranspiration curve dimensionless 1.0 10.0
Beta Partition between groundwater recharge and surface runoff dimensionless 0.0 1.0
Smax Maximum water-holding capacity of soil store mm 5.0 6000.0
Inverse K Inverse of groundwater store time constant d−1 0.000274 1.0

Comparison of performance metrics between
catchments using normalised indexes

When comparing metrics across model types and catch-
ments, a normalised difference in NSE values is used. The
NSE metric can reach into large negative values in dry catch-
ments when the variance of the observations is very small
compared to the model errors (Mathevet et al., 2006), as can
be seen from Eq. (5). Differences between large negative val-
ues of NSE have a much smaller implication than the same
absolute difference between values of NSE closer to 1. To al-
low for a comparison between the WAPABA and LSTMs at
catchments of various aridities, the normalised difference in
NSE is calculated following Lerat et al. (2012):

Diff_NSEnorm =
NSE2−NSE1

(1−NSE1)+ (1−NSE2)

=
NSE2−NSE1

2− (NSE1+NSE2)
, (9)

where NSE1 and NSE2 are the NSE values corresponding to
the two models to be compared. Substituting in NSE= 1− E

V
from Eq. (5) into Eq. (9), the normalised difference in NSE
can be seen to represent a percentage difference in the sum
of squared errors between the two models being compared:

Diff_NSEnorm =
NSE2−NSE1

2− (NSE1+NSE2)
=
E1−E2

E1+E2
. (10)

A similar formula is applied to reciprocal NSE and KGE.
The normalised difference between the bias for two models
is calculated as

Diff_Biasnorm =
|Bias1| − |Bias2|

|Bias1| + |Bias2|
. (11)

To simplify the comparison of model results across the
large number of catchments, model performances at each
catchment are classified as similar if the normalised dif-
ference between WAPABA and LSTM metrics lies within
±0.05 at that catchment, following Lerat et al. (2020). There-
fore in this paper, a “similar” NSE denotes that the sum of
squared errors of the WAPABA and LSTMs at an individ-
ual catchment differ by no more than 5 %. For differences
greater than this, the catchments are classified by the model
type producing the higher metric. The selection of the thresh-
old of 0.05 was based on the recommendations of Lerat et al.

(2020) and the authors’ experience relative to the use of the
NSE, KGE, and Bias metrics.

3 Results

For each of the study catchments, a WAPABA model and an
LSTM model have been trained using monthly data over the
training period, and the prediction performance of the mod-
els are evaluated here on monthly data from the testing period
(data unseen by the model during training) using the met-
rics described above. A general comparison of WAPABA and
LSTM prediction performance is first made over all catch-
ments with a continental-scale analysis of the performance
metrics to determine

1. the proportion of overall catchments for which the WA-
PABA or the LSTMs produced better predictions and

2. differences at individual catchments in WAPABA ver-
sus LSTM prediction performance.

A comparison of model performance is then made in rela-
tion to various catchment and time series characteristics (e.g.
catchment size, flow level, record length) to determine if an
association exists between these properties and the relative
performance of the conceptual and machine learning mod-
els.

3.1 Example prediction results

As a sample of the modelling output, Fig. 3 shows the WA-
PABA and LSTM runoff predictions along with the corre-
sponding observed runoff for the three stations highlighted in
Fig. 1 (over the testing period). These hydrographs are repre-
sentative of a wet catchment in Northern Queensland (Mul-
grave River at The Fisheries, 111005), a temperate catchment
in New South Wales (Mann River at Mitchell, 204014), and
a dry intermittent catchment in Western Australia (Black-
wood River at Winnejup, 609012). NSE values of each of
the predictions are noted. The WAPABA and LSTM predic-
tions both match the observed data reasonably well in the
three catchments. The performance of the models, in par-
ticular for the Blackwood River at Winnejup is remarkable
because of the difficulty in modelling dry intermittent catch-
ments (Wang et al., 2020). The next sections provide a more

https://doi.org/10.5194/hess-28-1191-2024 Hydrol. Earth Syst. Sci., 28, 1191–1213, 2024



1198 S. R. Clark et al.: Deep learning for monthly rainfall–runoff modelling

Figure 3. Observed data (black dashed line) and predicted runoff (by WAPABA and LSTMs) over the testing period for the Mulgrave River at
The Fisheries (111005), Mann River at Mitchell (204014), and the Blackwood River at Winnejup (609012). Catchment locations are shown
in Fig. 1.

detailed assessment of the performance over all catchments
using quantitative metrics.

3.2 Large-sample performance summary

The general runoff prediction performance of WAPABA and
LSTMs on a continent-wide basis is summarised in Fig. 4.
From the models run for each catchment, metrics are deter-
mined on the training portion (calibration) and testing portion
(validation) separately and gathered here in boxplots. Me-
dian and quartiles of NSE, reciprocal NSE, KGE, and Bias
over all catchments are shown for each model type, with each
data point representing an individual catchment. All data are
shown on the top panel, and due to a few large (negative)
outliers the same figure is shown with a restricted y axis for
visualisation purposes on the lower panel. Higher values of
the first three metrics (NSE, reciprocal NSE, and KGE) indi-
cate a better match of predicted runoff with observed runoff,
whereas lower values of Bias indicate better prediction re-
sults.

Figure 4 shows that across the set of study catchments the
median values of NSE, reciprocal NSE, and KGE are slightly
higher for LSTM than for WAPABA during both the training
and testing phases. Bias has a slightly lower median for the
LSTM. As expected, both model types perform better dur-
ing the training phase than the testing phase for all metrics.
The difference between WAPABA and LSTM performance is

relatively large during the training period but similar during
testing, indicating perhaps a higher tendency towards over-
fitting by the machine learning models than traditional mod-
ellers would be expecting. The interquartile ranges increase
from training to testing (longer boxes during testing), indicat-
ing a greater spread of performance results when the models
are run on data not seen during the training phase. Over all
catchments, the median NSE is 0.74 with the WAPABA mod-
els and 0.76 with the LSTMs (on testing data). See Table 3
for median values of these metrics.

Aggregated performance metrics may mask performance
variability within certain aspects of the time series (Math-
evet et al., 2020). The KGE has the benefit of being easily
decomposed into three components for further error analy-
sis: bias of the mean (ratio of mean of simulations to mean
of observations), bias of variability (ratio of standard devia-
tion of simulations to standard deviation of the observations),
and correlation (matching of the timing and shape of the time
series to the observations).

In Fig. 5 and Table 3, model performance is assessed with
respect to each component of the KGE metric. Boxplots of
the decomposed KGE components are shown by model type
and training/testing period. During testing, the medians of
bias of the mean and standard deviation are above zero for
WAPABA and greater for WAPABA than LSTM. This in-
dicates that mean streamflow and streamflow variability tend
to be overestimated more by the WAPABA models compared
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Figure 4. Performance metrics summary for the set of 496 catchments (zoomed-in view in panel b, excluding outliers<−1). Median values
of LSTM performance metrics are slightly higher than WAPABA for NSE, reciprocal NSE, and KGE (higher indicates better performance)
and slightly lower for Bias (lower Bias is preferable). For all four metrics on both models, the longer testing boxes indicate more spread in
performance results when predicting on new data.

Table 3. Median values of metrics over the set of catchments (n= 496).

NSE Reciprocal NSE KGE Bias Bias of the mean Bias of variability Correlation

WAPABA 0.74 0.62 0.68 0.09 1.10 1.05 0.90
LSTM 0.76 0.65 0.70 0.06 1.07 0.97 0.90

to the LSTMs. The LSTM median bias of variability is be-
low zero; therefore, streamflow variability is more prone to
underestimation. For bias of the mean and standard devia-
tion, the depth of the boxplots increases from training to test-
ing, indicating the bias values from individual catchments are
more diverse during the testing period.

The scatterplots in the lower part of Fig. 5 compare the
KGE components at individual catchments for the WAPABA

and LSTMs (each dot represents a catchment), separately for
training and testing portions of the data. Most values of bias
of the mean (left column) are between 0 and 1 during training
(underestimating) yet during testing values extend beyond 2,
indicating that the mean flow in many catchments is overes-
timated by both model types on the testing data. The observ-
able correlation in testing period bias of the mean between
WAPABA and LSTM indicates that this error is not specific
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Figure 5. KGE decomposition into three components: bias of the mean, bias of variability, and correlation. Each dot represents an individual
catchment (large outliers have been omitted for visualisation purposes). In panel (a), boxplots show the median and interquartile range
of each category; in panel (b) scatterplots compare the distributions. The mean flow and variability (left and middle columns) tend to
be underestimated during training and both underestimated and overestimated during testing by both model types. The correlation (right
column) remains similar during training and testing.

to model type. The correlation between simulations and ob-
served data is similar for both model types and remains rel-
atively constant between training and testing periods (right
column).

3.3 Performance differences at individual catchments

The differences between WAPABA and LSTM performance
at each catchment (e.g. NSEi = NSEi,WAPABA−NSEi,LSTM
for catchment i) are summarised in Fig. 6. Values above zero
indicate higher metrics obtained by WAPABA, and values

below zero indicate higher metrics obtained by the LSTM
model at a specific catchment.

The boxplots indicate that median differences in WA-
PABA and LSTM prediction performance at each catchment
(measured by NSE, reciprocal NSE, KGE, and Bias on the
testing data) are very close to zero. However, there are out-
liers (black dots) representing large performance differences
between WAPABA and LSTMs, both positive and negative.
These indicate that each model provides advantages for pre-
dicting runoff in certain catchments. In this figure the box-
plots are restricted to the range [−1,1] for visualisation pur-
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Figure 6. Difference in the metrics (WAPABA−LSTM) for each catchment. A positive value indicates WAPABA has a higher metric for
that catchment, and a negative value indicates LSTM has a higher metric. The median difference in each metric lies close to zero for the
testing portion of the dataset, signifying overall similarity in catchment-specific metrics between model types. Large negative outliers have
been excluded from this figure for visualisation purposes but are provided in Fig. A1 in Appendix A.

poses. A version of this figure including the large outliers is
provided in Fig. A1 of Appendix A.

This dataset represents a range of catchments across Aus-
tralia, with some being characterised by highly arid condi-
tions. To enable comparisons between these diverse catch-
ments, the impact of large negative NSE values which can
occur at very dry catchments is minimised by calculating the
normalised differences in NSE between the WAPABA and
LSTM predictions at each catchment, as per Eq. (9). The
normalised differences fall into the range [−1,1], facilitat-
ing comparison. This distribution is shown in Fig. 7 for the
496 catchments. The portion of the distribution lying to the
right of the vertical dashed line corresponds to catchments
with better prediction by WAPABA and catchments to the
left have better prediction by LSTM. The x axis corresponds
to percentage differences between the sum of squared errors
of the two model types (i.e. −0.5 indicates a 50 % perfor-
mance gain by LSTM, and 0.5 indicates a 50 % performance
gain by WAPABA).

In Fig. 7, it can be seen that during the training period the
majority of catchments are to the left of the line, indicating
better prediction by LSTM, and in the testing period there
is a more even split. The median normalised difference in
NSE across the 496 catchments over the training period is
−0.15 (mean −0.16) and −0.04 (mean −0.05) during the
testing period. This equates to a median 15 % performance
advantage by LSTM versus WAPABA during training and
4 % during testing based on sum of squared errors.

This figure suggests that in general there is little overall
advantage of either the WAPABA or LSTMs when predict-
ing on unseen data across the whole sample of catchments.
However, the width of the distribution indicates that both the

WAPABA and LSTMs have advantages at certain individual
catchments, which will be explored in the next section.

Figure 8 quantifies the proportion of catchments with sim-
ilar or better prediction performance by either WAPABA or
LSTM (on the testing data). “Similarity” is defined here as an
absolute normalised difference in NSE of less than 0.05 be-
tween WAPABA and LSTM predictions, meaning the sum of
squared errors of the WAPABA and LSTMs at an individual
catchment differ by no more than 5 %.

The LSTMs produce similar or higher NSE values for
69 % of the catchments when tested on data not seen dur-
ing the training process (and 89 % of the catchments during
training, not shown). It can also be seen that 70 % of catch-
ments have similar or higher reciprocal NSE (focusing on
low flow predictions) with the LSTM, 61 % have similar or
higher KGE with the LSTM (higher being preferable), and
57 % have similar or lower Bias (lower being preferable) with
the LSTM model compared to WAPABA on the same catch-
ment.

3.4 Prediction performance comparison by catchment
or time series characteristics

In this section, it is investigated if the abilities of WAPABA
and LSTM to accurately predict runoff at individual catch-
ments vary based on attributes such as catchment area, flow
level, and length of historical record.

3.4.1 Catchment size

Figure 9 shows the association of prediction performance
with catchment area. The left panel shows the catchment
area compared to the normalised difference in NSE between
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Figure 7. Distribution of normalised differences between WAPABA and LSTM prediction performance at individual catchments (measured
by NSE). The values on the x axis represent percentage/100 difference in sum of squared errors between WAPABA and LSTM at the same
catchment (i.e. 0.5→ 50 % difference in sum of squared errors). The catchments under the curve on the right of the dashed line have better
predictions by the WAPABA model and on the left by the LSTM model.

Figure 8. Percentage of catchments with similar or better performance metrics on the testing portion of the data (note lower values of Bias
are better, for all other metrics higher is preferable). For catchments in the “similar” category, the sum of squared errors of the WAPABA
and LSTM predictions differ by less than 5 %. The LSTM model produces predictions with similar or higher NSE values compared to the
WAPABA predictions for 69 % of the catchments.

LSTM and WAPABA prediction performance for each catch-
ment. Data points are coloured according to the model that
produced the better prediction for that catchment. This fig-
ure indicates the largest performance gains of LSTM versus
WAPABA occurred in large catchments (points furthest to
the left are found in the upper portion of the plot). Splitting
the catchments into quintiles by area, the results can be anal-
ysed for the largest 20 % of catchments. Of these catchments,
over three-quarters (78 %) had similar or better runoff predic-
tions with the LSTM (with similarity defined as less than 5 %
difference in sum of squared errors compared to WAPABA
predictions). In this top quintile of catchments by area, those
with higher NSE values from the LSTM show a greater av-
erage advantage (average 24 % lower sum of squared errors,
maximum 97 % lower), than those with better WAPABA pre-
dictions (average 15 % lower sum of squared errors, maxi-
mum 65 % lower).

The mirrored histogram in the right panel of Fig. 8 shows
catchments stratified into bins by area (log base 10), coloured

and counted by the model type that produced the better runoff
prediction at each catchment. The LSTMs produced higher
NSEs for a greater number of catchments than the WAPABA
models in all of the bins, except the lowest bin (where n= 1).

3.4.2 Flow level

Model performance is compared for high-, medium-, and
low-flow portions of the time series. For each station, each
observation is categorised based on its flow level. High flows
are defined here as the top 5 % of flow values and low flows
as the lower 10 % of flows at each station (calculated exclud-
ing zeros) over all observed data during the study period.
The training and testing portions of the time series over all
the catchments have different distributions of flow levels, as
listed in Table 4. During the testing portion of the study pe-
riod, conditions are dryer with more no-flow and low-flow
observations and fewer medium- and high-flow observations
than during training.
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Figure 9. Model performance by catchment size. (a) Each data point represents the normalised difference in prediction performance at an
individual catchment, arranged by catchment size. The spread of data points in the top left quadrant indicates that in large catchments the
performance gain of LSTM over WAPABA can exceed 90 % in terms of sum of squared errors. (b) Count of catchments in each size category
that have better performance with each model.

Table 4. Distribution of flow levels during training and testing peri-
ods. Bold entries indicate the maximum in each flow level.

Flow level Training Testing
observations (n) observations (n)

No flow 18 728 21 690
Low 11 967 14 668
Medium 127 584 96 089
High 9192 4203

For comparison purposes in this section, the raw observed
and modelled flow data are standardised by station based on
the mean and standard deviation of all observations at that
station during the study period. The observed mean is sub-
tracted from each value before dividing by the standard devi-
ation of the observations, allowing for basins with a range of
flow volumes to be compared.

Figure 10 shows that when NSE is calculated separately
for the low-, medium- and high-flow measurements at each
catchment, both model types have similar NSE distributions.
Medium flows are better predicted (NSE peak closer to 1)
than high flows, and low flows appear to be poorly repre-
sented by both WAPABA and the LSTM.

Figure 11 compares the standardised modelled flow to the
standardised observations for all testing observations at all
stations. Kernel density contours split the data into 10 den-
sity regions on each plot, and a 1 : 1 line is added to aid inter-
pretation. The lower panel focuses on the regions of highest
density for each subset of flows. Note that the standardisa-
tion procedure used in this section leads to standardised “no-
flow” data points that do not fall exactly on zero in the plot
even though the raw flow values at these points are zero. For

no flows and low flows (left two panels), the densest por-
tions of the observation/prediction clouds are closely aligned
along the 1 : 1 line, indicating similar predictions obtained
with both models. The magnitude of the outliers (beyond
the outermost contour) is greatest above the 1 : 1 line indi-
cating that prediction errors for no flows and low flows are
dominated by overestimations. For medium-flow levels, the
contours again follow the 1 : 1 line. The contours tend to ex-
pand upwards as flow size increases, indicating a tendency
towards more overestimation with higher flows. The shape of
the contours is similar for both models. On the upper panel,
it can be seen that the edges of the data cloud expand up-
wards and outwards as the flows increase. The medium-flow
prediction errors with largest magnitude tend to be overesti-
mations, with the WAPABA models producing greater over-
estimations than the LSTMs on the higher flows (still in
this medium-flow subset). For high flows (on the far right
panel), the majority tend to be underestimated by both LSTM
and WAPABA (central density located below the 1 : 1 line),
though there is a difference in the outliers – most of the larger
errors in LSTM high-flow predictions are underestimations,
whereas the high-magnitude WAPABA errors are both over-
estimations and underestimations of high flows.

3.4.3 Poorly predicted catchments

Figure 12 compares the NSEs for WAPABA and LSTM
runoff predictions by catchment. Each dot represents an in-
dividual catchment, coloured according to the model with
higher NSE at that catchment. The top left quadrant con-
tains catchments where NSEWAPABA < 0 and NSELSTM > 0
(n= 19), and the lower right quadrant contains catchments
where NSELSTM < 0 and NSEWAPABA > 0 (n= 5).
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Figure 10. NSE distributions calculated separately by flow level over all catchments. Both model types have similar distributions of NSE by
flow. Medium flows are best represented, followed by high and then low flows.

WAPABA and LSTM predictions at each catchment are
classified into poor (NSE< 0), fair (0≤ NSE≤ 0.5), or good
(NSE> 0.5) categories. In this set of catchments, the runoff
at 5 catchments is poorly predicted (NSE< 0) by both model
types (lower left quadrant of Fig. 12). All other catchments
are better represented by one model or the other, with either
WAPABA or LSTM producing predictions with NSEs above
0.

For the 5 % (n= 24) of overall catchments that are poorly
represented by WAPABA (NSE< 0), runoff predictions at
23 of these catchments (96 %) are improved with use of the
LSTM. In fact, one-third (n= 8) of these have good predic-
tions by the LSTM (NSE> 0.5). Conversely, for the 2 %
of catchments (n= 10) that are poorly represented by the
LSTM, 60 % are improved with use of WAPABA, and one-
tenth (n= 1) have good predictions by WAPABA (in this
catchment the LSTM prediction is on the border of poor and
fair (NSE= 0.001)). Figure 13 depicts the number of catch-
ments poorly represented by each model and how these spe-
cific catchments are represented by the alternate model. For
half of the catchments with poor LSTM predictions, WA-
PABA does poorly as well, whereas in 79 % of the catch-
ments with poor WAPABA predictions fair or good predic-
tions were obtained with the LSTM.

3.4.4 Generalising to changing conditions

The ability of a model to generalise outside of the conditions
encountered during training is important, especially in the
context of a changing climate. A model that is able to make
predictions on unseen (testing) data to a comparable perfor-
mance level as on the training data will provide confidence
in making predictions into the future when external condi-
tions are not expected to remain constant. In this dataset, it

is known that conditions differ between the training and test-
ing data, with wetter climate conditions during the training
period and a dryer testing period.

It was found that 2 % (n= 11) of WAPABA models strug-
gled with generalising outside of the training period, with
good (NSE> 0.5) runoff predictions during training but very
poor predictions (NSE<−0.5) during the testing period.
The testing predictions for all of these catchments were im-
proved by use of the LSTM, and at four of these catch-
ments good predictions (NSE> 0.5) were obtained with the
LSTMs. Conversely, one LSTM model produced good train-
ing runoff predictions and very poor testing predictions. This
catchment was 1 of the 11 that also had poor generalisation
(and very poor predictions) with WAPABA.

3.4.5 Historical record length and dataset size

The performance of each model type is compared to the
length of historical records available at each station. Training
data length has been categorised here as 14–25 years (38 %
of stations), 25–35 years (40 %), and 35–47 years (23 %).

Figure 14 (top panel) shows prediction performance vary-
ing slightly with record length (for visualisation purposes,
this figure is shown without large negative outliers – the fig-
ure including outliers is provided in Fig. A2 of Appendix A).
Stations with medium record length tend to have slightly bet-
ter predictions according to the four metrics than those with
shorter records. The performance levels tend to even out as
record lengths increase beyond 35 years, and there is even a
slight decline in the WAPABA reciprocal NSE.

Considering catchments individually, the median nor-
malised difference in NSE between WAPABA and LSTM
predictions (on testing data) is just slightly below zero for
all record lengths: −0.03 (< 25 years of record), −0.04 (25–

Hydrol. Earth Syst. Sci., 28, 1191–1213, 2024 https://doi.org/10.5194/hess-28-1191-2024



S. R. Clark et al.: Deep learning for monthly rainfall–runoff modelling 1205

Figure 11. Prediction performance related to flow level. (a) Observed vs. modelled flow pairs (normalised data) at all stations, separated
into no-flow, low, medium and high flows (testing data only). The densest portion of the data cloud is identified with density contours. Note
that the data have been standardised based on observed mean and standard deviation leading to non-zero values in the “no-flow” category.
(b) Comparison of density distributions of the data, zoomed in on the kernel density contours. In general, the largest errors on medium
flows tend to be overestimations (by both models) and on high flows tend to be underestimations (by both models) or overestimations (by
WAPABA).

35 years), and −0.04 (> 35 years). This indicates that, in
each of the short, medium, and long record length categories,
at least half of the individual catchments have higher NSEs
with the LSTMs.

The mirrored histogram in the lower left panel of Fig. 14
quantifies the number of catchments within 5-year bins of

record length in which runoff is better predicted by the
LSTM or by the WAPABA. In six of the eight bins, the ma-
jority of catchments are better represented by the LSTM.

Comparing performance based on the number of years
of record does not take into account the actual size of the
datasets, since measurement frequency differs at each sta-

https://doi.org/10.5194/hess-28-1191-2024 Hydrol. Earth Syst. Sci., 28, 1191–1213, 2024



1206 S. R. Clark et al.: Deep learning for monthly rainfall–runoff modelling

Figure 12. (a) Comparison of NSEs on testing data – each data point represents the WAPABA and LSTM values of NSE for a single
catchment, coloured by the model which provides the best prediction at that catchment. In panel (b), two far-left outliers have been removed
to enable better viewing of the other data points. Catchments in the upper left quadrant are those in which runoff is poorly predicted by
WAPABA (NSE< 0) and better predictions (NSE> 0) are obtained with LSTM. The lower right quadrant correspondingly shows catchments
in which the NSE values from LSTM are below 0 and WAPABA has better predictions (NSE> 0).

Figure 13. Number of catchments with poor runoff predictions by each model type. Colouring indicates the prediction results from the
alternate model type. One-third of WAPABA poorly predicted catchments have good predictions with the LSTM. One-tenth of LSTM
poorly predicted catchments have good predictions with WAPABA. Results are denoted as poor (NSE< 0), fair (0≤ NSE≤ 0.5), or good
(NSE> 0.5).

tion. Catchments in this study have between 172 and 564
training data observations (425–846 including testing data).
The lower right panel of Fig. 14 shows the number of catch-
ments best modelled by the WAPABA or LSTM model (de-
termined by higher NSE on the testing data) in relation to the
number of training observations. Median NSE values of both
the WAPABA and LSTM predictions increased with increas-
ing number of training data points (not shown). Of particular
note is that runoff at catchments with the smallest datasets
(less than 250 training data points) were similarly well pre-
dicted by both LSTM (median NSE= 0.67) and WAPABA
(median NSE= 0.66).

4 Discussion

When considered over the entire study set of catchments,
machine learning models were found to match conceptual
model performance for the majority of catchments. The me-

dian NSE of runoff predictions was 0.74 with the WAPABA
models and 0.76 with the LSTMs, and the medians of other
metrics were similarly aligned. At individual catchments,
LSTM runoff prediction performance was similar to or ex-
ceeded WAPABA performance in 69 % of the catchments in
this study (based on the NSE metric). The median differences
in metrics (NSE, reciprocal NSE, KGE, and Bias) between
the model types at individual catchments were close to zero,
though the range of differences was wide in both directions,
suggesting many catchments had noticeable prediction ad-
vantages with either the WAPABA or LSTMs.

Medium flows were similarly well represented by both
model types, with less accurate predictions for high flows
and worse again for low flows. Both WAPABA and LSTM
models tend to overestimate low flows, while high flows
are noticeably underestimated by LSTM and both overesti-
mated and underestimated by WAPABA. Across all flow lev-
els, the mean flow is prevalently overestimated during testing
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Figure 14. Effect of record length and training data size on prediction performance for each model type. (a) Medians of the NSE and
KGE on testing data increase with record length for both WAPABA and LSTM predictions (large negative outliers have been excluded for
visualisation purposes but are included in the corresponding figure in Appendix A). (b) Advantage of each model in 5-year increments of
record length based on NSE values. (c) Advantage of each model based on number of training observations.

for both model types, though slightly more so by WAPABA
(higher bias of the mean). This overestimation is expected as
the testing period in this study is drier than the training pe-
riod and it is common to have an overestimation of mean dur-
ing dry periods (Vaze et al., 2010). Variability of streamflow
tends towards overestimation by WAPABA and underestima-
tion by LSTM.

Larger catchments were found to have the potential for
greater prediction improvements with the LSTM. This find-
ing supports the work of Fluet-Chouinard et al. (2022), who
found that deep learning methods compete especially well
with traditional models in larger non-regulated rivers where
the influence of time lags is significant.

Though it is known that, in general, machine learning
models benefit from large amounts of training data, it is of-
ten not possible to provide large hydrological datasets. In this

comparison, shorter training record lengths were not found
to affect one model type more than the other; the catchments
with the smallest training datasets (less than 250 observa-
tions) did not show a distinct prediction advantage with either
WAPABA or LSTM (median NSEs of 0.66 and 0.67 respec-
tively).

In past studies, traditional models have been found to
struggle to make accurate runoff predictions under shift-
ing meteorologic data (Saft et al., 2016). Researchers have
noted that deep learning models may have the potential to
overcome this issue (Li et al., 2021; Wi and Steinschneider,
2022). In this study, the variation in differences in prediction
performance at individual catchments is more evident during
the testing portion than the training portion of the time se-
ries, implying that the WAPABA and LSTMs may each have
advantages or drawbacks for generalising to unseen data on
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various catchments. It was found that in catchments where
the WAPABA models provide good runoff predictions dur-
ing training but struggle to make accurate predictions on
new data, the LSTM provides improved predictions in all
cases (i.e. for those with testing NSE< 0 with WAPABA,
all bar one had NSE> 0 with the LSTM). In the opposite
case, where the LSTM produced substantially poorer predic-
tions on testing data than training data, these predictions were
not outdone by WAPABA. This improvement by the LSTM
in predicting beyond conditions experienced during training
will become progressively important as climate change con-
tinues.

Aside from scientific considerations, another important
advantage of developing rainfall–runoff models using a ma-
chine learning software framework is to easily share them
among users and to benefit from software optimisation pro-
vided by well-established frameworks such as TensorFlow,
Keras, or PyTorch. Better benchmark datasets and centralised
repositories will be the key to advancement of machine learn-
ing in hydrology (Nearing et al., 2021; Shen et al., 2021). Ini-
tiatives are being made to grow reusable software for apply-
ing machine learning in hydrology and to benchmark these
against other approaches (Abbas et al., 2022; Kratzert et al.,
2022).

Metrics and models

Certain caveats are acknowledged regarding the metrics and
models used here. It is possible that the use of individual met-
rics to compare predictions along the entire length of the time
series may mask any variability in model performance that
occurs in subperiods of the time series (Clark et al., 2021;
Mathevet et al., 2020). These limitations were partially ad-
dressed by comparing high-, medium-, and low-flow periods
separately, though there are many other subdivisions of the
time series that have not been included in the scope of this
study.

WAPABA is only one example of a conceptual rainfall–
runoff model. There are others that could have been chosen
for this analysis, though fewer are suitable for comparisons
at a monthly time step than would be the case at the daily
time step. Model comparisons in Wang et al. (2011), Bennett
et al. (2017), and the subsequent body of work with WA-
PABA in Australia have established WAPABA as a reason-
able benchmark against which to assess the machine learning
model performance.

Though this study has focused on comparing the LSTM
model to the WAPABA, readers may wonder if the more tra-
ditional feed-forward neural network (FFNN) may suffice in
producing as good results. The FFNN has been used in hy-
drology for many years to model the relationship between
climatic predictors and hydrological responses and many re-
searchers are familiar with this basic neural network struc-
ture. However, the FFNN is a static network and does not
consider the sequential nature of the input data. Though the

6 months of lagged predictor variables could be input as sep-
arate variables, this requires an increase in the complexity of
the training space and is not likely to be the optimal choice
for time series data as the cumulative impact of the predictor
sequences may not be captured. Many studies have already
considered the comparison of FFNNs to LSTMs for rainfall–
runoff modelling and have determined the LSTM to provide
superior runoff predictions (e.g. Rahimzad et al., 2021). As
an experiment, the FFNN has been run on this set of 496
catchments and added to the comparison of overall model
performance, shown in Fig. A3 of Appendix A. It can be seen
that the FFNN leads to lower NSE, KGE, reciprocal NSE,
bias of the mean, bias of variability, and correlation values,
and it therefore provides less accurate estimations of runoff
than both the WAPABA and the LSTM. For this reason, the
FFNN has not been included in the bulk of this study.

Future research directions

Future work may entail an expansion of the architecture and
complexity of the LSTMs used here to determine what ad-
vantages could be gained from the use of more sophisticated
model setups. This may involve the development of hybrid
models blending existing conceptual models with LSTMs,
the production of a global LSTM incorporating all of the time
series, or a type of transfer learning where a model trained
on data from all catchments is fine-tuned on a catchment-by-
catchment basis, as in Kratzert et al. (2019).

A simple LSTM has been used in this study, with a sin-
gle layer and no catchment-specific hyperparameter tuning.
Through appropriate tuning of the models’ architecture and
hyperparameters for each catchment, more accurate results
could be expected. For example, it is known that the perfor-
mance of data-driven runoff models is heavily dependent on
the amount of lagged data that are used as input (Jin et al.,
2022). In this study, a lag of 6 months has been used for all
of the catchments, and as such, only temporal patterns of up
to 6 months are captured by the LSTMs used in this paper.
Varying the length of lag on a catchment-specific basis may
lead to better performance.

Opportunities also exist for multiple time series analyses
on this set of basins to capture patterns in hydrologic be-
haviour that surpass the catchment scale. With multiple time
series analysis one might expect to see greater benefits in
the use of machine learning over traditional hydrologic mod-
els, since these large-scale studies present obstacles to tradi-
tional modelling due to their greater input data and parame-
ter requirements to accurately describe the physical proper-
ties of the catchments (Nearing et al., 2021). Deep learning
models have been found to produce better predictions when
trained on multiple rather than individual basins (Nearing et
al., 2021), and it has been noted that the training of LSTMs
on large diverse sets of watersheds may help improve the
realism of hydrologic projections under climate change (Wi
and Steinschneider, 2022).
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Another consideration may be hybrid modelling frame-
works, which combine aspects of conceptual models with
machine learning models. These have the potential to draw
benefits from both types of models to produce more inter-
pretable and possibly more physically realistic predictions.
By leveraging the particular strengths of each model type,
the limitations inherent in each may be reduced. For exam-
ple, Okkan et al. (2021) embedded machine learning models
into the internal structure of a conceptual model, calibrating
both the host and source models simultaneously, and found
the product outperformed each model individually. Li et al.
(2023) replaced a set of internal modules of a physical model
with embedded neural networks, leading to improved inter-
pretability as well as predictions that are comparable to pure
deep learning (LSTM) predictions. The authors found that re-
placing any of the internal modules improved performance of
the process-based model. In the Australian context, Kapoor
et al. (2023) studied the use of deep learning components
in the form of LSTMs and convolutional neural networks to
represent subprocesses in the GR4J rainfall–runoff concep-
tual model for a set of over 200 basins. It was found the
hybrid models outperformed the conceptual model as well
as the deep learning models when used separately, and pro-
vided improved interpretability, better generalisation, and an
improvement in prediction performance in arid catchments.
In this case of this study, the soil moisture and groundwater
recharge outputs derived from the WAPABA model would
likely be useful as additional predictors for the LSTM model.

The question of catchment-specific circumstances under
which the LSTM may provide an advantage to monthly
rainfall–runoff modelling has been broached in an elemen-
tary fashion here, and a more sophisticated investigation
would be warranted in further studies. Investigation of multi-
dimensional patterns of catchment or climate characteristics
that may be associated with differences in predictive perfor-
mance between the model types could lead to a greater un-
derstanding of the value that LSTMs could add to hydrologic
modelling.

5 Conclusion

A continental-scale comparison of conceptual (WAPABA)
and machine learning (LSTM) model predictions has been
made for monthly rainfall–runoff modelling on 496 diverse
catchments across Australia. This large-sample analysis of
monthly-timescale models aggregates performance results
over a variety of catchment types, flow conditions, and hy-
drological record lengths.

The following conclusions have been found:

1. The LSTMs match or exceed WAPABA prediction per-
formance at a monthly scale for the majority of catch-
ments (69 %) in this study.

2. Both the WAPABA and LSTMs have advantages at cer-
tain individual catchments. Whilst the median differ-
ence in prediction performance is near zero, the distri-
bution spreads in both directions.

3. Larger catchments were found to have the potential for
greater prediction improvements with the LSTM.

4. Mean streamflow and streamflow variability tend to be
overestimated more by the WAPABA models than the
LSTMs.

5. Both model types predict medium flows better than high
or low flows. The majority of high flows were underes-
timated by both models; however, WAPABA also had
some tendency towards large overestimations of high
flows that was not seen with the LSTMs.

6. Generalisation to new conditions is found to improve
with use of the LSTM. In this dataset the testing period
was significantly drier than the training period, with im-
plications for making predictions in the context of cli-
mate change. At catchments in which WAPABA pro-
duced good predictions on the training data but very
poor predictions on the testing data, the testing predic-
tions were universally improved with use of the LSTM;
the opposite case was not observed (i.e. in the one catch-
ment with poor generalisation by the LSTM, this was
not improved upon by the WAPABA).

7. Catchments with the smallest training datasets (< 250
observations) were similarly well predicted by both
model types.

It has been shown that similar performance to traditional
models is able to be reached despite the LSTM being fit
using limited data on single catchments and a basic model
setup. With refinement of the LSTM model architecture
and hyperparameter tuning specific to each catchment, it
may be possible to increase the proportion of catchments
for which the LSTM provides good prediction performance.
Other benefits may be realised by combining multiple catch-
ments within a global model to capture patterns that tran-
scend catchment boundaries, incorporating hybrid modelling
techniques or transferring knowledge from data-rich catch-
ments to data-poor catchments within Australia or from in-
ternational source catchments.

Appendix A

Figures A1 and A2 are reproductions of figures in the article
in which large outliers detract from a decent visualisation of
the bulk of the data points. Here the entire dataset is included,
whereas the corresponding figures in the report are shown
without the large outliers.
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Figure A1. Difference in the metrics (WAPABA−LSTM) for each catchment. A reproduction of Fig. 6 that includes outliers.

Figure A2. Effect of record length and training data size on prediction performance for each model type. A reproduction of Fig. 14 that
includes outliers.

Figure A3. FFNN metrics compared with WAPABA and LSTM metrics, corresponding to Figs. 4 and 5.
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Feed-forward neural network

To investigate the use of a very simple neural network, the
FFNN was run for the 496 catchments. Input variables were
the same as for the LSTM and WAPABA; however, 6 months
of historical values were included with each training observa-
tion. A grid search on five random catchments was conducted
to select learning rate and batch size. Out of a search space
of [8,16,32] for batch size and [0.1,0.01,0.001,0.0001] for
learning rate, a batch size of 16 and learning rate of 0.01 were
chosen.

Figure A3 includes the FFNN model results in the com-
parison with LSTM and WAPABA results. The FFNN values
are lower than WAPABA and LSTM indicating poorer runoff
predictions over this set of catchments.

Code and data availability. All data used in this paper are acces-
sible through the website of the Australian Bureau of Meteorol-
ogy. Rainfall and potential evapotranspiration can be downloaded
from the Australian Water Outlook portal at the following address:
https://awo.bom.gov.au/ (Australian Water Outlook, 2022). Stream-
flow can be downloaded from the Water Data Online portal at the
following address: http://www.bom.gov.au/waterdata/ (Water Data
Online, 2022). Catchment characteristics (e.g. area) can be obtained
from the Geofabric dataset available at the following address: http:
//www.bom.gov.au/water/geofabric/ (Commonwealth of Australia
and Bureau of Meteorology, 2022). The deep learning source code
used in this paper is available at https://csiro-hydroinformatics.
github.io/monthly-lstm-runoff/ (Perraud and Fitch, 2024), includ-
ing an overview and instructions for retrieving the source code and
setting up batch calibrations on a Linux cluster. The code is made
available under a CSIRO open-source software license for research
purposes.
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