Articles | Volume 27, issue 23
https://doi.org/10.5194/hess-27-4227-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-4227-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio
CORRESPONDING AUTHOR
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Elvin Isufi
Department of Intelligent Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
Sebastiaan Nicolas Jonkman
Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Riccardo Taormina
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Related authors
Roberto Bentivoglio, Sebastiaan Nicolas Jonkman, Elvin Isufi, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5582, https://doi.org/10.5194/egusphere-2025-5582, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Obtaining probabilistic flood maps with numerical models is very time-consuming. Deep learning models can speed this up, but their predictions are hard to verify without reference data, and they ignore structures like dikes or canals. This work introduces a mass-based validation measure to assess prediction plausibility and adapts a graph-based model to include hydraulic structures, enabling realistic, large-scale probabilistic flood mapping in the Netherlands.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-614, https://doi.org/10.5194/hess-2021-614, 2021
Manuscript not accepted for further review
Short summary
Short summary
Deep Learning methods have been increasingly used in flood mapping as an alternative to traditional modeling techniques. While promising results have been obtained, our review shows significant challenges in building Deep Learning models that can generalize across multiple scenarios, account for complex interactions, and provide probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in Deep Learning.
Laurie van Gijzen, Alexander M. Bakker, and Sebastiaan N. Jonkman
EGUsphere, https://doi.org/10.5194/egusphere-2025-5801, https://doi.org/10.5194/egusphere-2025-5801, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Future sea level rise will likely challenge many low-lying deltas in the world. A possible mitigation strategy discharging the incoming river discharge with large pump-sluice stations. In this study we determine the required pump and sluice capacity by including the new concept of operational discharge capacity. We found that including operational discharge capacity led to an significant increase in flood frequency, making it crucial to account for in the design of pump-sluice stations.
Roberto Bentivoglio, Sebastiaan Nicolas Jonkman, Elvin Isufi, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5582, https://doi.org/10.5194/egusphere-2025-5582, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Obtaining probabilistic flood maps with numerical models is very time-consuming. Deep learning models can speed this up, but their predictions are hard to verify without reference data, and they ignore structures like dikes or canals. This work introduces a mass-based validation measure to assess prediction plausibility and adapts a graph-based model to include hydraulic structures, enabling realistic, large-scale probabilistic flood mapping in the Netherlands.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Tim Hans Martin van Emmerik, Tim Willem Janssen, Tianlong Jia, Thank-Khiet L. Bui, Riccardo Taormina, Hong-Q. Nguyen, and Louise Jeanne Schreyers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2270, https://doi.org/10.5194/egusphere-2024-2270, 2024
Preprint archived
Short summary
Short summary
Plastic pollution has negative effects on the environment. Tropical rivers around the world suffer from both plastic pollution and invasive water hyacinths. Water hyacinths grow rapidly and form dense floating mats. Using drones, cameras and AI, we show that along the Saigon river, Vietnam, the majority of floating plastic pollution is carried by water hyacinths. Better understanding water hyacinth-plastic trapping supports improving pollution monitoring and management strategies.
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024, https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Short summary
A coupled statistical–hydrodynamic model framework is employed to quantitatively evaluate the sensitivity of compound flood hazards to the relative timing of peak storm surges and rainfall. The findings reveal that the timing difference between these two factors significantly affects flood inundation depth and extent. The most severe inundation occurs when rainfall precedes the storm surge peak by 2 h.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022, https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-614, https://doi.org/10.5194/hess-2021-614, 2021
Manuscript not accepted for further review
Short summary
Short summary
Deep Learning methods have been increasingly used in flood mapping as an alternative to traditional modeling techniques. While promising results have been obtained, our review shows significant challenges in building Deep Learning models that can generalize across multiple scenarios, account for complex interactions, and provide probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in Deep Learning.
Cited articles
Alcrudo, F. and Garcia-Navarro, P.: A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, Int. J. Numer. Meth. Fluids, 16, 489–505, 1993. a
Bates, P. D. and De Roo, A. P.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000. a
Battaglia, P. W. E. A.: Relational inductive biases, deep learning, and graph networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1806.01261, 2018. a
Bentivoglio, R.: Code repository for paper “Rapid Spatio-Temporal Flood Modelling via Hydraulics-Based Graph Neural Networks”, Zenodo [code], https://doi.org/10.5281/zenodo.10214840, 2023a. a
Bentivoglio, R.: Video simulations for paper “Rapid Spatio-Temporal Flood Modelling via Hydraulics-Based Graph Neural Networks”, Zenodo [video supplement], https://doi.org/10.5281/zenodo.7652663, 2023b. a
Bentivoglio, R. and Bruijns, R.: Raw datasets for paper “Rapid Spatio-Temporal Flood Modelling via Hydraulics-Based Graph Neural Networks”, Zenodo [data set], https://doi.org/10.5281/zenodo.7764418, 2023. a
Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R.: Deep learning methods for flood mapping: a review of existing applications and future research directions, Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, 2022. a
Berkhahn, S., Fuchs, L., and Neuweiler, I.: An ensemble neural network model for real-time prediction of urban floods, J. Hydrol., 575, 743–754, https://doi.org/10.1016/j.jhydrol.2019.05.066, 2019. a
Brandstetter, J., Worrall, D., and Welling, M.: Message passing neural PDE solvers, arXiv [preprint], https://doi.org/10.48550/arXiv.2202.03376, 2022. a
Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P.: Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, arXiv [preprint], arXiv:2104.13478, https://doi.org/10.48550/arXiv.2104.13478, 2021. a
Chen, Y., Tang, X., Qi, X., Li, C.-G., and Xiao, R.: Learning graph normalization for graph neural networks, Neurocomputing, 493, 613–625, 2022. a
Costabile, P., Costanzo, C., and Macchione, F.: Performances and limitations of the diffusive approximation of the 2-d shallow water equations for flood simulation in urban and rural areas, Appl. Numer. Math., 116, 141–156, 2017. a
Courant, R., Friedrichs, K., and Lewy, H.: On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11, 215–234, 1967. a
Defferrard, M., Bresson, X., and Vandergheynst, P.: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, in: Advances in Neural Information Processing Systems, vol. 29, edited by: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., Curran Associates, Inc., 1–10, https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf (last access: 18 February 2023), 2016. a
Deltares: Delft3D-FM User Manual, https://content.oss.deltares.nl/delft3d/manuals/D-Flow_FM_User_Manual.pdf (last access: 18 February 2023), 2022. a
DHPC – Delft High Performance Computing Centre: DelftBlue Supercomputer (Phase 1), https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1 (last access: 18 February 2023), 2022. a
do Lago, C. A., Giacomoni, M. H., Bentivoglio, R., Taormina, R., Gomes, M. N., and Mendiondo, E. M.: Generalizing rapid flood predictions to unseen urban catchments with conditional generative adversarial networks, J. Hydrol., 618, 129276, https://doi.org/10.1016/j.jhydrol.2023.129276, 2023. a
Dormand, J. R. and Prince, P. J.: A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19–26, 1980. a
Fey, M. and Lenssen, J. E.: Fast graph representation learning with PyTorch Geometric, arXiv [preprint], arXiv:1903.02428, https://doi.org/10.48550/arXiv.1903.02428, 2019. a
Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A., and Battaglia, P.: Multiscale meshgraphnets, arXiv [preprint], arXiv:2210.00612, https://doi.org/10.48550/arXiv.2210.00612, 2022. a
Gama, F., Isufi, E., Leus, G., and Ribeiro, A.: Graphs, convolutions, and neural networks: From graph filters to graph neural networks, IEEE Sig. Process. Mag., 37, 128–138, 2020. a
Guo, Z., Leitao, J. P., Simões, N. E., and Moosavi, V.: Data-driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks, J. Flood Risk Manage., 14, e12684, https://doi.org//10.1111/jfr3.12684, 2021. a
Guo, Z., Moosavi, V., and Leitão, J. P.: Data-driven rapid flood prediction mapping with catchment generalizability, J. Hydrol., 609, 127726, https://doi.org/10.1016/j.jhydrol.2022.127726, 2022. a
Horie, M. and Mitsume, N.: Physics-Embedded Neural Networks: E(n)-Equivariant Graph Neural PDE Solvers, arXiv [preprint], https://doi.org/10.48550/ARXIV.2205.11912, 2022. a
Hu, R. L., Pierce, D., Shafi, Y., Boral, A., Anisimov, V., Nevo, S., and Chen, Y.-F.: Accelerating physics simulations with tensor processing units: An inundation modeling example, arXiv [preprint], https://doi.org/10.48550/arXiv.2204.10323, 2022. a
Jacquier, P., Abdedou, A., Delmas, V., and Soulaïmani, A.: Non-intrusive reduced-order modeling using uncertainty-aware Deep Neural Networks and Proper Orthogonal Decomposition: Application to flood modeling, J. Comput. Phys., 424, 109854, https://doi.org/10.1016/j.jcp.2020.109854, 2021. a
Jonkman, S. N., Kok, M., and Vrijling, J. K.: Flood risk assessment in the Netherlands: A case study for dike ring South Holland, Risk Ana., 28, 1357–1374, 2008. a
Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J., and Pender, G.: A deep convolutional neural network model for rapid prediction of fluvial flood inundation, J. Hydrol., 590, 125481, https://doi.org/10.1016/j.jhydrol.2020.125481, 2020. a
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv [preprint], arXiv:1412.6980 https://doi.org/10.48550/arXiv.1412.6980, 2014. a
Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., and Thieken, A. H.: Is flow velocity a significant parameter in flood damage modelling?, Nat. Hazards Earth Syst. Sci., 9, 1679–1692, https://doi.org/10.5194/nhess-9-1679-2009, 2009. a, b
LeVeque, R. J.: Finite volume methods for hyperbolic problems, in: vol. 31, Cambridge University Press, ISBN 0521810876, 2002. a
Liang, Q. and Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms, Adv. Water Resour., 32, 873–884, 2009. a
Lino, M., Cantwell, C., Bharath, A. A., and Fotiadis, S.: Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks, arXiv [preprint], arXiv:2106.04900, https://doi.org/10.48550/arXiv.2106.04900, 2021. a
Lino, M., Fotiadis, S., Bharath, A. A., and Cantwell, C. D.: Multi-scale rotation-equivariant graph neural networks for unsteady Eulerian fluid dynamics, Phys. Fluids, 34, 087110, https://doi.org/10.1063/5.0097679, 2022. a
Liu, Y., Kutz, J. N., and Brunton, S. L.: Hierarchical deep learning of multiscale differential equation time-steppers, Philos. T. Roy. Soc. A, 38, 020210200, https://doi.org/10.1098/rsta.2021.0200, 2022. a
Löwe, R., Böhm, J., Jensen, D. G., Leandro, J., and Rasmussen, S. H.: U-FLOOD – Topographic deep learning for predicting urban pluvial flood water depth, J. Hydrol., 603, 126898, https://doi.org/10.1016/j.jhydrol.2021.126898, 2021. a, b
Martínez-Aranda, S., Fernández-Pato, J., Echeverribar, I., Navas-Montilla, A., Morales-Hernández, M., Brufau, P., Murillo, J., and García-Navarro, P.: Finite Volume Models and Efficient Simulation Tools (EST) for Shallow Flows, in: Advances in Fluid Mechanics, Springer, 67–137, https://doi.org/10.1007/978-981-19-1438-6_3, 2022. a
Mosavi, A., Ozturk, P., and Chau, K.-W.: Flood Prediction Using Machine Learning Models: Literature Review, Water, 10, 1536, https://doi.org/10.3390/w10111536, 2018. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: Pytorch: An imperative style, high-performance deep learning library, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.01703, 2019. a
Peng, J.-Z., Wang, Y.-Z., Chen, S., Chen, Z.-H., Wu, W.-T., and Aubry, N.: Grid adaptive reduced-order model of fluid flow based on graph convolutional neural network, Phys. Fluids, 34, 087121, https://doi.org/10.1063/5.0100236, 2022. a
Perlin, K.: Improving Noise, ACM Trans. Graph., 21, 681–682, https://doi.org/10.1145/566654.566636, 2002. a
Petaccia, G., Natale, L., Savi, F., Velickovic, M., Zech, Y., and Soares-Frazão, S.: Flood wave propagation in steep mountain rivers, J. Hydroinform., 15, 120–137, 2013. a
Petaccia, G., Leporati, F., and Torti, E.: OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids, Comput. Geosci., 20, 1123–1132, https://doi.org/10.1007/s10596-016-9580-5, 2016. a
RBTV1: SWE-GNN-paper-repository-, GitHub [code], https://github.com/RBTV1/SWE-GNN-paper-repository- (last access: 29 November 2023), 2023. a
Roe, P. L.: Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 135, 250–258, https://doi.org/10.1006/jcph.1997.5705, 1981. a
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, arXiv [preprint], https://doi.org/10.48550/arXiv.1505.04597, 2015. a
Sabbaqi, M. and Isufi, E.: Graph-Time Convolutional Neural Networks: Architecture and Theoretical Analysis, arXiv [preprint], https://doi.org/10.48550/arXiv.2206.15174, 2022. a
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., and Kim, S.: Flood inundation modelling: A review of methods, recent advances and uncertainty analysis, Environ. Model. Softw., 90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017. a
Toro, E. F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science & Business Media, https://doi.org/10.1007/b79761, 2013. a
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.: Graph attention networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1710.10903, 2017. a
Villar, S., Hogg, D. W., Yao, W., Kevrekidis, G. A., and Schölkopf, B.: The passive symmetries of machine learning, arXiv [preprint], arXiv:2301.13724, https://doi.org/10.48550/arXiv.2301.13724, 2023. a
Vorogushyn, S., Merz, B., and Apel, H.: Development of dike fragility curves for piping and micro-instability breach mechanisms, Nat. Hazards Earth Syst. Sci., 9, 1383–1401, https://doi.org/10.5194/nhess-9-1383-2009, 2009. a
Wang, X., Chen, Y., and Zhu, W.: A survey on curriculum learning, IEEE T. Pattern Anal. Mach. Intel., 44, 4555–4576, https://doi.org/10.1109/TPAMI.2021.3069908, 2022. a
Xia, X., Liang, Q., Ming, X., and Hou, J.: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations, Water Resour. Res., 53, 3730–3759, 2017. a
Yang, M., Isufi, E., and Leus, G.: Simplicial Convolutional Neural Networks, in: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 23–27 May 2022, Singapore, Singapore, 8847–8851, https://doi.org/10.1109/ICASSP43922.2022.9746017, 2022. a
You, J., Ying, Z., and Leskovec, J.: Design space for graph neural networks, Adv. Neural Inform. Process. Syst., 33, 17009–17021, 2020. a
Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J.: Dive into deep learning, arXiv [preprint], arXiv:2106.11342, https://doi.org/10.48550/arXiv.2106.11342, 2021. a
Zhou, Y., Wu, W., Nathan, R., and Wang, Q.: Deep learning-based rapid flood inundation modelling for flat floodplains with complex flow paths, Water Resour. Res., 58, e2022WR033214, https://doi.org/10.1029/2022WR033214, 2022. a
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
To overcome the computational cost of numerical models, we propose a deep-learning approach...