Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 27, issue 23
https://doi.org/10.5194/hess-27-4227-2023
https://doi.org/10.5194/hess-27-4227-2023
Research article
 | 
30 Nov 2023
Research article |  | 30 Nov 2023

Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks

Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina

Viewed

Total article views: 5,403 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
4,016 1,307 80 5,403 85 70
  • HTML: 4,016
  • PDF: 1,307
  • XML: 80
  • Total: 5,403
  • BibTeX: 85
  • EndNote: 70
Views and downloads (calculated since 22 Mar 2023)
Created with Highstock 2.0.436422118217417215321722911042523014922327825621743418314116215112914811815016126261146879210499127146703531911051672111771683891421161391351061269911712122957395776554878039663539496068464337232216232219333748205303316457711324210000030HTML viewsPDF downloadsXML downloadsSep 2024Oct 2024Nov 2024Dec 2024Jan 2025Feb 2025Mar 2025Apr 2025May 2025050100150200
Cumulative views and downloads (calculated since 22 Mar 2023)
Created with Highstock 2.0.43645857679411,1131,2661,4831,7121,8222,2472,4772,6262,8493,1273,3833,6004,0344,2174,3584,5204,6714,8004,9485,0665,2165,3775,4032614074945866907899161,0621,1321,4851,6761,7811,9482,1592,3362,5042,8933,0353,1513,2903,4253,5313,6573,7563,8733,9944,016951682633404054595466266657317668058549149821,0281,0711,1081,1311,1531,1691,1921,2141,2331,2661,3031,30781010151818212425313540475465687074767777777777778080HTML viewsPDF downloadsXML downloadsSep 2024Oct 2024Nov 2024Dec 2024Jan 2025Feb 2025Mar 2025Apr 2025May 20250k1k2k3k4k5k6k

Viewed (geographical distribution)

Total article views: 5,403 (including HTML, PDF, and XML) Thereof 5,201 with geography defined and 202 with unknown origin.
Country # Views %
United States of America1126023
China287316
Netherlands384615
Germany42053
France51683
  • 1
  • 1260
1
 
 
 
1260

Cited

Latest update: 07 May 2025
Download
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach...
Share