Articles | Volume 27, issue 22
https://doi.org/10.5194/hess-27-4151-2023
https://doi.org/10.5194/hess-27-4151-2023
Research article
 | 
16 Nov 2023
Research article |  | 16 Nov 2023

Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data

Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco

Related authors

Large-scale assessment of rainfall-induced landslide hazard based on hydrometeorological information: application to Partenio Massif (Italy)
Daniel Camilo Roman Quintero, Pasquale Marino, Abdullah Abdullah, Giovanni Francesco Santonastaso, and Roberto Greco
Nat. Hazards Earth Syst. Sci., 25, 2679–2698, https://doi.org/10.5194/nhess-25-2679-2025,https://doi.org/10.5194/nhess-25-2679-2025, 2025
Short summary

Cited articles

Allocca, V., Manna, F., and De Vita, P.: Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014, 2014. 
Arthur, D. and Vassilvitskii, S.: k-means++: The Advantages of Careful Seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 7–9, 2007, in New Orleans, Louisiana, 1027–1035, https://doi.org/10.5555/1283383.1283494, 2007. 
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIRES Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016. 
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. 
Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., and Chersich, S.: Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis, Eng. Geol., 19–37, https://doi.org/10.1016/j.enggeo.2015.04.006, 2015. 
Download
Short summary
This study shows a methodological approach using machine learning techniques to disentangle the relationships among the variables in a synthetic dataset to identify suitable variables that control the hydrologic response of the slopes. It has been found that not only is the rainfall responsible for the water accumulation in the slope; the ground conditions (soil water content and aquifer water level) also indicate the activation of natural slope drainage mechanisms.
Share