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Abstract. Soil and underground conditions prior to the initia-
tion of rainfall events control the hydrological processes that
occur in slopes, affecting the water exchange through their
boundaries. The present study aims at identifying suitable
variables to be monitored to predict the response of sloping
soil to precipitation. The case of a pyroclastic coarse-grained
soil mantle overlaying a karstic bedrock in the southern
Apennines (Italy) is described. Field monitoring of stream
level recordings, meteorological variables, and soil water
content and suction has been carried out for a few years.
To enrich the field dataset, a synthetic series of 1000 years
has been generated with a physically based model coupled
to a stochastic rainfall model. Machine learning techniques
have been used to unwrap the non-linear cause–effect rela-
tionships linking the variables. The k-means clustering tech-
nique has been used for the identification of seasonally recur-
rent slope conditions in terms of soil moisture and ground-
water level, and the random forest technique has been used
to assess how the conditions at the onset of rainfall controlled
the attitude of the soil mantle to retain much of the infiltrat-
ing rainwater. The results show that the response in terms of
the fraction of rainwater remaining stored in the soil man-
tle at the end of rainfall events is controlled by soil moisture
and groundwater level prior to the rainfall initiation, giving
evidence of the activation of effective drainage processes.

1 Introduction

Slope response to precipitation is highly non-linear in terms
of runoff generation, rainwater infiltration, and subsurface
drainage processes, which mostly depend on the initial soil
moisture state at the onset of each rainfall event (Tromp-Van
Meerveld and McDonnell, 2006b; Nieber and Sidle, 2010;
Damiano et al., 2017). The initial (or antecedent) conditions
are related to hydrological processes that occur in the slopes,
which control how they exchange water with the surrounding
systems (i.e. atmosphere, surface water, deep groundwater).
These processes occur through the boundaries of the slope
and often evolve over timescales of weeks or even months,
much longer than the duration of rainfall events, typically
ranging between some hours and few days.

While the importance of soil moisture conditions on slope
runoff and drainage has been recognised long since (Ponce
and Hawkins, 1996; Tromp-Van Meerveld and McDonnell,
2006a, b), the scientific community has only recently started
providing new perspectives to better understand hydrologic
conditions predisposing slopes to landslides (Bogaard and
Greco, 2018; Greco et al., 2023) to explain why most of
large rain events do not destabilise slopes and only some do
(Bogaard and Greco, 2016), and physically based models ca-
pable of integrating hydrological knowledge for predicting
landslide occurrence have been proposed (e.g. Bordoni et al.,
2015; Greco et al., 2018; Marino et al., 2021).

The triggering of some rainfall-induced geohazards, such
as shallow landslides and debris flows, is favoured by pore
pressure increase, caused by rainwater infiltration and conse-
quent soil moisture accumulation. The storage of rainwater
within the soil requires drainage mechanisms that develop
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in the slopes in response to precipitation to be ineffective at
draining much of the infiltrating water (Greco et al., 2021,
2023). Consequently, especially for nowcasting and early
warning purposes, the identification of hydrological variables
suitable for identifying slope predisposing conditions is ex-
tremely useful. Thus, to better understand how hydrological
predisposing conditions may control the processes involv-
ing the sloping soil response in terms of water storage, field
monitoring for the assessment of the slope water balance is
highly recommended (Bogaard and Greco, 2018; Marino et
al., 2020a).

The identification of suitable variables to be monitored
in the field is indeed useful to achieve an insight into the
behaviour of the interconnected hydrological systems (i.e.
groundwater, surface water, soil water). Besides the study
of rainfall-induced landslides, the evaluation of the hydro-
logical scenarios in a region of interest could impact several
other applications from flood hazard assessment (Reichen-
bach et al., 1998; Forestieri et al., 2016; Chitu et al., 2017),
to the prediction of possible crop water stress conditions in
relation to defoliation (Capretti and Battisti, 2007), pathogen
expansions in chestnut groves (Gao and Shain, 1995), and
plant mortality in a climate change context (McDowell et al.,
2008).

This research focuses on a case study of a slope located
in Campania (southern Italy), representative of a wide area
frequently hit by destructive rainfall-triggered shallow land-
slides (e.g. Fiorillo et al., 2001; Revellino et al., 2013).
In fact, such geohazards are recurrent along the carbonate
slopes covered with unsaturated air-fall pyroclastic deposits,
diffuse over an area of a few thousand square kilometres
around the two major volcanic complexes of the region, the
Somma–Vesuvius and the Phlegraean Fields (Di Crescenzo
and Santo, 2005; Cascini et al., 2008). The underlying lime-
stone bedrock, densely fractured, is characterised by the pres-
ence of deep karst aquifers (Allocca et al., 2014). The trig-
gering mechanism of landslides in the area is the increase in
water storage within the soil mantle after intense and persis-
tent precipitation, leading to pore pressure build-up (Bogaard
and Greco, 2016). Slope equilibrium is in fact guaranteed by
the additional shear strength promoted by soil suction (Lu
and Likos, 2006; Greco and Gargano, 2015), the reduction
of which often leads to slope failure due to shear strength
loss by soil wetting during rainwater infiltration (Olivares
and Picarelli, 2003; Damiano and Olivares, 2010; Pagano et
al., 2010; Pirone et al., 2015).

Recent studies show that the response of the soil man-
tle to precipitation in the study area is affected not only by
rainfall characteristics and antecedent soil moisture but also
by the wetness of the interface with the underlying bedrock,
which controls the leakage of water into the underlying frac-
tured limestone (Marino et al., 2020a, 2021). At the con-
tact between soil and bedrock, intense weathering modifies
the physical properties of the soil as well as of the fractured
bedrock, which form a hydraulically interconnected system:

the epikarst (e.g. Perrin et al., 2003; Hartmann et al., 2014;
Dal Soglio et al., 2020). The changing hydraulic behaviour
of the soil–bedrock interface can be related to the storage of
water in the epikarst, where a perched aquifer forms during
the rainy season (Greco et al., 2014, 2018).

The aim of this study is to identify the major hydrological
processes controlling the response to precipitation of the py-
roclastic soil mantles typical of the area and the seasonally
recurrent conditions that affect their ability to retain much of
the infiltrating rainwater, through suitable measurable vari-
ables. To this aim, a rich dataset of measured rainfall events
and corresponding hydrological effects would be required,
which was not available for the case study, where monitor-
ing activities had been carried out for a few years. There-
fore, a synthetic 1000-year hourly dataset was generated, by
means of a stochastic rainfall model and a simplified phys-
ically based model of the slope, coupling the unsaturated
pyroclastic soil mantle and the underlying perched aquifer
(Greco et al., 2018). Both models had been previously cali-
brated and validated on field experimental data (Damiano et
al., 2012; Greco et al., 2013; Comegna et al., 2016; Marino et
al., 2021). The synthetic data of soil suction, water content,
and aquifer water level, all measurable in the field and as-
sumed as representative of real conditions, were analysed as
if they were measured data. After sorting the rainfall events
within the 1000-year time series, a dataset was built with the
antecedent conditions 1 h before the beginning of each rain-
fall event. It included the previously listed variables plus the
total-event rainfall depth and the change in the water stored
in the soil mantle at the end of each rainfall event. To dis-
entangle the non-linear processes controlling the hydraulic
behaviour of the slope and their role in the soil response to
precipitation, the dataset was analysed with machine learning
(ML) techniques, i.e. clustering, and random forest. Indeed,
ML allows managing a large number of data, such as those
provided by assimilation of extensive monitoring networks,
remote sensing, satellite products, and other sources, without
introducing any mathematical model structure to highlight
the cause–effect relationships linking the variables.

2 Materials and methods

The studied slope, described in Sect. 2.1, belongs to the
Partenio Massif, and it has the typical characteristics of many
pyroclastic slopes of Campania (southern Italy) (Greco et
al., 2018). Indeed, three major zones characterised by un-
saturated pyroclastic deposits can be identified in Campa-
nia (Cascini et al., 2008): the Campanian Apennine chain,
composed of carbonate rock covered by a variable layer
of pyroclastic soil (from 0.1 to 5 m); the Phlegraean dis-
trict, formed by underlying densely fractured volcanic tuff
bedrock, placed under several metres of pyroclastic soils;
and the Sarno and Picentini Mountains, where a thin layer
of pyroclastic material is found over a terrigenous bedrock.
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Figure 1. Flowchart summarising the methodology followed in the
analysis of sloping soil response to precipitation.

In these three areas, the thickness of the soil mantle is quite
variable, according to the slope inclination and to the dis-
tance from the eruptive centre (De Vita et al., 2006; Tufano
et al., 2021).

To identify the seasonally recurrent conditions that affect
the attitude of the soil mantle to retain much of the infiltrat-
ing water, a large set of measurements of rainfall events and
their effects on the slope would be required. Hence, to enrich
the data available from the monitoring activities carried out
for some years at the slope (Marino et al., 2020a), a synthetic
dataset of the hydrologic response of the slope to precipi-
tation has been generated with a stochastic Neyman–Scott
Rectangular Pulse Model (NSRP) of rainfall (Rodriguez-
Iturbe et al., 1987) and a simplified 1-D model of the in-
teraction of the unsaturated pyroclastic soil mantle with the
underlying perched aquifer forming in the epikarst. Both the
models, described in the following sections, were previously
developed based on experimental data (Greco et al., 2013,
2018; Marino et al., 2021). The obtained synthetic dataset has
been compared to the limited dataset from field monitoring,
showing a reasonable agreement. Therefore, it has been con-
sidered suitable to reproduce slope response to climate forc-
ing, in terms of soil volumetric water content and perched
aquifer water level, in the studied area (see Sect. 2.2).

The synthetic dataset has been analysed with machine
learning techniques (Sect. 2.3), as they prove to be able to
identify non-linear cause–effect relationships between vari-
ables, without introducing any model structure, as if the data
were provided by field measurements. Figure 1 shows the
flowchart of the entire methodology.

2.1 Case study

The study area refers to the north-east slope of Monte Cor-
nito, part of the Partenio Massif (Campania, southern Italy),
2 km from the town of Cervinara, about 40 km north-east of
the city of Naples. The slope was involved in a series of
rapid shallow landslides after a rainfall event of 325 mm in
48 h during the night between 15–16 December 1999, caus-
ing casualties and heavy damage (Fiorillo et al., 2001). A
field monitoring station was installed nearby the big land-
slide scarp in 2001. Further details of the investigated zone,
with indications of the area affected by the largest of the land-
slides triggered in 1999, are shown in Fig. 2.

The Partenio Massif is part of the southern Apennines
area. The bedrock mainly consists of Mesozoic–Cenozoic
fractured limestones, mantled by loose pyroclastic deposits,
resulting from the explosive volcanic activity of Somma–
Vesuvius and the Phlegraean Fields, which occurred over the
last 40 000 years (Rolandi et al., 2003).

The fractured limestone formations of the southern Apen-
nines often host large karst aquifers, through which a basal
groundwater circulation occurs, for which regional ground-
water recharge between 100 and 500 mm yr−1 has been es-
timated, with 200 mm yr−1 regarding the area of Cervinara
(Allocca et al., 2014). Moreover, recent studies showed that,
in the upper part of the karst system, denoted as epikarst
(Hartmann et al., 2014), which is more permeable and porous
than the underlying rock, a perched aquifer often develops
(Williams, 2008; Celico et al., 2010). It temporarily stores
water and favours the recharge of the deep aquifer through
the larger fracture system. The water, which is accumulated
temporarily in the epikarst, also reappears at the surface in
small ephemeral streams.

Specifically, the slope of Cervinara has an inclination be-
tween 35 and 50◦, at an elevation between 500 and 1200 m
above sea level. The soil mantle, usually in unsaturated con-
ditions, is the result of the air-fall deposition of the materials
from several eruptions, so it is generally layered. It mainly
consists of layers of volcanic ash (with particle size in the
range of sands to loamy sands) alternating with pumices
(sandy gravels), lying upon the densely fractured limestone
bedrock. Near the soil–bedrock interface, a layer of weath-
ered ash, characterised by finer texture (silty sand), with
lower hydraulic conductivity, moderate plasticity, and low
cohesion, is often observed (Damiano et al., 2012).

The soil mantle thickness varies spatially from a minimum
of 1.0 m, in the steepest part of the slope, to larger values
at its foot (up to 4–5 m). The thin soil mantle, compared to
the slope width and length of hundreds of metres (Fig. 2)
makes the flow processes nearly one-dimensional, except for
the close proximity to geometric singularities.

The pyroclastic soils of the profile are characterised by
high porosity (from about 50 % for the pumices to 75 % for
the ash) and quite high values of saturated hydraulic con-
ductivity (ranging up to the order of 10−5 m s−1). Thus, this
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Figure 2. Location of the study area and indication of the zone affected by a large landslide in 1999. Adapted from Marino et al. (2020a).

kind of soil lets rainwater infiltrate even during the most in-
tense rainfall events, with little runoff generation, and it can
store a large amount of water without approaching satura-
tion. The values of soil capillary potential, measured during
the rainy season, rarely exceed −0.5 m, as observed also in
other slopes of the area (Cascini et al., 2014; Comegna et al.,
2016; Napolitano et al., 2016).

The climate is Mediterranean, which is characterised by
dry and warm summer and rainy autumn and winter, with
mean annual precipitation of about 1600 mm, mostly occur-
ring between October and April. The total potential evapo-
transpiration ET0, estimated with the Thornthwaite formula
(Shuttleworth, 1993), is between 700 and 800 mm in the al-
titude range from 750 to 400 m (Greco et al., 2018). The
vegetation mainly consists of widespread deciduous chest-
nuts, with a dense understorey of brushes and ferns, grow-
ing during the flourishing period (between May and Septem-
ber). In fact, visual inspections of the soil profile showed a
large amount of organic matter and roots. In most cases, roots
are denser in the uppermost part of the soil mantle and be-
come sparse between the depths of 1.50 and 2.00 m below
the ground surface, reaching the basal limestones and pene-
trating the fractures.

Moreover, in the surrounding area, several ephemeral and
perennial springs are present, mostly located at the foot of the
slopes, which supply a network of small creeks and streams,

allowing us to show the activity of the aquifer discharge
to the surface water. An indication regarding the Castello
stream (the main stream for this side of the basin), with
springs, is shown in Fig. 3, where, during a field survey in 11
November 2021, the surface water flow appeared (springs)
and disappeared (sinks) in some points along the stream
course. Normally the stream exhibits its lowest water depth
values up to the beginning of late autumn (Marino et al.,
2020a), but it is interesting to note that the surface water in
the stream emerging from the epikarstic springs is an indica-
tor of the active slope drainage.

2.1.1 Field monitoring data

Several hydrological monitoring activities have been carried
out at the slope of Cervinara since 2001, initially consist-
ing of measurements of precipitation and manual readings
(every 2 weeks) of soil suction by “Jet-Fill” tensiometers,
equipped with a Bourdon manometer (Damiano et al., 2012).
Since November 2009, an automatic monitoring station has
been set at an elevation of 585 m a.s.l., near a narrow track
close to the landslide scarp of December 1999. The installed
instrumentation consisted of tensiometers, time domain re-
flectometry (TDR) probes for water content measurements,
and a rain gauge (Greco et al., 2013; Comegna et al., 2016).

Since 2017, the hydrometeorological monitoring was en-
riched (Marino et al., 2020a), aimed at understanding the
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Figure 3. Identification of surface water flow in the Castello stream
at the beginning of the rainy season in November 2021 by visual
recognition of springs and sinks in the watercourse.

seasonal behaviour of the slope and the interactions between
the hydrological systems, i.e. the unsaturated soil mantle, the
epikarst, and the underlying fractured bedrock.

Specifically, the data collected by tensiometers and TDR
probes were supplemented with those from a meteorological
station (composed of a thermo-hygrometer, a pyranometer,
an anemometer, a thermocouple for soil temperature mea-
surement, and a rain gauge) and with the water level in two
streams at the slope foot, so as to gain useful information for
the assessment of the water balance of the studied slope.

The data from field monitoring, carried out between 2017
and 2020 with an hourly resolution, consist of rainfall, evap-
otranspiration, soil moisture and suction at various depths,
and the water depth of the Castello stream. The data have
been useful to highlight seasonally recurrent soil moisture
distributions. More details about the measured data and the
observed recurrent seasonal behaviour of the area of Cerv-
inara can be found in Marino et al. (2020a).

2.2 Synthetic dataset

In order to identify suitable variables to be monitored in the
field for the identification of the conditions controlling dif-
ferent slope responses to precipitation, a rich dataset of rain-
fall and underground monitored variables, such as soil mois-
ture and groundwater level, is needed. However, it is not al-
ways possible to analyse a complete field-monitored dataset,
and, when it exists, it is commonly available for short pe-
riods, granting a relatively small number of measurements.
Hence, a synthetic dataset, aimed at improving the informa-
tion obtained from field monitoring, has been generated. This
dataset has been obtained by means of the physically based

mathematical model described hereinafter (Sect. 2.2.2). The
model has been run with a 1000-year synthetic hourly rainfall
series, obtained with a stochastic rainfall generator, for which
further details are given in Sect. 2.2.1. The choice of such a
long synthetic series has been made to obtain a large number
of data, representative also of conditions rarely occurring at
the slope and large enough to ensure the significance of the
analyses carried out with ML techniques. In this respect, it
is worth noting that the adopted clustering and random for-
est techniques allow easy handling of a large number of data
without an unaffordable computational burden.

2.2.1 Definition of synthetic rainfall events

The Neyman–Scott Rectangular Pulse Model (NSRP) has
been used to obtain a 1000-year-long synthetic hourly series
of precipitation. The NSRP model reproduces the precipita-
tion process as a set of rain clusters, composed of possibly
overlapping rain cells embodied by rectangular pulses, each
one with random origin. The storm duration is represented by
the cell width, and its height represents the associated rain-
fall intensity, so that when multiple cells overlap, the total
intensity is the sum of the intensities of the overlapping cells
(Rodriguez-Iturbe et al., 1987; Cowpertwait et al., 1996).

NSRP model calibration requires the identification of five
parameters, using the method of moments (Peres and Can-
celliere, 2014), based on available rainfall data for the inves-
tigated site. Specifically, the data from the rain gauge station
of Cervinara, situated near the Loffredo village, belonging to
the Civil Protection Agency of Campania Region available
from January 2001 to December 2017 with a time resolution
of 10 min, were used.

The aim of this study is the identification of variables ex-
pressing the slope conditions responsible for of different re-
sponses to precipitation. In that sense, it is important to define
the events within the rainfall time series to clearly distinguish
antecedent conditions from the effects of the current rainfall
event.

In other words, within the 1000-year-long time series, a
criterion should be identified to separate rainfall events, so
that a new event begins only when the effects of the pre-
vious one disappeared. For this study, the events were de-
fined as periods with at least 2 mm of rainfall, preceded and
followed by at least 24 h with less than 2 mm (i.e. smaller
than the mean daily potential evapotranspiration estimated
for the case study). Indeed, the separation period of 24 h is
commonly used for the definition of the empirical thresholds
for early warning systems against rainfall-induced landslides
(e.g. Peres et al., 2018; Segoni et al., 2018; Marino et al.,
2020b).

In fact, the mean volumetric water content (θ ) at 10 cm
depth drops below soil field capacity (θ ∼= 0.35) 24 h after
the end of each event (Fig. 4) in all the cases in which such a
value was exceeded before the end of the event. This shows
that a dry interval of 24 h after a rainfall event is long enough
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for drainage processes to remove from the topsoil most of the
water infiltrated from the previous event. As topsoil moisture
controls the infiltration capacity at the ground surface, after
such an interval the infiltration of new rainfall is only little
affected by the remnants of the previous rainfall event.

With the assumed separation criterion, a total of 53 061
rainfall events within 1000 years are obtained, with durations
ranging between 1 and 570 h and a total rainfall depth be-
tween 2 and 710 mm.

2.2.2 Slope hydrological model

As already pointed out in Sect. 2.1, the regular geometry of
the slope and the hydraulic characteristics of the soils make
the flow processes in the soil mantle mostly one-dimensional.
Indeed, a simplified 1-D model has previously been devel-
oped and successfully validated according to the data col-
lected during the hydrological monitoring activities (Greco et
al., 2013, 2018), and it was applied to investigate the hydro-
logical response of the slope to synthetic hourly precipitation
data. The unsaturated flow through the soil mantle is mod-
elled with a 1-D head-based Richards’ equation (Richards,
1931), assuming for simplicity a single homogeneous soil
layer, and it is coupled with a model of the saturated wa-
ter accumulated in the perched aquifer. The adoption of a
1-D model is allowed thanks to the geometry of the consid-
ered mantle and to the prevailing water potential gradients
orthogonal to the ground surface when the soil is in unsatu-
rated conditions.

The root water uptake has been accounted for in the source
term of the model, according to the expressions by Feddes et
al. (1976), based on estimated potential evapotranspiration,
with a maximum root penetration depth equal to the soil man-
tle thickness and triangular root density shape.

Two boundary conditions are considered for the unsatu-
rated soil mantle. At the ground surface (i.e. the upper bound-
ary condition), if the rainfall intensity is greater than the
current infiltration capacity, the excess rainfall forms over-
land runoff. Otherwise, all rainfall intensity is set as infil-
tration. The bottom boundary condition links the soil man-
tle to a perched aquifer developing in the fractures and hy-
draulically connected to the unsaturated cover through the
weathered soil layer (less conductive and capable of retain-
ing much water), located at the contact between the cover
and the bedrock. This soil layer penetrates the vertical con-
duits and fractures (Greco et al., 2013). In this context, the
perched aquifer is modelled as a linear reservoir model that
receives water from the gravitational leakage of the overly-
ing unsaturated soil mantle and releases it as deep groundwa-
ter recharge and spring discharge (Greco et al., 2018). This
conceptualisation of the perched aquifer behaviour implies
that the streamflow, supplied by the springs, is linearly re-
lated to the aquifer water level temporarily developing in the
epikarst. Indeed, with this assumption, the model closely re-
produces the trend of the stream water level observed in the

Table 1. Hydraulic parameters of the coupled model of the unsatu-
rated soil mantle and of the aquifer hosted in the epikarst (Greco et
al., 2021).

Soil mantle Soil mantle thickness (m) 2
Saturated water content (−) 0.75
Residual water content (−) 0.01
Air entry value (m−1) 6
Shape parameter (−) 1.3
Saturated hydraulic conductivity (m s−1) 3× 10−5

Epikarst Epikarst thickness (m) 14
Effective porosity (−) 0.005
Time constant of linear reservoir (d) 871

field (Greco et al., 2018; Marino et al., 2020a). The pressure
head at the soil–bedrock interface is assumed to follow the
fluctuations in the water table of the underlying aquifer.

The hydraulic parameters of the homogeneous soil mantle
have been obtained considering the information from previ-
ous laboratory tests (Damiano and Olivares, 2010) and field
monitoring data analysis (Greco et al., 2013), considering the
van Genuchten–Mualem model for the hydraulic characteris-
tic curves (van Genuchten, 1980). Specifically, the parame-
ters of the hydraulic characteristic curves were searched with
a genetic algorithm, constrained within intervals ensuring
that the obtained curves resemble available measurements of
water retention and unsaturated hydraulic conductivity, ob-
tained both in the field and in the laboratory (Greco et al.,
2013). The parameters describing the hydraulic behaviour of
the perched aquifer hosted in the upper part of the limestone
bedrock were derived from previous studies, which showed
that the model satisfactorily reproduced the fluctuations in
water potential and moisture, observed at various depths in
the unsaturated soil cover, both during rainy and dry seasons
(Greco et al., 2013, 2018). Model parameters are summarised
in Table 1. The groundwater level of the perched aquifer is
given in reference to the base of the epikarst, which is as-
sumed to be 14 m below the soil–bedrock interface.

The equations have been numerically integrated with the
finite difference technique, with a time step of 1 h over a spa-
tial grid with a vertical spacing of 0.02 m.

The model assumes a homogeneous soil profile and a sim-
plified slope geometry, and indeed it is not aimed at repro-
ducing the details of flow processes through the unsaturated
soil mantle. Consequently, the hydraulic properties of the ho-
mogeneous soil layer should be regarded as effective proper-
ties, useful to reproduce the major features of the infiltration
and drainage phenomena. The model is used to assess how
large-scale (in time and space) hydrological processes, such
as long-term cumulated rainfall and evapotranspiration and
perched aquifer recharge, control the conditions that affect
the response of the soil mantle to precipitation events. In this
sense, the obtained results can be considered representative
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Figure 4. Scatter plot of event rainfall depth and mean volumetric water content of the top 10 cm soil depth 1 h (grey dots) and 24 h (black
dots) after the end of each rainfall event.

of large areas that share the major geomorphological features
of the slopes of the Partenio Massif.

2.2.3 Synthetic hydrometeorological data

As it has been stated from previous sections, the dataset
comes from the simulation of the hydrologic response of a
slope to 1000-year-long hourly rainfall time series, carried
out with a physically based model, calibrated for the case
study. The output contains the time series of soil water con-
tent and suction at all depths throughout the soil mantle, of
the water exchanged between the soil and the atmosphere,
of the leakage through the soil–bedrock interface, and of the
predicted water level of the underlying aquifer.

One hour before the onset of each rainfall event, the fol-
lowing variables have been extracted, as they would be mea-
surable in the field and are representative of antecedent con-
ditions: the aquifer water level (ha), the mean volumetric wa-
ter content in the uppermost 6 cm of the soil mantle (θ6), and
the mean volumetric water content in the uppermost 100 cm
of the soil mantle (θ100). To quantify the effects of rainfall
on the slope response, the change in the water stored in the
soil mantle at the end of each rainfall event (1S) has been
computed and compared with the total rainfall depth of the
event (H ).

Specifically, the inclusion of soil water content informa-
tion has been chosen, as it can be obtained from avail-
able satellite-derived remote-sensing products (Paulik et al.,
2014; Pan et al., 2020) or from field sensor networks (Wicki
et al., 2020). Regarding satellite products, in many cases not
giving precise water content values, they satisfactorily repro-
duce temporal trends, which represent valuable information
for hazard assessment.

Besides, as the model introduces a linear relationship to
estimate the outflow from the groundwater system, the mon-

itored stream water level has been regarded as interchange-
able with the simulated groundwater level, as the two vari-
ables are assumed to be directly linked in the model.

2.3 Data analysis techniques

The resulting dataset has been analysed with machine learn-
ing techniques, aimed at capturing the complex interactions
between the hydrological subsystems (i.e. soil mantle, frac-
tured bedrock, surface water). Indeed, the analysis of the data
is not only constrained to classical statistical analyses, such
as data frequency distributions, but also to data classification
based on their geometrical distribution and on quantifying
the importance of the considered antecedent variables on the
simulated response as well.

2.3.1 Variable importance assessment by random forest

The aim of this study is to find a set of measurable variables
which, based only on field measurements, provide valuable
information for predicting the response of the soil mantle to
precipitation. In this respect, a suitable tool is represented by
random forest (RF), a machine learning method that is based
on the theory of regression/classification trees, bagging data
and capturing even the complex or non-linear interactions be-
tween the data of a set with relatively low bias (Breiman,
2001). This method is often used to forecast a desired vari-
able based on predictor variables in terms of regression or
a classification set of randomly constructed trees. RF anal-
ysis of importance allows quantifying how informative the
input variables are to make good predictions of the output,
which should not be confused with the information provided
by a variance-based sensitivity analysis (SA). In fact, this lat-
ter fact, always based on a mathematical model linking input
variables to output, explains how the variability in the out-
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put is related to the variability in the inputs, regardless of
how the output of a model resembles available observations.
As in this case the analysed dataset is synthetic (i.e. it has
been obtained through a mathematical model), the results of
a variance-based SA will also be presented, allowing us to
compare the different kinds of information provided by the
two analyses.

In this case, a regression-based random forest technique
is applied to predict the soil storage response (1S) at the
end of each rainfall event of total depth H , using as predic-
tors all possible triplets of variables described in Sect. 2.2.3
(H , ha, θ6, and θ100). Specifically, four random forest mod-
els have been developed: RF1 with input features 〈H,θ6,ha〉,
RF2 with input features 〈H,θ100,ha〉, RF3 with as input fea-
tures 〈H,θ6,θ100〉, and RF4 with input features 〈H,θ6,θ100〉.
Overall, 80 % of the dataset was used to train the models and
tune the major hyperparameters of the random forest algo-
rithm: the number of trees, the maximum depth, the min-
imum sample leaf, and the maximum number of features
(more details about the evaluation and optimisation of the
hyperparameters are provided in Appendix B).

Then, the best predictor triplet of variables is selected ac-
cording to the lowest value of the root mean square error
(RMSE) calculated using the test dataset consisting of 20 %
of the remaining data.

Furthermore, to understand how a single predictor vari-
able affects the regression model, the importance of input
variables (features) in the random forest regression model
has been assessed through the mean decrease in impurity
(Breiman, 2001), which is a measure of the ability of the tree
to split the dataset into classes. Impurity is here computed
as the mean decrease in RMSE, when a particular variable is
used for splitting nodes across all the trees in the RF. Specif-
ically, RMSE is employed to assess the quality of splits and
to determine the importance of features in predicting output
values.

2.3.2 Data classification by clustering analysis

The exploratory analysis of spatial large datasets is often per-
formed by means of clustering techniques, aimed at iden-
tifying different classes in the data and accounting for on
the distribution of the variables under study. There are two
types of clustering algorithms used for class identification
purposes: algorithms based on the density of points and algo-
rithms based on the distance between points. The algorithm
used here is named k means, and it is a distance-based proce-
dure to cluster data, based on the number of desired clusters
and their centroids. The algorithm assigns every element in
the dataset to a cluster, iteratively minimising the variance
of the Euclidean distance between the elements of each clus-
ter and their centroids. Consequently, the data labelling is
done based on their geometrical disposition in the dot cloud,
depending on the target number of clusters to be identified
(Lloyd, 1982; Arthur and Vassilvitskii, 2007). When vari-

ables with very different magnitudes are being related for
clustering purposes, it is convenient to normalise the data,
keeping the relative distances between observations. There-
fore, the clustering here is applied to the standardised data
to exploit the variance of each variable and keeping the geo-
metrical disposition between observations stable.

As the k-means algorithm does not automatically estimate
the optimal number of clusters to be identified within the
dataset, the silhouette metric has been used here to evalu-
ate the preferred number of clusters (Rousseeuw, 1987; de
Amorim and Hennig, 2015). In fact, this metric quantifies the
quality of cluster identification as the difference between the
overall average intra-cluster distances and the average inter-
cluster distances (i.e. the larger the difference, the better the
cluster quality). In that way the metric would always be a
value ranging from −1 and 1, where typically 1 means that
clearly distinguished clusters have been identified, 0 means
that the identified clusters are indifferent, and −1 means that
data are mixed in the identified clusters.

3 Results and discussion

The analysis is carried out on both field-monitored and syn-
thetic datasets to quantify the information provided by the
defined antecedent variables useful to predict the seasonal
changes in the slope response to precipitation. The analy-
sis of the physical behaviour of the studied slopes is based
on the results of model simulations, as if they satisfacto-
rily resemble what could be measured in the field. Indeed,
the uncertainty in model parameters may affect the identified
cause–effect relationships. However, during the calibration
of model, field measurements of the hydraulic behaviour of
the involved soil were considered (Greco et al., 2013); thus
the major features of the hydrological processes occurring in
the slope are considered reliably reproduced in the synthetic
dataset.

3.1 Role of measurable variables in the response of the
soil mantle

To select the most informative triplets of variables for pre-
dicting the change in water storage (1S) in the soil mantle,
associated with rainfall events of total depth H , four random
forest models are trained to predict the ratio 1S/H , based
on the dataset consisting of all possible combinations of the
synthetic variables: 〈H,θ6,ha〉, 〈H,θ100,ha〉, 〈H,θ6,θ100〉,
and 〈θ6,θ100,ha〉. In fact, the change in storage 1S is ob-
viously strongly dependent on the event rainfall depth H
(i.e. the more it rains the more soil storage increases), thus
concealing important hydrological processes going on in the
slope. Differently, the choice of the ratio 1S/H , a measure
of the amount of rain that remains stored in the soil mantle,
allows detaching the water drainage processes from the wa-
ter accumulation processes. For each random forest model,
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Table 2. RMSE and variable importance for H , θ6, θ100, and ha in
the prediction of soil response described as 1S/H .

Importance

Dataset RMSE H θ6 θ100 ha

〈H,θ6,ha〉 0.122 0.156 0.140 – 0.704
〈H,θ100,ha〉 0.120 0.143 – 0.164 0.693
〈H,θ6,θ100〉 0.140 0.287 0.440 0.273 –
〈θ6,θ100,ha〉 0.124 – 0.101 0.133 0.766

Table 3. Sensitivity indices of the variance-based SA of the vari-
ability in 1S/H resulting from variations in H , θ100, and ha.

Variable Stot S1 (single- S2 (mutual interactions)
parameter

variations)

θ100 0.532 0.471 (θ100,ha) 0.002
ha 0.058 0.058 (θ100,H ) 0.060
H 0.469 0.412 (ha,H ) 0.000

the values of the root mean square error (RMSE) are calcu-
lated, and the importance of each predictor variable is evalu-
ated according to the procedure described in Sect. 2.3.1. The
computational effort implied in doing the calculations by a
conventional workstation with a Core(TM) i7-10870H pro-
cessor and 16 GB of RAM memory is less than 2 min for
each model run. The obtained results are reported in Table 2.

All the choices of triplets indicate that all the tested vari-
ables are informative to predict the normalised soil mantle re-
sponse1S/H (Table 2), with the perched groundwater level,
ha, resulting in the most influential variable. The importance
of ha on the response of the soil mantle suggests that, in some
conditions, the change in soil storage is affected by the effec-
tiveness of water exchange between the soil mantle and the
underlying aquifer, as it will be discussed in the following
sections. Moreover, in Table 2 the triplet showing the lowest
RMSE values is formed by the total rainfall depth, the aquifer
water level, and the mean volumetric water content in the up-
permost 100 cm. According to the random forest model, they
are the most informative for predicting the soil mantle re-
sponse. Therefore, the triplet 〈H,θ100,ha〉 is used for further
analysis.

Considering the triplet of input variables 〈H,θ100,ha〉, a
variance-based sensitivity analysis has been also carried out,
based on the methodology outlined by Sobol (2001), which
is implemented in the Sensitivity Analysis Library in Python
– SALib toolbox (Herman and Usher, 2017; Iwanaga et al.,
2022). The sampling scheme proposed by Saltelli (2002) has
been used to generate 65 536 triplets, so as to have a similar
number of data as for the RF importance analysis. Table 3
reports the obtained sensitivity indices.

Interestingly, the indices show how the aquifer water level,
ha, which is the most informative variable for output predic-
tions according to the RF analysis, is responsible only for a
small part of the output variability, which instead is mostly
related to the variations in the other two input variables. As
will be discussed in Sect. 3.2 and 3.3, ha, not affecting the
variability in 1S/H , is an extremely informative variable
anyway, as it allows us to separate the initial conditions into
two families: low levels and high levels, corresponding to
quite different responses of the soil mantle to precipitation.
The situation also arises that output variability mostly de-
pends on the variations in single inputs (i.e. the indices S1
explain most of the total sensitivity, and the indices S2, mea-
suring the contribution to the total output variance deriving
from mutual interactions between couples of inputs, are all
small).

3.2 Soil and underground antecedent conditions

The field monitoring activities allow us to get a complete
dataset that traces the rainfall values coupled with the soil
mean volumetric water content in the uppermost metre of the
soil profile (θ100) and the water depth of the Castello stream
(hs), both measured hourly for 3 years. The field-monitored
data, composed of 57 rainfall events, include the water level
of the Castello stream rather than the direct measurement of
the aquifer water level (ha). Nevertheless, a direct relation-
ship links the water level in the aquifer and the water level
in the stream, as assumed for mathematical modelling. This
dataset has been enriched synthetically, as has been described
in Sect. 2.2.

Therefore, to analyse the effects of the underground condi-
tions on the slope response, Fig. 5 shows the simulated data
(circular dots in the background) and the field-monitored data
(triangular coloured dots). Logarithmic axes are used to dis-
tinguish the very low aquifer water level from the high val-
ues.

Four major seasonally recurrent conditions could be iden-
tified for the water in the subsurface system from field-
monitored data: first, a condition usually occurring between
December and May is characterised by the highest water con-
tent in the soil and the highest measured water level in the
stream. Second, the period from June to July is characterised
by intermediate water content values, with a still high level
in the stream. Third, the period from August to September is
characterised by the lowest values of water content in the soil
but also the lowest water depth hs measured in the stream (a
few centimetres, in some cases nearly zero). Finally, the pe-
riod from October to November is characterised by a wide
range of values in soil water content and a relatively low
range of stream water depth.

The underground antecedent conditions are naturally
linked to a seasonal behaviour dominated by the hydrolog-
ical conditions which can be traced in time, as can be seen
from the synthetic data (Fig. 6). The months from December
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Figure 5. Field-monitored mean volumetric water content in the upper metre of the soil profile (θ100) and water depth in the Castello stream
(hs), compared with synthetic data of θ100 and aquifer water level (ha) (on the vertical axis, plotted on a logarithmic scale to help to visualise
of low water levels and thus not allowing us to represent zeroes; the values of hs smaller than the sensitivity of the water level sensor
have been plotted as 1 mm; also, the smallest simulated values of ha should be considered equivalent to zero, owing to the limits of any
measurement device which could be used for operational field monitoring).

to April follow a winter and spring behaviour, characterised
by wet soil conditions and aquifer water levels ranging from
low to high. From June to July, a late spring behaviour is
visible, characterised by relatively dry soil (i.e. most of the
data falling below soil field capacity), in combination with
relatively high groundwater levels (indicating a still active
slope drainage). In August and September, a summer-like
behaviour is shown, with the driest soil water content and
a generally low aquifer water level. Finally, in October and
November, the end of the dry season is shown: a wide range
of soil wetness coupled with a still low aquifer water level.

For both the field-monitored and synthetically obtained
datasets, the observed conditions are the result of the time
lag between the beginning of the rainy season and the slope
response. The recurrent seasonal behaviour observed for the
synthetic dataset, although delayed or anticipated owing to
the year-by-year variability in rainfall, is close to that ob-
served in the field.

The overall situation for the synthetic dataset of antecedent
conditions (i.e. doublets 〈θ100,ha〉) can be described by the
distribution of each individual variable, which can be seen in
the histograms shown in Fig. 7. It is interesting to note that,
for both θ and ha, a bimodal behaviour is observed, corre-
sponding to dry and wet field conditions.

The k-means clustering technique has been used to inves-
tigate the geometrical distribution of the doublets 〈θ100,ha〉,
with the number of clusters ranging from 2 to 7. According
to the silhouette metric, the optimal number of clusters is 3,
with a metric value of 0.7, allocating 28 %, 30 %, and 42 % of
the data in clusters 1, 2, and 3, respectively. Figure 8 shows
the three clusters obtained within the synthetic dataset. Cen-
troid positions are also displayed, showing the zones of the
clouds where most of the dots are gathered. This representa-
tion of the data uses both vertical and horizontal axes on a

linear scale to let us visualise distance magnitudes between
the different clusters, but it corresponds to the same dataset
shown in Fig. 6.

The distribution of the data after clustering is also analysed
for each cluster, and the histograms are shown in Fig. 9. It
seems clear that the clusters capture different couplings of
dry and wet underground antecedent conditions.

In fact, cluster 1 captures dry conditions, with a volumetric
water content below the field capacity θfc (it was estimated as
0.35, with the empirical relationship proposed by Twarakavi
et al. (2009) according to the van Genuchten model parame-
ters) and low values of ha. Differently, clusters 2 and 3 cap-
ture scenarios related to relatively wet soil mantle conditions
(i.e. θ100 > θfc), coupled to low ha in cluster 3 and gathering
scenarios normally observed in late autumn, and to the high-
est ha conditions for cluster 2, comprising conditions nor-
mally occurring in late winter and spring.

The two chosen variables, θ100 and ha, allow us to iden-
tify three different antecedent slope conditions 1 h before the
onset of any rainfall event. Hence, it is worth investigating
how these different antecedent conditions may be related to
different slope responses to precipitation.

3.3 Effects of soil and underground antecedent
conditions on the slope response to rainfall

The analysis of the data has been focused on identifying
clusters within the triplets 〈θ100,ha,1S/H 〉, aiming to eval-
uate the slope response as the amount of rainwater being
stored/drained in the soil mantle. The results are plotted in
the space composed of the variables that can be monitored in
the field: (θ100,ha,H).
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Figure 6. Seasonal behaviour of the aquifer water level (ha) and the mean volumetric water content of the upper metre of the soil profile
(θ100) for the synthetic dataset (the vertical axis is plotted on a logarithmic scale to help to visualise low water levels).

Figure 7. Histograms for data distributions of (a) θ100 and (b) ha for the synthetic dataset.

Figure 8. Identified clusters for the doublets 〈θ100,ha〉 represent-
ing underground antecedent conditions of the synthetic dataset. For
each cluster, the centroids are shown.

As an increase in soil storage during rainfall events is not
always expected, the identification of draining slope condi-
tions is an important aspect.

Figures 10 and 11 show the data clusters for the triplets
〈θ100,ha,1S/H 〉, for any identified rainfall event, repre-

sented in the (θ100,ha,H) space in a logarithmic axis rep-
resentation. The silhouette metric in this case suggests 4 as
an optimal number of clusters with a metric value of 0.61.
It is remarkable that three of the clusters are close to those
already identified from the antecedent (seasonally recurrent)
underground conditions (Sect. 3.2).

Specifically, clusters 1, 2, and 3 correspond to different
slope processes according to1S/H (Fig. 12). Even if cluster
1 and cluster 2 show similar responses, with slightly smaller
1S/H for cluster 1, the controlling processes are indeed
different; the conditions of cluster 1 typically occur in dry
seasons with long dry periods between short rainfall events,
leading to dry antecedent conditions, so that an accumula-
tion of water in the soil mantle (increase in water storage)
is expected at each event. The data in cluster 2 are typi-
cally related to wet seasons, especially in late winter and
spring, where rainfall events are more frequent, leading to
antecedent wet soil (θ100 ≥ θfc) and antecedent high ground-
water level. However, these conditions do not seem to corre-
spond to effective slope drainage, so that the slope response
in cluster 2 is comparable to that observed in cluster 1 in
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Figure 9. Histograms for data distributions of (a) θ100 and (b) ha, according to each identified cluster in the doublets 〈θ100,ha〉.

Figure 10. Clustering results of the synthetic data triplets
〈θ100,ha,1S/H 〉 represented in the space (θ100,ha,H).

terms of 1S/H . Instead, the conditions gathered in clus-
ter 3 differ from those in cluster 2 for the lower aquifer water
level ha, and the highest 1S/H indicates the lowest slope
drainage.

The additional cluster 4 identified here highlights a par-
ticular slope response, as it catches all the conditions where
nearly zero and negative1S take place, meaning an effective
slope drainage during rainfall events. It is interesting to note
that, even for relatively high rainfall events (above 100 mm),
this slope response occurs when soil moisture is above the
field capacity and when this condition is coupled with very
high groundwater level, probably due to the high permeabil-
ity all along the soil mantle and due to the hydraulic connec-
tion with the underlying aquifer.

4 Conclusions

This study aims to identify and analyse the major hydrologi-
cal controls of the slope response to precipitation and, in that
way, defining suitable variables to be monitored in the field to
predict such a response. The studied case refers to the hydro-
logical processes in a slope system consisting of a pyroclas-
tic soil mantle overlaying a fractured karstic bedrock, where
a perched aquifer develops during the rainy season. A syn-
thetic time series of slope response to precipitation has been
built, thanks to a physically based model, previously cali-
brated with field monitoring data, coupled with a stochastic
rainfall generator. Synthetic and experimental data show sub-
stantial agreement. In fact, the soil water content values mea-
sured in the field are close to those of the synthetic dataset.
Furthermore, the simulated epikarst water level shows sim-
ilar seasonal behaviour to the stream level records, which
are indeed directly related to the discharge from the epikarst
aquifer. The synthetic dataset has been explored with random
forest and k-means clustering to evaluate the slope response
characterised as the change in water stored in the soil man-
tle (1S) during precipitation events with rainfall depth H ,
starting from different underground antecedent conditions.
These were quantified through the mean volumetric water
content in the uppermost metre of the soil mantle (θ100) and
the aquifer water level (ha) 1 h before the onset of rainfall.

The ratio 1S/H , which allows us to identify soil man-
tle response regardless of the amount of event precipitation,
is sensitive to both ha and θ100, with the groundwater level
being the most influential antecedent variable. The under-
ground antecedent conditions, characterised by θ100 and ha
and linked to the seasonal meteorological forcing, allow us
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Figure 11. Clustering results of the triplets 〈θ100,ha,1S/H 〉 in
(a) the (θ100,ha) plane, (b) the (θ100,H) plane, and (c) the (H,ha)
plane.

to identify different responses, related to the seasonally ac-
tive hydrological processes.

High perched groundwater level, typical of winter and
spring, indicates active drainage from the soil mantle, which
compensates for rainwater infiltration, so that the soil stor-
age remains stable, or even reduces, even after large rainfall
events.

Differently, low perched groundwater level corresponds to
impeded drainage. When it occurs with initially dry soil man-
tle (typically in summer and early autumn), it tends to retain
all the infiltrated rainwater as increased soil storage. When
the soil mantle is already wet (i.e. above the field capacity) at
the onset of rainfall events, as usually happens in late autumn
and early winter, the increase in soil storage is smaller, as the
soil approaches saturation.

Figure 12. Distribution of the slope response 1S/H for the data in
each cluster.

The presented results suggest that monitoring antecedent
conditions, by measuring suitable variables to identify the
major hydrological processes occurring in the slope in re-
sponse to precipitation, can be useful to understand such pro-
cesses and to develop effective predictive models of slope
response. Therefore, the proposed methodology can be repli-
cated also in other contexts and be useful for several hydro-
logic applications: from the water supply to natural streams
due to infiltrated water to the hydric stress estimation in crops
(e.g. the centenary chestnut forests of the case study) espe-
cially in very dry seasons but also for the design of effective
monitoring networks exploiting geohydrological information
for geohazard prevention (and early warning).

Appendix A: Calibration of the stochastic rainfall
generator

The Neyman–Scott Rectangular Pulse (NSRP) model (Ney-
man and Scott, 1958; Rodriguez-Iturbe et al., 1987; Cowpert-
wait et al., 1996) is here used as a stochastic rainfall gener-
ator. The NSRP describes the process of point rainfall as a
superposition of randomly arriving rain clusters, each con-
taining several rain cells with constant intensity. The hyeto-
graph within a cluster is obtained by summing the intensity
of the various cells belonging to the cluster. It has been cal-
ibrated based on 17 years of experimental data (2000–2016)
of rainfall depth at a 10 min time resolution, recorded by
the rain gauge managed by the Civil Protection in Cerv-
inara (southern Italy). The calibration has been carried out
by minimising, for rainfall aggregated at various durations,
the difference between the following quantities, estimated by
the model and calculated from the experimental data: mean,
variance, lag 1 autocorrelation, the probability of a dry inter-
val, the probability of a transition from a dry-to-dry interval,
and the probability of a transition from a wet-to-wet inter-
val. The calibration procedure, based on the one proposed by
Cowpertwait et al. (1996), is described in detail in Peres and
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Figure A1. Monthly plot of hourly rainfall characteristics calculated based on the experimental data of the rain gauge of Cervinara.

Cancelliere (2014). To account for the seasonality of rainfall,
these quantities have been calculated month by month in the
experimental record (Fig. A1), suggesting that the calibra-
tion of the NSRP model should be carried out separately for
seven homogeneous periods (September, October, Novem-
ber, December–March, April, May–June, July–August).

Table A1 gives the obtained parameters of the NSRP
stochastic model, where λ represents the parameter of a Pois-
son process describing the arrival of clusters; ν is the mean
number of cells in a cluster, also described by a Poisson pro-
cess; β is the parameter of an exponential probability distri-
bution describing the arrival times of each cell in a cluster,
expressed as the number of time intervals of 10 min starting
from the beginning of a cluster; η is the parameter of an expo-
nential probability distribution describing the duration of rain
cells; and ξ is the parameter of a Weibull probability distri-
bution describing the rain intensity of cells, with cumulative
probability function F (x,ξ,b)= 1−exp

(
−ξxb

)
, in which x

is cell rain intensity and the parameter b= 0.8 has been set a
priori (Cowpertwait et al., 1996).

The adherence of the rainfall generated with the stochas-
tic model to the experimental rainfall data has been tested by
evaluating rainfall characteristics different from those used
for the calibration. For instance, Fig. A2 shows the compar-
ison of the rainfall depth, cumulated over 1 year, for the ex-
perimental data (17 years) and for 1000 years of synthetic
data generated with the calibrated NSRP model.

In Fig. A3, the boxplot of the maximum hourly rainfall
in 1 year, observed in the experimental dataset of 17 years,
is compared with the same boxplot referring to 20 series of
17 years randomly extracted from the generated 1000-year
synthetic rainfall series. Several of the synthetic 17-year in-
tervals show a distribution of the maximum hourly rainfall
close to the observed one.

Figure A2. Comparison of observed (black) and simulated (red)
cumulated rainfall plots in a year.

Regarding the required comparison between synthetic and
observed wet and dry intervals, Fig. A4 shows the scatter
plot of duration and total rain depth of the events, sorted by
a separation “dry” interval of 24 h with less than 2 mm rain-
fall from the observed dataset (blue dots) and the synthetic
dataset (grey dots). The plots show how the synthetic data
contain the observed ones and that the shape of the dot clouds
looks quite similar.

Figure A5 shows the frequency distributions of the dura-
tions of dry intervals belonging to the 17-year rainfall dataset
and the same distribution for the dry intervals extracted from
the 1000-year synthetic dataset: the two distributions look
nearly identical.

Hydrol. Earth Syst. Sci., 27, 4151–4172, 2023 https://doi.org/10.5194/hess-27-4151-2023



D. C. Roman Quintero et al.: Understanding hydrologic controls of sloping soil response 4165

Table A1. Parameters of the NSRP model.

Param. Sep Oct Nov Dec–Mar Apr May–Jun Jul–Aug

λ (h−1) 0.015 0.00524 0.00257 0.0238 0.00809 0.00386 0.00900
ν (−) 2.68 36.4 57.1 2.60 38.7 21.6 1.40
β (h−1) 0.265 0.156 0.0167 0.813 0.123 0.116 24.5
η (h−1) 1.41 57.3 1.43 0.280 15.5 8.59 1.23
ξ (hb mm−b) 0.330 0.047 0.450 0.967 0.186 0.158 0.268

Figure A3. Comparison of observed and simulated distributions (boxplots) of the maximum hourly precipitation in a year, for series of the
same length. Each panel shows the distribution for the 17 observed years (boxplot is always the same) and 17 randomly picked simulated
years.
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Figure A4. Scatter plot of total rainfall event depth (H ) vs. rainfall event duration (D). The events have been sorted within the rainfall
datasets by considering a separation “dry” interval of 24 h with less than 2 mm rainfall. The blue dots represent events extracted from the
17-year experimental rainfall dataset, while the grey dots represent events extracted from the 1000-year synthetic rainfall dataset.

Figure A5. Frequency distributions of dry interval durations for events extracted from the 17-year experimental rainfall dataset (a) and
events extracted from the 1000-year synthetic rainfall dataset (b). The events have been sorted within the rainfall datasets by considering a
separation “dry” interval of 24 h with less than 2 mm rainfall.
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Appendix B: Tuning random forest hyperparameters

The random forest (RF) algorithm (Breiman, 2001) has been
very successful as a general-purpose classification and re-
gression method. Starting from bagging or bootstrap aggre-
gation (Efron and Tibshirani, 1993), RF builds several ran-
dom de-correlated decision trees and then averages their pre-
dictions.

The regression RF algorithm can be summarised as fol-
lows. (1) By means of bootstrap, a sample is extracted from
the training data. (2) Based on the bootstrapped data, a tree
T of the random forest is grown by repeating the following
operations until a leaf node (a node without split) is reached:
(a) for each node,m variables are randomly selected from the
p input variables or features (with 1≤m≤ p); (b) among the
m variables, the best variable and splitting point are selected
according to a minimum criterion; (c) the node is split into
two daughter nodes. To build the RF with B trees, steps 1
and 2 are repeated B times. Then, the prediction, Ypred, for a
new observation,X, is the average of the final values, Tb (X),
i.e. the values of the predicted variable corresponding to the
leaves of each tree:

Ypred =
1
B

∑B

b=1
Tb (X). (B1)

The main advantage of RF is the simplicity with which a for-
est can be trained and the parameters of the algorithms op-
timised. In this paper, the scikit-learn framework (Pedregosa
et al., 2011) is used to run the RF algorithm.

The main hyperparameters of a RF are (1) n_estimators,
the number of trees of the forest; (2) max_depth, the
maximum depth of each decision tree in the forest;
(3) min_samples_leaf, the minimum number of samples re-
quired to be at a leaf node; and (4) max_features, the number
of features, or input variables, to consider when looking for
the best split.

The procedure applied in this study to estimate and opti-
mise the hyperparameters of the RF algorithm consists of the
following steps:

– Step 1. The dataset is divided into a training set and a
test set, respectively, containing 80 % and 20 % of the
data, randomly chosen.

– Step 2. The K-fold cross-validation technique (Stone,
1974), withK = 10, is applied to empirically determine
a set of values for the hyperparameters, using only the
training dataset.

– Step 3. For each fold, a RF is trained on the other K−1
folds of the data and tested on the first fold. This process
is repeated K = 10 times, so to use each of the K folds
exactly once as the validation set. A performance metric
is then calculated for each fold, to estimate how well the
RF will perform on new data. In this work the root mean
square error (RMSE) is used as the performance metric.

Table B1. Hyperparameters range of variation.

Hyperparameter Range of variation

n_estimators 5, 10, 20, 25, 30
max_features 1, 2, 3
min_samples_leaf 15, 20, 25
max_depth 3, 4, 5, 6, 7

– Step 4. The RF is trained by changing one hyperparam-
eters at once and using the default values for the other
three (default values of hyperparameters as reported
in Pedregosa et al. (2011) are n_estimators= 100;
max_depth= none, i.e. the tree is expanded until all
leaves contain less samples than min_samples_split;
min_samples_leaf= 1; max_features= 1).

– Step 5. From the results of the previous step, the ranges
of hyperparameters, given in Table B1, are defined.
These values represent the grid in which the optimal hy-
perparameters are searched. In other words, using the
K-fold technique (Step 2), the RF model is fitted K
times, and then the optimal set of values is the one min-
imising the RMSE.

– Step 6 (validation of the model). Once the optimal val-
ues of the hyperparameters are determined, the perfor-
mance of the RF model is evaluated for the test dataset
as defined in Step 1, using the RMSE.

In this study, the described methodology is used to evalu-
ate the hyperparameters for the following RF models: RF1,
trained using the input features 〈H,θ6,ha〉; RF2, trained
using 〈H,θ100,ha〉; RF3, trained using 〈H,θ6,θ100〉; RF4,
trained using 〈H,θ6,θ100〉. All models are trained to pre-
dict the normalised change in water storage in the soil man-
tle, 1S/H . Figures B1, B2, B3, and B4 show the results of
Step 4. Specifically, they depict the trends of the RMSE ver-
sus the hyperparameters for RF1, RF2, RF3, and RF4, re-
spectively.

The analysis of Figs. B1, B2, B3 and B4 provides the
search grid of hyperparameters given in Table B1. After fit-
ting each model K times (Step 5), the optimal sets of hy-
perparameters are reported in Table B2 for each RF model.
Then, the performance of models RF1, RF2, RF3, and RF4
is evaluated on the test dataset using the RMSE metric. The
obtained results are summarised in Table B3.

The above-described analysis has been used to identify the
most informative triplet of variables, which has been chosen
as the one corresponding to the best-performing of the opti-
mal RF models, namely RF2.
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Figure B1. Performance of random forest model RF1 on the test and cross- validation (CV) sets according to the test metric by changing the
hyperparameters: (a) N_estimators, (b) Max_depth, (c) Max_ features, and (d) Min_samples_leaf.

Figure B2. Performance of random forest model RF2 on the test and cross-validation (CV) sets according to the test metric by changing the
hyperparameters: (a) N_estimators, (b) Max_depth, (c) Max_ features, and (d) Min_samples_leaf.

Table B2. Optimal values of hyperparameters.

Hyperparameter Optimal values
RF1 RF2 RF3 RF4

n_estimators 30 30 25 30
max_features 2 2 3 2
min_samples_leaf 20 20 9 20
max_depth 7 7 7 7

Table B3. RMSE of studied models computed for the test dataset.

Model RMSE

RF1 〈H,θ6,ha〉 0.122
RF2 〈H,θ100,ha〉 0.120
RF3 〈H,θ6,θ100〉 0.140
RF4 〈θ6,θ100,ha〉 0.124
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Figure B3. Performance of random forest model RF3 on the test and cross-validation (CV) sets according to the test metric by changing the
hyperparameters: (a) N_estimators, (b) Max_depth, (c) Max_ features, and (d) Min_samples_leaf.

Figure B4. Performance of random forest model RF4 on the test and cross-validation (CV) sets according to the test metric by changing the
hyperparameters: (a) N_estimators, (b) Max_depth, (c) Max_features, and (d) Min_samples_leaf.
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cessible through https://doi.org/10.5281/zenodo.10084277 (Roman
Quintero et al., 2023).
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